ACS Publications. Most Trusted. Most Cited. Most Read
Separating Homogeneous and Inhomogeneous Line Widths of Heavy- and Light-Hole Excitons in Weakly Disordered Semiconductor Quantum Wells
My Activity

Figure 1Loading Img
    Article

    Separating Homogeneous and Inhomogeneous Line Widths of Heavy- and Light-Hole Excitons in Weakly Disordered Semiconductor Quantum Wells
    Click to copy article linkArticle link copied!

    View Author Information
    JILA, University of Colorado and National Institute of Standards and Technology, Boulder, Colorado 80309-0440, United States
    Department of Physics, University of Colorado, Boulder, Colorado 80309-0390, United States
    § National Institute of Standards and Technology, Boulder, Colorado 80305, United States
    Other Access Options

    The Journal of Physical Chemistry B

    Cite this: J. Phys. Chem. B 2011, 115, 18, 5365–5371
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp109408s
    Published March 9, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Optical two-dimensional Fourier-transform spectroscopy is used to study the heavy- and light-hole excitonic resonances in weakly disordered GaAs quantum wells. Homogeneous and inhomogeneous broadening contribute differently to the two-dimensional resonance line shapes, allowing separation of homogeneous and inhomogeneous line widths. The heavy-hole exciton exhibits more inhomogeneous than homogeneous broadening, whereas the light-hole exciton shows the reverse. This situation occurs because of the interplay between the length scale of the disorder and the exciton Bohr radius, which affects the exciton localization and scattering. Utilizing this separation of line widths, excitation-density-dependent measurements reveal that many-body interactions alter the homogeneous dephasing, while disorder-induced dephasing is unchanged.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 38 publications.

    1. Md Muhaiminul Islam, Sithara U. Nawagamuwage, Igor V. Parshin, Margaret C. Richard, Alexander L. Burin, Igor V. Rubtsov. Probing the Hydrophobic Region of a Lipid Bilayer at Specific Depths Using Vibrational Spectroscopy. Journal of the American Chemical Society 2023, 145 (48) , 26363-26373. https://doi.org/10.1021/jacs.3c10178
    2. Esteban Rojas-Gatjens, Hao Li, Alejandro Vega-Flick, Daniele Cortecchia, Annamaria Petrozza, Eric R. Bittner, Ajay Ram Srimath Kandada, Carlos Silva-Acuña. Many-Exciton Quantum Dynamics in a Ruddlesden–Popper Tin Iodide. The Journal of Physical Chemistry C 2023, 127 (43) , 21194-21203. https://doi.org/10.1021/acs.jpcc.3c04896
    3. William R. Jeffries, Kyoungweon Park, Richard A. Vaia, Kenneth L. Knappenberger, Jr.. Resolving Electron–Electron Scattering in Plasmonic Nanorod Ensembles Using Two-Dimensional Electronic Spectroscopy. Nano Letters 2020, 20 (10) , 7722-7727. https://doi.org/10.1021/acs.nanolett.0c03272
    4. Tobias A. Gellen, Jet Lem, and Daniel B. Turner . Probing Homogeneous Line Broadening in CdSe Nanocrystals Using Multidimensional Electronic Spectroscopy. Nano Letters 2017, 17 (5) , 2809-2815. https://doi.org/10.1021/acs.nanolett.6b05068
    5. A. Liu, D. Pavićević, M. H. Michael, A. G. Salvador, P. E. Dolgirev, M. Fechner, A. S. Disa, P. M. Lozano, Q. Li, G. D. Gu, E. Demler, A. Cavalleri. Probing inhomogeneous cuprate superconductivity by terahertz Josephson echo spectroscopy. Nature Physics 2024, 20 (11) , 1751-1756. https://doi.org/10.1038/s41567-024-02643-5
    6. Alex Gómez Salvador, Pavel E. Dolgirev, Marios H. Michael, Albert Liu, Danica Pavicevic, Michael Fechner, Andrea Cavalleri, Eugene Demler. Principles of two-dimensional terahertz spectroscopy of collective excitations: The case of Josephson plasmons in layered superconductors. Physical Review B 2024, 110 (9) https://doi.org/10.1103/PhysRevB.110.094514
    7. Heinz Kalt, Claus F. Klingshirn. Excitation-Induced Coherent Effects. 2024, 279-300. https://doi.org/10.1007/978-3-031-51296-4_10
    8. Hao Li, S.A. Shah, Ajay Ram Srimath Kandada, Carlos Silva, Andrei Piryatinski, Eric R. Bittner. The Optical Signatures of Stochastic Processes in Many-Body Exciton Scattering. Annual Review of Physical Chemistry 2023, 74 (1) , 467-492. https://doi.org/10.1146/annurev-physchem-102822-100922
    9. Hao Li, S. A. Shah, Eric R. Bittner, Andrei Piryatinski, Carlos Silva-Acuña. Stochastic exciton-scattering theory of optical line shapes: Renormalized many-body contributions. The Journal of Chemical Physics 2022, 157 (5) https://doi.org/10.1063/5.0095575
    10. J. Paul, H. Rose, E. Swagel, T. Meier, J. K. Wahlstrand, A. D. Bristow. Coherent contributions to population dynamics in a semiconductor microcavity. Physical Review B 2022, 105 (11) https://doi.org/10.1103/PhysRevB.105.115307
    11. Rong Duan, Joseph N. Mastron, Yin Song, Kevin J. Kubarych. Direct comparison of amplitude and geometric measures of spectral inhomogeneity using phase-cycled 2D-IR spectroscopy. The Journal of Chemical Physics 2021, 154 (17) https://doi.org/10.1063/5.0043961
    12. Ajay Ram Srimath Kandada, Hao Li, Félix Thouin, Eric R. Bittner, Carlos Silva. Stochastic scattering theory for excitation-induced dephasing: Time-dependent nonlinear coherent exciton lineshapes. The Journal of Chemical Physics 2020, 153 (16) https://doi.org/10.1063/5.0026351
    13. Liang Guo, Chun-An Chen, Zhuquan Zhang, Daniele M. Monahan, Yi-Hsien Lee, Graham R. Fleming. Lineshape characterization of excitons in monolayer WS 2 by two-dimensional electronic spectroscopy. Nanoscale Advances 2020, 2 (6) , 2333-2338. https://doi.org/10.1039/D0NA00240B
    14. Félix Thouin, Daniele Cortecchia, Annamaria Petrozza, Ajay Ram Srimath Kandada, Carlos Silva. Enhanced screening and spectral diversity in many-body elastic scattering of excitons in two-dimensional hybrid metal-halide perovskites. Physical Review Research 2019, 1 (3) https://doi.org/10.1103/PhysRevResearch.1.032032
    15. J. K. Wahlstrand, G. M. Wernsing, J. Paul, A. D. Bristow. Automated polarization-dependent multidimensional coherent spectroscopy phased using transient absorption. Optics Express 2019, 27 (22) , 31790. https://doi.org/10.1364/OE.27.031790
    16. P. Yu. Shapochkin, S.A. Eliseev, V.A. Lovtcius, Yu. P. Efimov, P.S. Grigoryev, E.S. Khramtsov, I.V. Ignatiev. Excitonic Probe for Characterization of High-Quality Quantum-Well Heterostructures. Physical Review Applied 2019, 12 (3) https://doi.org/10.1103/PhysRevApplied.12.034034
    17. S. Nivetha, R. Perumalsamy, A. Ayeshamariam, A. Mohamed Saleem, M. Karunanithy, M. Jayachandran. Oxide and metallic materials for photovoltaic applications: A Review. Experimental and Theoretical NANOTECHNOLOGY 2019, , 127-148. https://doi.org/10.56053/3.2.127
    18. E. S. Khramtsov, P. S. Grigoryev, D. K. Loginov, I. V. Ignatiev, Yu. P. Efimov, S. A. Eliseev, P. Yu. Shapochkin, E. L. Ivchenko, M. Bayer. Exciton spectroscopy of optical reflection from wide quantum wells. Physical Review B 2019, 99 (3) https://doi.org/10.1103/PhysRevB.99.035431
    19. Geoffrey M. Diederich, Travis M. Autry, Mark E. Siemens. Diagonal slice four-wave mixing: natural separation of coherent broadening mechanisms. Optics Letters 2018, 43 (24) , 6061. https://doi.org/10.1364/OL.43.006061
    20. S Anghel, F Passmann, C Ruppert, A D Bristow, M Betz. Coupled exciton-trion spin dynamics in a MoSe 2 monolayer. 2D Materials 2018, 5 (4) , 045024. https://doi.org/10.1088/2053-1583/aadbd8
    21. Jonathan O. Tollerud, Jeffrey A. Davis. Coherent multi-dimensional spectroscopy: Experimental considerations, direct comparisons and new capabilities. Progress in Quantum Electronics 2017, 55 , 1-34. https://doi.org/10.1016/j.pquantelec.2017.07.001
    22. , Alan D. Bristow. Two-dimensional coherent spectroscopy of excitons, biexcitons and exciton-polaritons. 2016, 99560Q. https://doi.org/10.1117/12.2236697
    23. D. Webber, B. L. Wilmer, X. Liu, M. Dobrowolska, J. K. Furdyna, A. D. Bristow, K. C. Hall. Signatures of four-particle correlations associated with exciton-carrier interactions in coherent spectroscopy on bulk GaAs. Physical Review B 2016, 94 (15) https://doi.org/10.1103/PhysRevB.94.155450
    24. Brian L. Wilmer, Daniel Webber, Joseph M. Ashley, Kimberley C. Hall, Alan D. Bristow. Role of strain on the coherent properties of GaAs excitons and biexcitons. Physical Review B 2016, 94 (7) https://doi.org/10.1103/PhysRevB.94.075207
    25. Jonathan O. Tollerud, Steven T. Cundiff, Jeffrey A. Davis. Revealing and Characterizing Dark Excitons through Coherent Multidimensional Spectroscopy. Physical Review Letters 2016, 117 (9) https://doi.org/10.1103/PhysRevLett.117.097401
    26. Jonathan Tollerud, Jeffrey A. Davis. Two-dimensional double-quantum spectroscopy: peak shapes as a sensitive probe of carrier interactions in quantum wells. Journal of the Optical Society of America B 2016, 33 (7) , C108. https://doi.org/10.1364/JOSAB.33.00C108
    27. Elsa Cassette, Jacob C. Dean, Gregory D. Scholes. Two‐Dimensional Visible Spectroscopy For Studying Colloidal Semiconductor Nanocrystals. Small 2016, 12 (16) , 2234-2244. https://doi.org/10.1002/smll.201502733
    28. , , Brian L. Wilmer, Felix Passmann, Michael Gehl, Galina Khitrova, Alan D. Bristow. Multidimensional coherent spectroscopy of a semiconductor microcavity. 2016, 97461B. https://doi.org/10.1117/12.2212045
    29. Gaël Nardin. Multidimensional coherent optical spectroscopy of semiconductor nanostructures: a review. Semiconductor Science and Technology 2016, 31 (2) , 023001. https://doi.org/10.1088/0268-1242/31/2/023001
    30. P. Frigeri, L. Seravalli, G. Trevisi, S. Franchi. Molecular Beam Epitaxy: An Overview. 2016https://doi.org/10.1016/B978-0-12-803581-8.00796-7
    31. Elsa Cassette, Ryan D. Pensack, Benoît Mahler, Gregory D. Scholes. Room-temperature exciton coherence and dephasing in two-dimensional nanostructures. Nature Communications 2015, 6 (1) https://doi.org/10.1038/ncomms7086
    32. Brian L. Wilmer, Felix Passmann, Michael Gehl, Galina Khitrova, Alan D. Bristow. Multidimensional coherent spectroscopy of a semiconductor microcavity. Physical Review B 2015, 91 (20) https://doi.org/10.1103/PhysRevB.91.201304
    33. Osamu Kojima, Kenta Kojima, Takashi Kita, Kouichi Akahane. Rapid dephasing related to intersubband transitions induced by exciton quantum beats observed by a pump-probe technique in a GaAs/AlAs multiple quantum well. Physical Review B 2015, 91 (12) https://doi.org/10.1103/PhysRevB.91.125307
    34. G. Moody, I. A. Akimov, H. Li, R. Singh, D. R. Yakovlev, G. Karczewski, M. Wiater, T. Wojtowicz, M. Bayer, S. T. Cundiff. Coherent Coupling of Excitons and Trions in a Photoexcited CdTe/CdMgTe Quantum Well. Physical Review Letters 2014, 112 (9) https://doi.org/10.1103/PhysRevLett.112.097401
    35. Yuri D. Glinka, Zheng Sun, Mikhail Erementchouk, Michael N. Leuenberger, Alan D. Bristow, Steven T. Cundiff, Allan S. Bracker, Xiaoqin Li. Coherent coupling between exciton resonances governed by the disorder potential. Physical Review B 2013, 88 (7) https://doi.org/10.1103/PhysRevB.88.075316
    36. Rohan Singh, Travis M. Autry, Gaël Nardin, Galan Moody, Hebin Li, Klaus Pierz, Mark Bieler, Steven T. Cundiff. Anisotropic homogeneous linewidth of the heavy-hole exciton in (110)-oriented GaAs quantum wells. Physical Review B 2013, 88 (4) https://doi.org/10.1103/PhysRevB.88.045304
    37. Steven T. Cundiff. Optical two-dimensional Fourier transform spectroscopy of semiconductor nanostructures [Invited]. Journal of the Optical Society of America B 2012, 29 (2) , A69. https://doi.org/10.1364/JOSAB.29.000A69
    38. Steven T. Cundiff, Alan D. Bristow, Mark Siemens, Hebin Li, Galan Moody, Denis Karaiskaj, Xingcan Dai, Tianhao Zhang. Optical 2-D Fourier Transform Spectroscopy of Excitons in Semiconductor Nanostructures. IEEE Journal of Selected Topics in Quantum Electronics 2012, 18 (1) , 318-328. https://doi.org/10.1109/JSTQE.2011.2123876

    The Journal of Physical Chemistry B

    Cite this: J. Phys. Chem. B 2011, 115, 18, 5365–5371
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp109408s
    Published March 9, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    925

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.