Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Diffusion and Interfacial Transport of Water in Nafion
My Activity

Figure 1Loading Img
    Article

    Diffusion and Interfacial Transport of Water in Nafion
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemical and Biological Engineering and Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
    *E-mail: [email protected]. Phone: 01-609-258-5416. Fax: 01-609-258-0211.
    Other Access OptionsSupporting Information (6)

    The Journal of Physical Chemistry B

    Cite this: J. Phys. Chem. B 2011, 115, 12, 2717–2727
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp1112125
    Published March 3, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Water absorption, membrane swelling, and self-diffusivity of water in 1100 equivalent weight Nafion were measured as functions of temperature and water activity. Free volume per water at 80 °C, determined from water uptake and volume expansion data, decreases with water content in the membrane from 12 cm3/mol at λ = 0.5 H2O/SO3 to 1.5 cm3/mol at λ = 4. The change in free volume with water content displays a transition at λ = 4. Limiting water self-diffusivity in Nafion was determined by pulsed gradient spin echo NMR at long delay times. The limiting self-diffusivity increases exponentially with water activity; the rate of increase of diffusivity with water content shows a transition at λ = 4. The tortuosity of the hydrophilic domains in Nafion decreased from 20 at low membrane water activity to 3 at λ = 4. It suggested a change in the connectivity of the hydrophilic domains absorbed water occurs at λ ∼ 4. The diffusivity results were employed to separate the contributions of diffusional and interfacial resistance for water transport across Nafion membranes, which enabled the determination of the interfacial mass transport coefficients. A diffusion model was developed which incorporated activity-dependent diffusivity, volume expansion, and the interfacial resistance, and was used to resolve the water activity profiles in the membrane.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Model predictions of the dynamics of water sorption and desorption from water vapor and water liquid and steady-state profiles of membrane water activities in fuel cells. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 251 publications.

    1. George A. H. Ludlam, Sam J. P. Gnaniah, Riccardo Degl’Innocenti, Gaurav Gupta, Andrew J. Wain, Hungyen Lin. Measurement of Water Uptake and States in Nafion Membranes Using Humidity-Controlled Terahertz Time-Domain Spectroscopy. ACS Sustainable Chemistry & Engineering 2024, 12 (20) , 7924-7934. https://doi.org/10.1021/acssuschemeng.4c01820
    2. Alexei F. Privalov, Vitaly V. Sinitsyn, Michael Vogel. Transport Mechanism in Nafion Revealed by Detailed Comparison of 1H and 17O Nuclear Magnetic Resonance Diffusion Coefficients. The Journal of Physical Chemistry Letters 2023, 14 (41) , 9335-9340. https://doi.org/10.1021/acs.jpclett.3c02229
    3. Yuze Yao, Hayato Watanabe, Mitsuo Hara, Shusaku Nagano, Yuki Nagao. Lyotropic Liquid Crystalline Property and Organized Structure in High Proton-Conductive Sulfonated Semialicyclic Oligoimide Thin Films. ACS Omega 2023, 8 (8) , 7470-7478. https://doi.org/10.1021/acsomega.2c06398
    4. Fan Li, Stoyan K. Smoukov, Ivan Korotkin, Makoto Taiji, Sergey Karabasov. Interfacial Layer Breaker: A Violation of Stokes’ Law in High-Speed Atomic Force Microscope Flows. Langmuir 2023, 39 (1) , 220-226. https://doi.org/10.1021/acs.langmuir.2c02418
    5. Jooyeon Shin, Jong-Gu Lee, Gunhee Lee, Peter V. Pikhitsa, Sang Moon Kim, Mansoo Choi, Yong Whan Choi. Reversible Wrinkling Surfaces for Enhanced Grip on Wet/Dry Conditions. ACS Applied Materials & Interfaces 2022, 14 (42) , 48311-48320. https://doi.org/10.1021/acsami.2c15653
    6. Ulyana M. Zavorotnaya, Alexei F. Privalov, Benjamin Kresse, Michael Vogel, Igor I. Ponomarev, Yulia A. Volkova, Vitaly V. Sinitsyn. Diffusion in Sulfonated Co-Polynaphthoyleneimide Proton Exchange Membranes with Different Ratios of Hydrophylic to Hydrophobic Groups Studied Using SFG NMR. Macromolecules 2022, 55 (19) , 8823-8833. https://doi.org/10.1021/acs.macromol.2c01486
    7. Adam Barnett, John J. Karnes, Jibao Lu, Dale R. Major, Jr., James S. Oakdale, Kyle N. Grew, Joshua P. McClure, Valeria Molinero. Exponential Water Uptake in Ionomer Membranes Results from Polymer Plasticization. Macromolecules 2022, 55 (15) , 6762-6774. https://doi.org/10.1021/acs.macromol.2c01042
    8. Brahim Bessif, Thomas Pfohl, Barbara Heck, Yaser Alshetwi, Emna Khechine, Jun Xu, Günter Reiter. In Situ Dissolution and Swelling of Confined Lamellar Polymer Crystals through Exposure to Humid Air. Macromolecules 2022, 55 (14) , 6015-6022. https://doi.org/10.1021/acs.macromol.2c00496
    9. Xiangyu Huang, Shengqiu Zhao, Hao Liu, Rui Wang, Haolin Tang. Hydrophilic Channel Volume Behavior on Proton Transport Performance of Proton Exchange Membrane in Fuel Cells. ACS Applied Polymer Materials 2022, 4 (4) , 2423-2431. https://doi.org/10.1021/acsapm.1c01708
    10. Sebastiano Bellani, Leyla Najafi, Mirko Prato, Reinier Oropesa-Nuñez, Beatriz Martín-García, Luca Gagliani, Elisa Mantero, Luigi Marasco, Gabriele Bianca, Marilena I. Zappia, Cansunur Demirci, Silvia Olivotto, Giacomo Mariucci, Vittorio Pellegrini, Massimo Schiavetti, Francesco Bonaccorso. Graphene-Based Electrodes in a Vanadium Redox Flow Battery Produced by Rapid Low-Pressure Combined Gas Plasma Treatments. Chemistry of Materials 2021, 33 (11) , 4106-4121. https://doi.org/10.1021/acs.chemmater.1c00763
    11. Samuel J. Berens, Ahmad Yahya, Junchuan Fang, Anastasios Angelopoulos, Jonathan D. Nickels, Sergey Vasenkov. Transition between Different Diffusion Regimes and Its Relationship with Structural Properties in Nafion by High Field Diffusion NMR in Combination with Small-Angle X-ray and Neutron Scattering. The Journal of Physical Chemistry B 2020, 124 (40) , 8943-8950. https://doi.org/10.1021/acs.jpcb.0c07249
    12. Andrew M. Baker, Andrew R. Crothers, Kavitha Chintam, Xiaoyan Luo, Adam Z. Weber, Rodney L. Borup, Ahmet Kusoglu. Morphology and Transport of Multivalent Cation-Exchanged Ionomer Membranes Using Perfluorosulfonic Acid–CeZ+ as a Model System. ACS Applied Polymer Materials 2020, 2 (8) , 3642-3656. https://doi.org/10.1021/acsapm.0c00633
    13. Seung-Bo Saun, JiWon Kim, Ryeo Yun Hwang, Yeonho Ahn, Dukjoon Kim, Daniel K. Park, Soonchil Lee, Oc Hee Han. Nanometer-Scale Water Dynamics in Nafion Polymer Electrolyte Membranes: Influence of Molecular Hydrophobicity and Water Content Revisited. ACS Macro Letters 2020, 9 (7) , 1013-1018. https://doi.org/10.1021/acsmacrolett.0c00173
    14. Kee Sung Han, Zhou Yu, Hui Wang, Paul C. Redfern, Lin Ma, Lei Cheng, Ying Chen, Jian Zhi Hu, Larry A. Curtiss, Kang Xu, Vijayakumar Murugesan, Karl T. Mueller. Origin of Unusual Acidity and Li+ Diffusivity in a Series of Water-in-Salt Electrolytes. The Journal of Physical Chemistry B 2020, 124 (25) , 5284-5291. https://doi.org/10.1021/acs.jpcb.0c02483
    15. Pavel S. Zelenovskiy, Eddy M. Domingues, Vladislav Slabov, Svitlana Kopyl, Valery L. Ugolkov, Filipe M. L. Figueiredo, Andrei L. Kholkin. Efficient Water Self-Diffusion in Diphenylalanine Peptide Nanotubes. ACS Applied Materials & Interfaces 2020, 12 (24) , 27485-27492. https://doi.org/10.1021/acsami.0c03658
    16. Apoorv Balwani, Eric M. Davis. Anomalous, Multistage Liquid Water Diffusion and Ionomer Swelling Kinetics in Nafion and Nafion Nanocomposites. ACS Applied Polymer Materials 2020, 2 (1) , 40-54. https://doi.org/10.1021/acsapm.9b00866
    17. Regine Hammer, Monika Schönhoff, Michael Ryan Hansen. Comprehensive Picture of Water Dynamics in Nafion Membranes at Different Levels of Hydration. The Journal of Physical Chemistry B 2019, 123 (39) , 8313-8324. https://doi.org/10.1021/acs.jpcb.9b05093
    18. Eric G. Keeler, Vladimir K. Michaelis, Christopher B. Wilson, Ivan Hung, Xiaoling Wang, Zhehong Gan, Robert G. Griffin. High-Resolution 17O NMR Spectroscopy of Structural Water. The Journal of Physical Chemistry B 2019, 123 (14) , 3061-3067. https://doi.org/10.1021/acs.jpcb.9b02277
    19. Yiwei Zheng, Uri Ash, Ravi P. Pandey, Amobi G. Ozioko, Julia Ponce-González, Michael Handl, Thomas Weissbach, John R. Varcoe, Steven Holdcroft, Matthew W. Liberatore, Renate Hiesgen, Dario R. Dekel. Water Uptake Study of Anion Exchange Membranes. Macromolecules 2018, 51 (9) , 3264-3278. https://doi.org/10.1021/acs.macromol.8b00034
    20. Shudipto K. Dishari, Christopher A. Rumble, Mark Maroncelli, Joseph A. Dura, and Michael A. Hickner . Unraveling the Complex Hydration Behavior of Ionomers under Thin Film Confinement. The Journal of Physical Chemistry C 2018, 122 (6) , 3471-3481. https://doi.org/10.1021/acs.jpcc.7b11888
    21. Dipak Aryal, Anupriya Agrawal, Dvora Perahia, and Gary S. Grest . Structured Ionomer Thin Films at Water Interface: Molecular Dynamics Simulation Insight. Langmuir 2017, 33 (41) , 11070-11076. https://doi.org/10.1021/acs.langmuir.7b02485
    22. Swati Gahlot, Hariom Gupta, Prafulla K. Jha, and Vaibhav Kulshrestha . Enhanced Electrochemical Performance of Stable SPES/SPANI Composite Polymer Electrolyte Membranes by Enriched Ionic Nanochannels. ACS Omega 2017, 2 (9) , 5831-5839. https://doi.org/10.1021/acsomega.7b00687
    23. Ahmet Kusoglu and Adam Z. Weber . New Insights into Perfluorinated Sulfonic-Acid Ionomers. Chemical Reviews 2017, 117 (3) , 987-1104. https://doi.org/10.1021/acs.chemrev.6b00159
    24. Assma El Kaddouri, Jean-Christophe Perrin, Thibaut Colinart, Christian Moyne, Sébastien Leclerc, Laouès Guendouz, and Olivier Lottin . Impact of a Compressive Stress on Water Sorption and Diffusion in Ionomer Membranes for Fuel Cells. A 1H NMR Study in Vapor-Equilibrated Nafion. Macromolecules 2016, 49 (19) , 7296-7307. https://doi.org/10.1021/acs.macromol.6b01625
    25. Hyun Na Kim, Ryeo Yun Hwang, and Oc Hee Han . Behavior of Channel Water and CF2H Side-Chain Terminal Groups in Swollen Nafion Polymer Electrolyte Membranes after Thermal Treatment. ACS Macro Letters 2016, 5 (7) , 801-804. https://doi.org/10.1021/acsmacrolett.6b00388
    26. Tomonori Ohba . Consecutive Water Transport through Zero-Dimensional Graphene Gates of Single-Walled Carbon Nanohorns. The Journal of Physical Chemistry C 2016, 120 (16) , 8855-8862. https://doi.org/10.1021/acs.jpcc.6b03142
    27. John Savage and Gregory A. Voth . Proton Solvation and Transport in Realistic Proton Exchange Membrane Morphologies. The Journal of Physical Chemistry C 2016, 120 (6) , 3176-3186. https://doi.org/10.1021/acs.jpcc.5b11168
    28. Chihiro Wakai, Takafumi Shimoaka, and Takeshi Hasegawa . 1H NMR Analysis of Water Freezing in Nanospace Involved in a Nafion Membrane. The Journal of Physical Chemistry B 2015, 119 (25) , 8048-8053. https://doi.org/10.1021/acs.jpcb.5b03568
    29. M. Fumagalli, S. Lyonnard, G. Prajapati, Q. Berrod, L. Porcar, A. Guillermo, and G. Gebel . Fast Water Diffusion and Long-Term Polymer Reorganization during Nafion Membrane Hydration Evidenced by Time-Resolved Small-Angle Neutron Scattering. The Journal of Physical Chemistry B 2015, 119 (23) , 7068-7076. https://doi.org/10.1021/acs.jpcb.5b01220
    30. Christopher M. Evans, Meenesh R. Singh, Nathaniel A. Lynd, and Rachel A. Segalman . Improving the Gas Barrier Properties of Nafion via Thermal Annealing: Evidence for Diffusion through Hydrophilic Channels and Matrix. Macromolecules 2015, 48 (10) , 3303-3309. https://doi.org/10.1021/acs.macromol.5b00579
    31. Maria Cuartero, Gastón A. Crespo, and Eric Bakker . Paper-Based Thin-Layer Coulometric Sensor for Halide Determination. Analytical Chemistry 2015, 87 (3) , 1981-1990. https://doi.org/10.1021/ac504400w
    32. Sindhu Seethamraju, Arun D Rao, Praveen C Ramamurthy, and Giridhar Madras . Layer-by-Layer Assembly of Nafion on Surlyn with Ultrahigh Water Vapor Barrier. Langmuir 2014, 30 (48) , 14606-14611. https://doi.org/10.1021/la503302f
    33. Eric M. Davis, Christopher M. Stafford, and Kirt A. Page . Elucidating Water Transport Mechanisms in Nafion Thin Films. ACS Macro Letters 2014, 3 (10) , 1029-1035. https://doi.org/10.1021/mz500515b
    34. Yongli Li, Quang T. Nguyen, Kateryna Fatyeyeva, and Stéphane Marais . Water Sorption Behavior in Different Aromatic Ionomer Composites Analyzed with a “New Dual-Mode Sorption” Model. Macromolecules 2014, 47 (18) , 6331-6342. https://doi.org/10.1021/ma501097k
    35. X. Chelsea Chen, David T. Wong, Sergey Yakovlev, Keith M. Beers, Kenneth H. Downing, and Nitash P. Balsara . Effect of Morphology of Nanoscale Hydrated Channels on Proton Conductivity in Block Copolymer Electrolyte Membranes. Nano Letters 2014, 14 (7) , 4058-4064. https://doi.org/10.1021/nl501537p
    36. Mathieu Klein, Jean-Christophe Perrin, Sébastien Leclerc, Laouès Guendouz, Jérôme Dillet, and Olivier Lottin . Anisotropy of Water Self-Diffusion in a Nafion Membrane under Traction. Macromolecules 2013, 46 (23) , 9259-9269. https://doi.org/10.1021/ma401511t
    37. Kevin B. Daly, Jay B. Benziger, Pablo G. Debenedetti, and Athanassios Z. Panagiotopoulos . Molecular Dynamics Simulations of Water Sorption in a Perfluorosulfonic Acid Membrane. The Journal of Physical Chemistry B 2013, 117 (41) , 12649-12660. https://doi.org/10.1021/jp405440r
    38. Chihiro Wakai, Takafumi Shimoaka, and Takeshi Hasegawa . Analysis of the Hydration Process and Rotational Dynamics of Water in a Nafion Membrane Studied by 1H NMR Spectroscopy. Analytical Chemistry 2013, 85 (15) , 7581-7587. https://doi.org/10.1021/ac401653v
    39. Sangcheol Kim, Joseph A. Dura, Kirt A. Page, Brandon W. Rowe, Kevin G. Yager, Hae-Jeong Lee, and Christopher L. Soles . Surface-Induced Nanostructure and Water Transport of Thin Proton-Conducting Polymer Films. Macromolecules 2013, 46 (14) , 5630-5637. https://doi.org/10.1021/ma400750f
    40. Satoru Fujita, Akihiko Koiwai, Masaya Kawasumi, and Shinji Inagaki . Enhancement of Proton Transport by High Densification of Sulfonic Acid Groups in Highly Ordered Mesoporous Silica. Chemistry of Materials 2013, 25 (9) , 1584-1591. https://doi.org/10.1021/cm303950u
    41. Gi Suk Hwang, Dilworth Y. Parkinson, Ahmet Kusoglu, Alastair A. MacDowell, and Adam Z. Weber . Understanding Water Uptake and Transport in Nafion Using X-ray Microtomography. ACS Macro Letters 2013, 2 (4) , 288-291. https://doi.org/10.1021/mz300651a
    42. James R. O’Dea, Nicholas J. Economou, and Steven K. Buratto . Surface Morphology of Nafion at Hydrated and Dehydrated Conditions. Macromolecules 2013, 46 (6) , 2267-2274. https://doi.org/10.1021/ma302399e
    43. Scott A. Eastman, Sangcheol Kim, Kirt A. Page, Brandon W. Rowe, Shuhui Kang, and Christopher L. Soles , Kevin G. Yager . Effect of Confinement on Structure, Water Solubility, and Water Transport in Nafion Thin Films. Macromolecules 2012, 45 (19) , 7920-7930. https://doi.org/10.1021/ma301289v
    44. Shulu Feng, John Savage, and Gregory A. Voth . Effects of Polymer Morphology on Proton Solvation and Transport in Proton-Exchange Membranes. The Journal of Physical Chemistry C 2012, 116 (36) , 19104-19116. https://doi.org/10.1021/jp304783z
    45. Miguel A. Modestino, Ahmet Kusoglu, Alexander Hexemer, Adam Z. Weber, and Rachel A. Segalman . Controlling Nafion Structure and Properties via Wetting Interactions. Macromolecules 2012, 45 (11) , 4681-4688. https://doi.org/10.1021/ma300212f
    46. Ryan Jorn and Gregory A. Voth . Mesoscale Simulation of Proton Transport in Proton Exchange Membranes. The Journal of Physical Chemistry C 2012, 116 (19) , 10476-10489. https://doi.org/10.1021/jp300040w
    47. Maria-Chiara Ferrari, Jacopo Catalano, Marco Giacinti Baschetti, Maria Grazia De Angelis, and Giulio Cesare Sarti . FTIR-ATR Study of Water Distribution in a Short-Side-Chain PFSI Membrane. Macromolecules 2012, 45 (4) , 1901-1912. https://doi.org/10.1021/ma202099p
    48. Shudipto K. Dishari and Michael A. Hickner . Antiplasticization and Water Uptake of Nafion Thin Films. ACS Macro Letters 2012, 1 (2) , 291-295. https://doi.org/10.1021/mz200169a
    49. Ahmet Kusoglu Adam Z. Weber . Water Transport and Sorption in Nafion Membrane. 2012, 175-199. https://doi.org/10.1021/bk-2012-1096.ch011
    50. Sangcheol Kim Kirt A. Page Christopher L. Soles . Structure and Properties of Proton Exchange Membrane Fuel Cells at Interfaces. 2012, 267-281. https://doi.org/10.1021/bk-2012-1096.ch016
    51. Qinggang He, Ahmet Kusoglu, Ivan T. Lucas, Kyle Clark, Adam Z. Weber, and Robert Kostecki . Correlating Humidity-Dependent Ionically Conductive Surface Area with Transport Phenomena in Proton-Exchange Membranes. The Journal of Physical Chemistry B 2011, 115 (40) , 11650-11657. https://doi.org/10.1021/jp206154y
    52. May Jean Cheah, Ioannis G. Kevrekidis, and Jay Benziger . Effect of Interfacial Water Transport Resistance on Coupled Proton and Water Transport Across Nafion. The Journal of Physical Chemistry B 2011, 115 (34) , 10239-10250. https://doi.org/10.1021/jp204785t
    53. Sanhita Chaudhury, A. Bhattacharya, Chhavi Agarwal, and A. Goswami . Temperature Dependence of Ion and Water Diffusion in Crown Ether Loaded Nafion Matrix. The Journal of Physical Chemistry B 2011, 115 (30) , 9395-9400. https://doi.org/10.1021/jp203821h
    54. Anusorn Kongkanand . Interfacial Water Transport Measurements in Nafion Thin Films Using a Quartz-Crystal Microbalance. The Journal of Physical Chemistry C 2011, 115 (22) , 11318-11325. https://doi.org/10.1021/jp2028214
    55. Sumaya Akhter, Tapas Palai, Leela Manohar Aeshala, A.M. Kannan. CO2 to fuel: Role of polymer electrolytes on efficiency and selectivity. Carbon Capture Science & Technology 2024, 13 , 100289. https://doi.org/10.1016/j.ccst.2024.100289
    56. Chongshan Yin, Deyuan Chen, Mengyao Hu, Huihua Jing, Libing Qian, Chunqing He. Composite proton exchange membrane featuring a three-layer structure: Enhanced thermal stability, proton conductivity, and fuel cell performance. Journal of Membrane Science 2024, 707 , 122997. https://doi.org/10.1016/j.memsci.2024.122997
    57. . Membranes for Fuel Cell. 2024, 135-142. https://doi.org/10.1002/9783527827268.ch4
    58. Hafsa Abdul Ghuffar, Hyunho Noh. Lithium-coupled electron transfer reactions of nano-confined WOx within Zr-based metal–organic framework. Frontiers in Chemistry 2024, 12 https://doi.org/10.3389/fchem.2024.1427536
    59. T.M. Subrahmanya, Yang Jo Chi, Smrutiranjan Nayak, Shalligito Habetamu Abebe, Wei-Song Hung, Grandprix T.M. Kadja, Chien-Chieh Hu, Kueir-Rarn Lee, Juin-Yih Lai. Sulfonated graphene oxide linked with alkali metal ions membranes for proton conductivity in hydrogen production from water electrolysis. Journal of Membrane Science 2024, 705 , 122903. https://doi.org/10.1016/j.memsci.2024.122903
    60. Ivan Malashin, Daniil Daibagya, Vadim Tynchenko, Andrei Gantimurov, Vladimir Nelyub, Aleksei Borodulin. Predicting Diffusion Coefficients in Nafion Membranes during the Soaking Process Using a Machine Learning Approach. Polymers 2024, 16 (9) , 1204. https://doi.org/10.3390/polym16091204
    61. Ladislaus Schoenfeld, Michael Kreitmeir, Florian Wolfenstetter, Maximilian Neumann, Harald Klein, Sebastian Rehfeldt. Modeling mass and heat transfer in membrane humidifiers for polymer electrolyte membrane fuel cells. International Journal of Heat and Mass Transfer 2024, 223 , 125260. https://doi.org/10.1016/j.ijheatmasstransfer.2024.125260
    62. Shuyan Lin, Shuhui Zhao, Hongxing Dou, Gang Wei, Yongzhe Li, Shugang Gao, Jiangshan Gao, Yan He. Mass‐Transfer Mechanism of Nafion Proton‐Exchange Membranes in Fuel Cells—A Review. Energy Technology 2024, 330 https://doi.org/10.1002/ente.202400164
    63. Virginia Signorini, Aysegul Askin, Claudio Oldani, Matteo Minelli, Marco Giacinti Baschetti. Study on ammonia transport and separation in Aquivion® perfluoro sulfonated acid membranes. Journal of Membrane Science 2024, 697 , 122564. https://doi.org/10.1016/j.memsci.2024.122564
    64. Jean-Christophe Perrin, Assma El Kaddouri, Laouès Guendouz, Christine Mrad, Kévin Mozet, Jérôme Dillet, Sébastien Leclerc, Olivier Lottin, , . NMR contributions to the study of water transfer in proton exchange membranes for fuel cells. Science and Technology for Energy Transition 2024, 79 , 21. https://doi.org/10.2516/stet/2024013
    65. Christine Mrad, Jean-Christophe Perrin, Assma El Kaddouri, Laouès Guendouz, Kévin Mozet, Jérôme Dillet, Olivier Lottin. NMR characterization of proton exchange membranes in controlled hygrometry conditions. Journal of Membrane Science 2023, 688 , 122111. https://doi.org/10.1016/j.memsci.2023.122111
    66. E. Yu. Safronova, A. A. Lysova. Perfluorosulfonic Acid Polymer Membranes: Microstructure and Basic Functional Properties. Membranes and Membrane Technologies 2023, 5 (6) , 379-393. https://doi.org/10.1134/S2517751623060070
    67. Jungho Lee, Seulwoo Kim, Kyobin Park, Hansol Koo, Chanui Park, Yuwon Park, Won Bo Lee, Young Joo Lee, Kyu Tae Lee. Contrasting Miscibility of Ionic Liquid Membranes for Nearly Perfect Proton Selectivity in Aqueous Redox Flow Batteries. Advanced Functional Materials 2023, 33 (52) https://doi.org/10.1002/adfm.202306633
    68. Zhiwei Wang, Hao Zheng, Jinyao Chen, Wei Wang, Furui Sun, Ya Cao. Effect of Crosslinking Conditions on the Transport of Protons and Methanol in Crosslinked Polyvinyl Alcohol Membranes Containing the Phosphoric Acid Group. Polymers 2023, 15 (21) , 4198. https://doi.org/10.3390/polym15214198
    69. Shuhan Zhang, Zhihua Wang, Ruilin Zhang, Yong He, Kefa Cen. Comprehensive study and optimization of membrane electrode assembly structural composition in proton exchange membrane water electrolyzer. International Journal of Hydrogen Energy 2023, 48 (91) , 35463-35476. https://doi.org/10.1016/j.ijhydene.2023.05.280
    70. E. Yu. Safronova, A. A. Lysova. Perfluorosulfonic Acid Polymer Membranes: Microstructure and Basic Functional Properties. Мембраны и мембранные технологии 2023, 13 (6) , 435-451. https://doi.org/10.31857/S221811722306007X
    71. Qing Zeng, Chongshan Yin, Xi Li, Chunqing He. Linear relationship between lateral size of reduced graphene oxide (RGO) and water vapor barrier property in RGO/PEI composite membrane. Journal of Membrane Science 2023, 684 , 121876. https://doi.org/10.1016/j.memsci.2023.121876
    72. Stepan Bilyk, Vladimir Tverskoy, Alexander Chernyak, Irina Avilova, Nikita Slesarenko, Vitaly Volkov. Water Molecules’ and Lithium Cations’ Mobility in Sulfonated Polystyrene Studied by Nuclear Magnetic Resonance. Membranes 2023, 13 (8) , 725. https://doi.org/10.3390/membranes13080725
    73. Ottavia Bellotto, Paola D’Andrea, Silvia Marchesan. Nanotubes and water-channels from self-assembling dipeptides. Journal of Materials Chemistry B 2023, 11 (24) , 5378-5389. https://doi.org/10.1039/D2TB02643K
    74. Allison Arnold, Ji Su, Edward M Sabolsky. Nafion-Pt IPMC electroactive behavior changes in response to environmental nonequilibrium conditions. Smart Materials and Structures 2023, 32 (5) , 055014. https://doi.org/10.1088/1361-665X/acc437
    75. Vitaly Volkov, Nikita Slesarenko, Alexander Chernyak, Irina Avilova, Victor Tarasov. Hydration and Mobility of Alkaline Metal Cations in Sulfonic Cation Exchange Membranes. Membranes 2023, 13 (5) , 518. https://doi.org/10.3390/membranes13050518
    76. Linkun Cai, Junsheng Yang, Yuyan Lai, Yuling Liang, Rongchun Zhang, Cheng Gu, Susumu Kitagawa, Panchao Yin. Dynamics and Proton Conduction of Heterogeneously Confined Imidazole in Porous Coordination Polymers. Angewandte Chemie 2023, 135 (10) https://doi.org/10.1002/ange.202211741
    77. Linkun Cai, Junsheng Yang, Yuyan Lai, Yuling Liang, Rongchun Zhang, Cheng Gu, Susumu Kitagawa, Panchao Yin. Dynamics and Proton Conduction of Heterogeneously Confined Imidazole in Porous Coordination Polymers. Angewandte Chemie International Edition 2023, 62 (10) https://doi.org/10.1002/anie.202211741
    78. M. Schmitz, F. Welker, S. Tinz, M. Bahr, S. Gössling, S. Kaimer, S. Pischinger. Comprehensive investigation of membrane sorption and CFD modeling of a tube membrane humidifier with experimental validation. International Journal of Hydrogen Energy 2023, 48 (23) , 8596-8612. https://doi.org/10.1016/j.ijhydene.2022.11.081
    79. Lei Chen, Yanyu Chen, Wen-Quan Tao. Schroeder's paradox in proton exchange membrane fuel cells: A review. Renewable and Sustainable Energy Reviews 2023, 173 , 113050. https://doi.org/10.1016/j.rser.2022.113050
    80. Manqiu Cheng, Mikinori Kuwata. Development of the low-temperature hygroscopicity tandem differential mobility analyzer (Low-T HTDMA) and its application to (NH4)2SO4 and NaCl particles. Journal of Aerosol Science 2023, 168 , 106111. https://doi.org/10.1016/j.jaerosci.2022.106111
    81. Fei Wei, Aslan Kosakian, Jiafei Liu, James Kracher, Rafid Khan, Marc Secanell. Water transport in anion and proton exchange membranes. Journal of Power Sources 2023, 557 , 232494. https://doi.org/10.1016/j.jpowsour.2022.232494
    82. Amedeo Grimaldi, Andrea Baricci, Stefano De Antonellis, Claudio Oldani, Andrea Casalegno. Experimental study and modeling of water transport through short-side-chain perfluorosulfonic acid membranes. Journal of Power Sources 2023, 558 , 232556. https://doi.org/10.1016/j.jpowsour.2022.232556
    83. Andreu Cecilia. PEM Fuel Cell Monitoring. 2023, 129-191. https://doi.org/10.1007/978-3-031-38924-5_6
    84. Zhi Qiu, Yanbin Yun, Min He, Lihua Wang. Recent developments in ion conductive membranes for CO2 electrochemical reduction. Chemical Engineering Journal 2023, 456 , 140942. https://doi.org/10.1016/j.cej.2022.140942
    85. Toshihiro Kaneko, Junpei Ooyama, Maria Ohki, Hiroyuki Kanesaka, Yuta Yoshimoto, Ikuya Kinefuchi. Effect of ionomer swelling and capillary condensation of water on porous characteristics in cathode catalyst layers of polymer electrolyte membrane fuel cells under humidified conditions. International Journal of Heat and Mass Transfer 2023, 200 , 123491. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123491
    86. Qing Liu, Chongshan Yin, Xi Li, Chunqing He, Zhi Ding, Xuan Du. Lodging resistance of rice plants studied from the perspective of culm mechanical properties, carbon framework, free volume, and chemical composition. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-24714-4
    87. Allison M Arnold, Ji Su, Edward M Sabolsky. Influence of environmental conditions and voltage application on the electromechanical performance of Nafion-Pt IPMC actuators. Smart Materials and Structures 2022, 31 (11) , 115031. https://doi.org/10.1088/1361-665X/ac986f
    88. Virginia Signorini, Marco Giacinti Baschetti, Diego Pizzi, Luca Merlo. Permeation of Ternary Mixture Containing H2S, CO2 and CH4 in Aquivion® Perfluorosulfonic Acid (PFSA) Ionomer Membranes. Membranes 2022, 12 (11) , 1034. https://doi.org/10.3390/membranes12111034
    89. P.Z. Lin, J. Sun, M.C. Wu, T.S. Zhao. A multiscale model for proton exchange membrane fuel cells with order-structured catalyst layers. International Journal of Heat and Mass Transfer 2022, 195 , 123092. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123092
    90. Anders Christian Olesen, Søren Knudsen Kær, Torsten Berning. A Multi-Fluid Model for Water and Methanol Transport in a Direct Methanol Fuel Cell. Energies 2022, 15 (19) , 6869. https://doi.org/10.3390/en15196869
    91. Maximilian Schalenbach, Lilli Keller, Benjamin Janotta, Alexander Bauer, Hermann Tempel, Hans Kungl, Martin Bonnet, Rüdiger-A. Eichel. The Effect of Ion Exchange Poisoning on the Ion Transport and Conduction in Polymer Electrolyte Membranes (PEMs) for Water Electrolysis. Journal of The Electrochemical Society 2022, 169 (9) , 094510. https://doi.org/10.1149/1945-7111/ac9087
    92. Jordan J. Frow, Arun Prakash. Periasamy, Gaurav Gupta, John R. Varcoe, Hungyen Lin. Water States Analysis of Anion Exchange Membranes with Terahertz Time-Domain Spectroscopy. 2022, 1-2. https://doi.org/10.1109/IRMMW-THz50927.2022.9895705
    93. Ngoc Van Trinh, Xuan Linh Nguyen, Younghyeon Kim, Sangseok Yu. Characteristics of Water Transport of Membrane Electrolyte over Selected Temperature for Proton Exchange Membrane Fuel Cell. Polymers 2022, 14 (15) , 2972. https://doi.org/10.3390/polym14152972
    94. A.L. Rangel-Cárdenas, S.J. Picken, G.J.M. Koper. Anomalous water sorption kinetics in supported Nafion thin-films as membrane-electrode assemblies. Journal of Membrane Science 2022, 650 , 120368. https://doi.org/10.1016/j.memsci.2022.120368
    95. Vitaly I. Volkov, Alexander V. Chernyak, Nikita A. Slesarenko, Irina A. Avilova. Ion and Molecular Transport in Solid Electrolytes Studied by NMR. International Journal of Molecular Sciences 2022, 23 (9) , 5011. https://doi.org/10.3390/ijms23095011
    96. Yujuan Hu, Ying Zhang, Yangjian Cheng. Kinetic insight on the long-range exclusion of dissolved substances by interfacial interactions of water and hydrophilic surface. Journal of Molecular Liquids 2022, 349 , 118118. https://doi.org/10.1016/j.molliq.2021.118118
    97. Chongshan Yin, Xuan Du, Zhi Ding, Qing Zeng, Xi Li, Chunqing He, Bangyun Xiong, Jingjing Li, Yawei Zhou. Gas permeation and microstructure of reduced graphene oxide/polyethyleneimine multilayer films created via recast and layer-by-layer deposition processes. RSC Advances 2022, 12 (11) , 6561-6572. https://doi.org/10.1039/D1RA09205G
    98. Ziming Zhao, Qing Dai, Xiaofeng Li, Suobo Zhang, Shenghai Li, Xianfeng Li. A highly stable membrane for vanadium flow batteries (VFBs) enabled by the selective degradation of ionic side chains. Journal of Materials Chemistry A 2022, 10 (2) , 762-771. https://doi.org/10.1039/D1TA09173E
    99. Irene Gatto, Alessandra Carbone, Enza Passalacqua. Transport phenomena in polymer electrolyte membrane fuel cells. 2022, 341-368. https://doi.org/10.1016/B978-0-12-822257-7.00007-8
    100. Pablo A. García-Salaberri. General aspects in the modeling of fuel cells: from conventional fuel cells to nano fuel cells. 2022, 77-121. https://doi.org/10.1016/B978-0-323-85727-7.00015-1
    Load more citations

    The Journal of Physical Chemistry B

    Cite this: J. Phys. Chem. B 2011, 115, 12, 2717–2727
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp1112125
    Published March 3, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    6273

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.