ACS Publications. Most Trusted. Most Cited. Most Read
Optical Heterodyne-Detected Raman-Induced Kerr Effect (OHD-RIKE) Microscopy
My Activity

Figure 1Loading Img
    Article

    Optical Heterodyne-Detected Raman-Induced Kerr Effect (OHD-RIKE) Microscopy
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
    Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
    § Department of Applied Physics, Harvard University, Cambridge, Massachusetts 02138, United States
    Other Access Options

    The Journal of Physical Chemistry B

    Cite this: J. Phys. Chem. B 2011, 115, 18, 5574–5581
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp1113834
    Published April 19, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Label-free microscopy based on Raman scattering has been increasingly used in biomedical research to image samples that cannot be labeled or stained. Stimulated Raman scattering (SRS) microscopy allows signal amplification of the weak Raman signal for fast imaging speeds without introducing the nonresonant background and coherent image artifacts that are present in coherent anti-Stokes Raman scattering (CARS) microscopy. Here we present the Raman-induced Kerr effect (RIKE) as a contrast for label-free microscopy. RIKE allows us to measure different elements of the nonlinear susceptibility tensor, both the real and imaginary parts, by optical heterodyne detection (OHD-RIKE). OHD-RIKE microscopy provides information similar to polarization CARS (P-CARS) and interferometric CARS (I-CARS) microscopy, with a simple modification of the two-beam SRS microscopy setup. We show that, while OHD-RIKE microspectroscopy can be in principle more sensitive than SRS, it does not supersede SRS microscopy of heterogeneous biological samples, such as mouse skin tissue, because it is complicated by variations of linear birefringence across the sample.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 36 publications.

    1. Dana Cialla-May, Christoph Krafft, Petra Rösch, Tanja Deckert-Gaudig, Torsten Frosch, Izabella J. Jahn, Susanne Pahlow, Clara Stiebing, Tobias Meyer-Zedler, Thomas Bocklitz, Iwan Schie, Volker Deckert, Jürgen Popp. Raman Spectroscopy and Imaging in Bioanalytics. Analytical Chemistry 2022, 94 (1) , 86-119. https://doi.org/10.1021/acs.analchem.1c03235
    2. Jiwei Ling, Xianchong Miao, Yangye Sun, Yiqing Feng, Liwu Zhang, Zhengzong Sun, Minbiao Ji. Vibrational Imaging and Quantification of Two-Dimensional Hexagonal Boron Nitride with Stimulated Raman Scattering. ACS Nano 2019, 13 (12) , 14033-14040. https://doi.org/10.1021/acsnano.9b06337
    3. Gurusamy Balakrishnan, Alexandra V. Soldatova, Philip J. Reid, and Thomas G. Spiro . Ultrafast Charge Transfer in Nickel Phthalocyanine Probed by Femtosecond Raman-Induced Kerr Effect Spectroscopy. Journal of the American Chemical Society 2014, 136 (24) , 8746-8754. https://doi.org/10.1021/ja503541v
    4. Tobias Meyer, Mario Chemnitz, Martin Baumgartl, Thomas Gottschall, Torbjörn Pascher, Christian Matthäus, Bernd F. M. Romeike, Bernhard R. Brehm, Jens Limpert, Andreas Tünnermann, Michael Schmitt, Benjamin Dietzek, and Jürgen Popp . Expanding Multimodal Microscopy by High Spectral Resolution Coherent Anti-Stokes Raman Scattering Imaging for Clinical Disease Diagnostics. Analytical Chemistry 2013, 85 (14) , 6703-6715. https://doi.org/10.1021/ac400570w
    5. Yuika Saito and Prabhat Verma . Polarization-Controlled Raman Microscopy and Nanoscopy. The Journal of Physical Chemistry Letters 2012, 3 (10) , 1295-1300. https://doi.org/10.1021/jz300213t
    6. Bogdan V. Semak, Yaroslav M. Beltukov, Oleg S. Vasyutinskii. Probe Beam Dichroism and Birefringence in Stimulated Raman Scattering in Polyatomic Molecules. ChemPhysChem 2023, 24 (22) https://doi.org/10.1002/cphc.202300405
    7. Yuhui Li, Tao Li, Yuanqin Yu, Jin Sun, Xiaoguo Zhou, Rui Zhang, Shilin Liu. Vibrational mode-specific polarization effect in circularly polarized stimulated Raman scattering. The Journal of Chemical Physics 2022, 157 (20) https://doi.org/10.1063/5.0124727
    8. Sunghwan Kim, Dasom Kim, Youjin Lee, Geon Lee, Jeeyoon Jeong, Dukhyung Lee, Dai-Sik Kim. Broadband high-performance terahertz polarizer based on a dense array of 5 nm gap slit antennas. Optics Express 2022, 30 (17) , 30038. https://doi.org/10.1364/OE.460859
    9. Renzo Vanna, Alejandro De la Cadena, Benedetta Talone, Cristian Manzoni, Marco Marangoni, Dario Polli, Giulio Cerullo. Vibrational imaging for label-free cancer diagnosis and classification. La Rivista del Nuovo Cimento 2022, 45 (2) , 107-187. https://doi.org/10.1007/s40766-021-00027-6
    10. Thomas Gottschall, Tobias Meyer‐Zedler, Michael Schmitt, Robert Huber, Juergen Popp, Andreas Tünnermann, Jens Limpert. Ultra‐compact tunable fiber laser for coherent anti‐Stokes Raman imaging. Journal of Raman Spectroscopy 2021, 52 (9) , 1561-1568. https://doi.org/10.1002/jrs.6171
    11. Dario Polli, Vikas Kumar, Carlo M. Valensise, Marco Marangoni, Giulio Cerullo. Broadband Coherent Raman Scattering Microscopy. Laser & Photonics Reviews 2018, 12 (9) https://doi.org/10.1002/lpor.201800020
    12. Vikas Kumar, Nicola Coluccelli, Dario Polli. Coherent Optical Spectroscopy/Microscopy and Applications. 2018, 87-115. https://doi.org/10.1016/B978-0-12-849883-5.00005-X
    13. Michael O. McAnally, Yinsheng Guo, Gurusamy Balakrishnan, George C. Schatz, Richard P. Van Duyne. Understanding the vibrational mode-specific polarization effects in femtosecond Raman-induced Kerr-effect spectroscopy. Optics Letters 2016, 41 (22) , 5357. https://doi.org/10.1364/OL.41.005357
    14. K. Yamamoto, A. Klossek, R. Flesch, T. Ohigashi, E. Fleige, F. Rancan, J. Frombach, A. Vogt, U. Blume-Peytavi, P. Schrade, S. Bachmann, R. Haag, S. Hedtrich, M. Schäfer-Korting, N. Kosugi, E. Rühl. Core-multishell nanocarriers: Transport and release of dexamethasone probed by soft X-ray spectromicroscopy. Journal of Controlled Release 2016, 242 , 64-70. https://doi.org/10.1016/j.jconrel.2016.08.028
    15. Junichi Kaneshiro, Tomonobu M. Watanabe, Hideaki Fujita, Taro Ichimura. Full control of polarization state with a pair of electro-optic modulators for polarization-resolved optical microscopy. Applied Optics 2016, 55 (5) , 1082. https://doi.org/10.1364/AO.55.001082
    16. Hideaki Kano, Hiroki Segawa, Masanari Okuno, Philippe Leproux, Vincent Couderc. Hyperspectral coherent Raman imaging – principle, theory, instrumentation, and applications to life sciences. Journal of Raman Spectroscopy 2016, 47 (1) , 116-123. https://doi.org/10.1002/jrs.4853
    17. C. Krafft, I. W. Schie, T. Meyer, M. Schmitt, J. Popp. Developments in spontaneous and coherent Raman scattering microscopic imaging for biomedical applications. Chemical Society Reviews 2016, 45 (7) , 1819-1849. https://doi.org/10.1039/C5CS00564G
    18. Marco Andreana, Marie-Andrée Houle, Douglas J. Moffatt, Andrew Ridsdale, Edlef Buettner, François Légaré, Albert Stolow. Amplitude and polarization modulated hyperspectral Stimulated Raman Scattering Microscopy. Optics Express 2015, 23 (22) , 28119. https://doi.org/10.1364/OE.23.028119
    19. Thomas Gottschall, Tobias Meyer, Martin Baumgartl, Cesar Jauregui, Michael Schmitt, Jürgen Popp, Jens Limpert, Andreas Tünnermann. Fiber‐based light sources for biomedical applications of coherent anti‐Stokes Raman scattering microscopy. Laser & Photonics Reviews 2015, 9 (5) , 435-451. https://doi.org/10.1002/lpor.201500023
    20. Charles H. Camp Jr, Marcus T. Cicerone. Chemically sensitive bioimaging with coherent Raman scattering. Nature Photonics 2015, 9 (5) , 295-305. https://doi.org/10.1038/nphoton.2015.60
    21. M. J. B. Moester, F. Ariese, J. F. de Boer. Optimized signal-to-noise ratio with shot noise limited detection in Stimulated Raman Scattering microscopy. Journal of the European Optical Society-Rapid Publications 2015, 10 , 15022. https://doi.org/10.2971/jeos.2015.15022
    22. Hideaki Kano, Hiroki Segawa, Philippe Leproux, Vincent Couderc. Linear and nonlinear Raman microspectroscopy: History, instrumentation, and applications. Optical Review 2014, 21 (6) , 752-761. https://doi.org/10.1007/s10043-014-0123-9
    23. Jeffrey L. Suhalim, Eric Potma. Coherent Raman for Medical Diagnosis. 2014, 103-146. https://doi.org/10.1002/9783527681921.ch4
    24. Tobias Meyer, Michael Schmitt, Benjamin Dietzek, Jürgen Popp. Accumulating advantages, reducing limitations: Multimodal nonlinear imaging in biomedical sciences – The synergy of multiple contrast mechanisms. Journal of Biophotonics 2013, 6 (11-12) , 887-904. https://doi.org/10.1002/jbio.201300176
    25. Egle Molotokaite, Vikas Kumar, Cristian Manzoni, Dario Polli, Giulio Cerullo, Marco Marangoni. Raman‐induced Kerr effect microscopy with balanced detection. Journal of Raman Spectroscopy 2013, 44 (10) , 1385-1392. https://doi.org/10.1002/jrs.4250
    26. Johan Lindgren, Toni Kiljunen. Excitation of rotons in parahydrogen crystals: The laser-induced-molecular-alignment mechanism. Physical Review A 2013, 88 (4) https://doi.org/10.1103/PhysRevA.88.043420
    27. Kotatsu Bito, Masanari Okuno, Hideaki Kano, Philippe Leproux, Vincent Couderc, Hiro-o Hamaguchi. Three-pulse multiplex coherent anti-Stokes/Stokes Raman scattering (CARS/CSRS) microspectroscopy using a white-light laser source. Chemical Physics 2013, 419 , 156-162. https://doi.org/10.1016/j.chemphys.2013.02.007
    28. Chao-Yu Chung, Eric O. Potma. Biomolecular Imaging with Coherent Nonlinear Vibrational Microscopy. Annual Review of Physical Chemistry 2013, 64 (1) , 77-99. https://doi.org/10.1146/annurev-physchem-040412-110103
    29. Vikas Kumar, Michele Casella, Egle Molotokaite, Davide Gatti, Philipp Kukura, Cristian Manzoni, Dario Polli, Marco Marangoni, Giulio Cerullo. Balanced-detection Raman-induced Kerr-effect spectroscopy. Physical Review A 2012, 86 (5) https://doi.org/10.1103/PhysRevA.86.053810
    30. T. Ideguchi, B. Bernhardt, G. Guelachvili, T. W. Hänsch, N. Picqué. Raman-induced Kerr-effect dual-comb spectroscopy. Optics Letters 2012, 37 (21) , 4498. https://doi.org/10.1364/OL.37.004498
    31. Tobias Meyer, Norbert Bergner, Anna Medyukhina, Benjamin Dietzek, Christoph Krafft, Bernd F. M. Romeike, Rupert Reichart, Rolf Kalff, Jürgen Popp. Interpreting CARS images of tissue within the C–H‐stretching region. Journal of Biophotonics 2012, 5 (10) , 729-733. https://doi.org/10.1002/jbio.201200104
    32. Xu Zhang, Maarten B. J. Roeffaers, Srinjan Basu, Joseph R. Daniele, Dan Fu, Christian W. Freudiger, Gary R. Holtom, X. Sunney Xie. Label‐Free Live‐Cell Imaging of Nucleic Acids Using Stimulated Raman Scattering Microscopy. ChemPhysChem 2012, 13 (4) , 1054-1059. https://doi.org/10.1002/cphc.201100890
    33. Wataru Umemura, Kenta Fujita, Yasuyuki Ozeki, Ken Goto, Kazuhiko Sumimura, Norihiko Nishizawa, Kiichi Fukui, Kazuyoshi Itoh. Subharmonic Synchronization of Picosecond Yb Fiber Laser to Picosecond Ti:Sapphire Laser for Stimulated Raman Scattering Microscopy. Japanese Journal of Applied Physics 2012, 51 (2R) , 022702. https://doi.org/10.7567/JJAP.51.022702
    34. Brandon R. Bachler, Martin E. Fermann, Jennifer P. Ogilvie. Multiplex Raman induced Kerr effect microscopy. Optics Express 2012, 20 (2) , 835. https://doi.org/10.1364/OE.20.000835
    35. V. Kumar, M. Casella, E. Molotokaite, P. Kukura, C. Manzoni, D. Polli, M. Marangoni, G. Cerullo. Balanced-detection Raman induced Kerr effect microscopy. 2012, CF1B.5. https://doi.org/10.1364/CLEO_SI.2012.CF1B.5
    36. David Gachet, Hervé Rigneault. Detection of chemical interfaces in coherent anti-Stokes Raman scattering microscopy: Dk-CARS I Axial interfaces. Journal of the Optical Society of America A 2011, 28 (12) , 2519. https://doi.org/10.1364/JOSAA.28.002519

    The Journal of Physical Chemistry B

    Cite this: J. Phys. Chem. B 2011, 115, 18, 5574–5581
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp1113834
    Published April 19, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    1681

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.