ACS Publications. Most Trusted. Most Cited. Most Read
Puzzle of Protein Dynamical Transition
My Activity

Figure 1Loading Img
    Article

    Puzzle of Protein Dynamical Transition
    Click to copy article linkArticle link copied!

    View Author Information
    Dipartimento di Fisica, Università di Messina, Viale Ferdinando Stagno D'Alcontres n° 31, P.O. Box 55, Vill. S. Agata 98166 Messina, Italy
    E-mail: [email protected]. Tel.: +39 0906765025. Fax: +39 090395004.
    Other Access Options

    The Journal of Physical Chemistry B

    Cite this: J. Phys. Chem. B 2011, 115, 24, 7736–7743
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp111421m
    Published May 25, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Despite recent extensive efforts, the nature of the dynamics of biological macromolecules still remains unclear. In particular, contradicting models have been proposed for explaining the temperature behavior of the mean square displacement, MSD, and of the system relaxation time, τ. To solve this puzzle, different neutron scattering experiments with different instrumental energy resolutions were performed on dry and hydrated lysozyme. The obtained results show that the so called dynamical transition: (i) is a finite instrumental energy resolution effect, and more specifically, it appears when the characteristic system relaxation time intersects the resolution time, (ii) it does not imply any transition in the dynamical properties of the systems, (iii) it is not due to the fragile-to-strong dynamical crossover (FSC) in the temperature behavior of the system relaxation time, differently to what S. H. Chen et al. proposed [Proc. Natl. Acad. Sci. U.S.A.2006, 103, 9012]. Furthermore, the obtained results confirm the change in the τ-temperature dependence at T = 220 K of S. H. Chen et al., and show that it is not due to finite instrumental energy resolution effects and it is not connected to numerical errors in the data analysis protocol, differently to what W. Doster et al. proposed [Phys. Rev. Lett.2010, 104, 098101].

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 89 publications.

    1. Taecheon Lyu, So Hyeong Sohn, Ralph Jimenez, Taiha Joo. Temperature-Dependent Fluorescence of mPlum Fluorescent Protein from 295 to 20 K. The Journal of Physical Chemistry B 2022, 126 (12) , 2337-2344. https://doi.org/10.1021/acs.jpcb.1c10516
    2. Naoki Yamamoto, Maiko Kofu, Kenji Nakajima, Hiroshi Nakagawa, Naoya Shibayama. Freezable and Unfreezable Hydration Water: Distinct Contributions to Protein Dynamics Revealed by Neutron Scattering. The Journal of Physical Chemistry Letters 2021, 12 (8) , 2172-2176. https://doi.org/10.1021/acs.jpclett.0c03786
    3. Yun-Hsuan Kuo, Yun-Wei Chiang. Slow Dynamics around a Protein and Its Coupling to Solvent. ACS Central Science 2018, 4 (5) , 645-655. https://doi.org/10.1021/acscentsci.8b00139
    4. Antonio Benedetto . Low-Temperature Decoupling of Water and Protein Dynamics Measured by Neutron Scattering. The Journal of Physical Chemistry Letters 2017, 8 (19) , 4883-4886. https://doi.org/10.1021/acs.jpclett.7b02273
    5. Liliya Vugmeyster, Dmitry Ostrovsky, Gina L. Hoatson, Wei Qiang, and Isaac B. Falconer . Solvent-Driven Dynamical Crossover in the Phenylalanine Side-Chain from the Hydrophobic Core of Amyloid Fibrils Detected by 2H NMR Relaxation. The Journal of Physical Chemistry B 2017, 121 (30) , 7267-7275. https://doi.org/10.1021/acs.jpcb.7b04726
    6. Anna V. Frontzek (neé Svanidze), Jan Peter Embs, Laurent Paccou, Yannick Guinet, and Alain Hédoux . Low-Frequency Dynamics of BSA Complementarily Studied by Raman and Inelastic Neutron Spectroscopy. The Journal of Physical Chemistry B 2017, 121 (19) , 5125-5132. https://doi.org/10.1021/acs.jpcb.7b01395
    7. Naoki Yamamoto, Kaoru Ohta, Atsuo Tamura, and Keisuke Tominaga . Broadband Dielectric Spectroscopy on Lysozyme in the Sub-Gigahertz to Terahertz Frequency Regions: Effects of Hydration and Thermal Excitation. The Journal of Physical Chemistry B 2016, 120 (21) , 4743-4755. https://doi.org/10.1021/acs.jpcb.6b01491
    8. Liliya Vugmeyster, Dmitry Ostrovsky, Toni Villafranca, Janelle Sharp, Wei Xu, Andrew S. Lipton, Gina L. Hoatson, and Robert L. Vold . Dynamics of Hydrophobic Core Phenylalanine Residues Probed by Solid-State Deuteron NMR. The Journal of Physical Chemistry B 2015, 119 (47) , 14892-14904. https://doi.org/10.1021/acs.jpcb.5b09299
    9. Gurpreet K Dhindsa, Madhusudan Tyagi, and Xiang-qiang Chu . Temperature-Dependent Dynamics of Dry and Hydrated β-Casein Studied by Quasielastic Neutron Scattering. The Journal of Physical Chemistry B 2014, 118 (37) , 10821-10829. https://doi.org/10.1021/jp504548w
    10. Anna V. Frontzek, Serge V. Strokov, Jan Peter Embs, and Sergey G. Lushnikov . Does a Dry Protein Undergo a Glass Transition?. The Journal of Physical Chemistry B 2014, 118 (11) , 2796-2802. https://doi.org/10.1021/jp4104905
    11. Xiang-qiang Chu, Eugene Mamontov, Hugh O’Neill, and Qiu Zhang . Temperature Dependence of Logarithmic-like Relaxational Dynamics of Hydrated tRNA. The Journal of Physical Chemistry Letters 2013, 4 (6) , 936-942. https://doi.org/10.1021/jz400128u
    12. Xiang-qiang Chu, Manavalan Gajapathy, Kevin L. Weiss, Eugene Mamontov, Joseph D. Ng, and Leighton Coates . Dynamic Behavior of Oligomeric Inorganic Pyrophosphatase Explored by Quasielastic Neutron Scattering. The Journal of Physical Chemistry B 2012, 116 (33) , 9917-9921. https://doi.org/10.1021/jp303127w
    13. S. Magazù, F. Migliardo, and M. T. Caccamo . Innovative Wavelet Protocols in Analyzing Elastic Incoherent Neutron Scattering. The Journal of Physical Chemistry B 2012, 116 (31) , 9417-9423. https://doi.org/10.1021/jp3060087
    14. Wolfgang Doster . Comment on “Puzzle of the Protein Dynamical Transition”. The Journal of Physical Chemistry B 2012, 116 (20) , 6066-6067. https://doi.org/10.1021/jp212566c
    15. Salvatore Magazù, Federica Migliardo, and Antonio Benedetto . Reply to “Comment on 'Puzzle of the Protein Dynamical Transition'”. The Journal of Physical Chemistry B 2012, 116 (20) , 6068-6069. https://doi.org/10.1021/jp300926f
    16. Andreas M. Sophocleous, Jun Zhang, and Elizabeth M. Topp . Localized Hydration in Lyophilized Myoglobin by Hydrogen–Deuterium Exchange Mass Spectrometry. 1. Exchange Mapping. Molecular Pharmaceutics 2012, 9 (4) , 718-726. https://doi.org/10.1021/mp3000088
    17. S. Capaccioli, K. L. Ngai, S. Ancherbak, and A. Paciaroni . Evidence of Coexistence of Change of Caged Dynamics at Tg and the Dynamic Transition at Td in Solvated Proteins. The Journal of Physical Chemistry B 2012, 116 (6) , 1745-1757. https://doi.org/10.1021/jp2057892
    18. Xiang-qiang Chu, Eugene Mamontov, Hugh O’Neill, and Qiu Zhang . Apparent Decoupling of the Dynamics of a Protein from the Dynamics of its Aqueous Solvent. The Journal of Physical Chemistry Letters 2012, 3 (3) , 380-385. https://doi.org/10.1021/jz201435q
    19. Elisa Bassotti, Gaio Paradossi, Ester Chiessi, Mark Telling. Hydration-induced dynamical changes in lyophilised and weakly hydrated apoferritin: insights from molecular dynamics simulation. Physical Chemistry Chemical Physics 2025, 27 (4) , 1901-1915. https://doi.org/10.1039/D4CP03481C
    20. Elisa Bassotti, Sara Gabrielli, Gaio Paradossi, Ester Chiessi, Mark Telling. An experimentally representative in-silico protocol for dynamical studies of lyophilised and weakly hydrated amorphous proteins. Communications Chemistry 2024, 7 (1) https://doi.org/10.1038/s42004-024-01167-6
    21. Taylor Colburn, Setare Mostajabi Sarhangi, Dmitry V. Matyushov. Statistics of protein electrostatics. The Journal of Chemical Physics 2024, 161 (17) https://doi.org/10.1063/5.0229619
    22. Yuqing Li, Zehua Han, Changli Ma, Liang Hong, Yanwei Ding, Ye Chen, Junpeng Zhao, Dong Liu, Guangai Sun, Taisen Zuo, He Cheng, Charles C. Han. Structure and dynamics of supercooled water in the hydration layer of poly(ethylene glycol). Structural Dynamics 2022, 9 (5) https://doi.org/10.1063/4.0000158
    23. Antonio Benedetto, Gordon J. Kearley. Experimental demonstration of the novel “van-Hove integral method (vHI)” for measuring diffusive dynamics by elastic neutron scattering. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-93463-7
    24. Maddalena Bin, Rafat Yousif, Sharon Berkowicz, Sudipta Das, Daniel Schlesinger, Fivos Perakis. Wide-angle X-ray scattering and molecular dynamics simulations of supercooled protein hydration water. Physical Chemistry Chemical Physics 2021, 23 (34) , 18308-18313. https://doi.org/10.1039/D1CP02126E
    25. Antonio Benedetto. From just physics to biophysics of biological systems. Biophysical Reviews 2020, 12 (6) , 1277-1278. https://doi.org/10.1007/s12551-020-00756-8
    26. Antonio Benedetto, Gordon J. Kearley. A Quantitative Comparison of the Counting Significance of van Hove Integral Spectroscopy and Quasielastic Neutron Scattering. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-63193-3
    27. Antonio Benedetto. From protein and its hydration water dynamics to controlling mechano-elasticity of cellular lipid membranes and cell migration via ionic liquids. Biophysical Reviews 2020, 12 (5) , 1111-1115. https://doi.org/10.1007/s12551-020-00755-9
    28. Maarten Batens, Talia A. Shmool, Jan Massant, J. Axel Zeitler, Guy Van den Mooter. Advancing predictions of protein stability in the solid state. Physical Chemistry Chemical Physics 2020, 22 (30) , 17247-17254. https://doi.org/10.1039/D0CP00341G
    29. Kerstin Kämpf, Dominik Demuth, Michaela Zamponi, Joachim Wuttke, Michael Vogel. Quasielastic neutron scattering studies on couplings of protein and water dynamics in hydrated elastin. The Journal of Chemical Physics 2020, 152 (24) https://doi.org/10.1063/5.0011107
    30. Antonio Benedetto, Gordon J. Kearley. Dynamics from elastic neutron-scattering via direct measurement of the running time-integral of the van Hove distribution function. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-46835-z
    31. Giorgio Schirò, Martin Weik. Role of hydration water in the onset of protein structural dynamics. Journal of Physics: Condensed Matter 2019, 31 (46) , 463002. https://doi.org/10.1088/1361-648X/ab388a
    32. Yei‐Chen Lai, Yun‐Hsuan Kuo, Yun‐Wei Chiang. Identifying Protein Conformational Dynamics Using Spin‐label ESR. Chemistry – An Asian Journal 2019, 14 (22) , 3981-3991. https://doi.org/10.1002/asia.201900855
    33. Fabio Librizzi, Rita Carrotta, Judith Peters, Antonio Cupane. The effects of pressure on the energy landscape of proteins. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-20417-x
    34. Fabio Librizzi, Antonino Caliò, Antonio Cupane. Dynamical properties of myoglobin in an ultraviscous water-glycerol solvent investigated with elastic neutron scattering and FTIR spectroscopy. Journal of Molecular Liquids 2018, 268 , 242-248. https://doi.org/10.1016/j.molliq.2018.07.050
    35. Jeremy C. Smith, Pan Tan, Loukas Petridis, Liang Hong. Dynamic Neutron Scattering by Biological Systems. Annual Review of Biophysics 2018, 47 (1) , 335-354. https://doi.org/10.1146/annurev-biophys-070317-033358
    36. Elena A. Golysheva, Georgiy Yu. Shevelev, Sergei A. Dzuba. Dynamical transition in molecular glasses and proteins observed by spin relaxation of nitroxide spin probes and labels. The Journal of Chemical Physics 2017, 147 (6) https://doi.org/10.1063/1.4997035
    37. . Solid‐State Properties of Proteins. 2017, 302-312. https://doi.org/10.1002/9781119264408.ch20
    38. Kálmán Tompa, Mónika Bokor, Dorina Ágner, Dávid Iván, Dénes Kovács, Tamás Verebélyi, Péter Tompa. Hydrogen Mobility and Protein–Water Interactions in Proteins in the Solid State. ChemPhysChem 2017, 18 (6) , 677-682. https://doi.org/10.1002/cphc.201601136
    39. Andrew R. Draganski, Joel M. Friedman, Richard D. Ludescher. Solvent-Slaved Dynamic Processes Observed by Tryptophan Phosphorescence of Human Serum Albumin. Biophysical Journal 2017, 112 (5) , 881-891. https://doi.org/10.1016/j.bpj.2016.12.048
    40. Tilo Seydel. Dynamics of Biological Systems. 2017, 77-134. https://doi.org/10.1016/B978-0-12-805324-9.00002-9
    41. S. Magazù, E. Mamontov. A neutron spectrometer concept implementing RENS for studies in life sciences. Biochimica et Biophysica Acta (BBA) - General Subjects 2017, 1861 (1) , 3632-3637. https://doi.org/10.1016/j.bbagen.2016.04.017
    42. K.L. Ngai, S. Capaccioli, A. Paciaroni. Dynamics of hydrated proteins and bio-protectants: Caged dynamics, β-relaxation, and α-relaxation. Biochimica et Biophysica Acta (BBA) - General Subjects 2017, 1861 (1) , 3553-3563. https://doi.org/10.1016/j.bbagen.2016.04.027
    43. F. Migliardo, C.A. Angell, S. Magazù. Contrasting dynamics of fragile and non-fragile polyalcohols through the glass, and dynamical, transitions: A comparison of neutron scattering and dielectric relaxation data for sorbitol and glycerol. Biochimica et Biophysica Acta (BBA) - General Subjects 2017, 1861 (1) , 3540-3545. https://doi.org/10.1016/j.bbagen.2016.05.025
    44. Derya Vural, Xiaohu Hu, Benjamin Lindner, Nitin Jain, Yinglong Miao, Xiaolin Cheng, Zhuo Liu, Liang Hong, Jeremy C. Smith. Quasielastic neutron scattering in biology: Theory and applications. Biochimica et Biophysica Acta (BBA) - General Subjects 2017, 1861 (1) , 3638-3650. https://doi.org/10.1016/j.bbagen.2016.06.015
    45. S. Magazù, F. Mezei, P. Falus, B. Farago, E. Mamontov, M. Russina, F. Migliardo. Protein dynamics as seen by (quasi) elastic neutron scattering. Biochimica et Biophysica Acta (BBA) - General Subjects 2017, 1861 (1) , 3504-3512. https://doi.org/10.1016/j.bbagen.2016.07.030
    46. Maria Monica Castellanos, Arnold McAuley, Joseph E. Curtis. Investigating Structure and Dynamics of Proteins in Amorphous Phases Using Neutron Scattering. Computational and Structural Biotechnology Journal 2017, 15 , 117-130. https://doi.org/10.1016/j.csbj.2016.12.004
    47. Prithwish K. Nandi, Niall J. English, Zdenek Futera, Antonio Benedetto. Hydrogen-bond dynamics at the bio–water interface in hydrated proteins: a molecular-dynamics study. Physical Chemistry Chemical Physics 2017, 19 (1) , 318-329. https://doi.org/10.1039/C6CP05601F
    48. Salman Seyedi, Dmitry V. Matyushov. Ergodicity breaking of iron displacement in heme proteins. Soft Matter 2017, 13 (44) , 8188-8201. https://doi.org/10.1039/C7SM01561E
    49. Antonio Benedetto, Gordon J. Kearley. Elastic Scattering Spectroscopy (ESS): an Instrument-Concept for Dynamics of Complex (Bio-) Systems From Elastic Neutron Scattering. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep34266
    50. Prithwish K. Nandi, Zdenek Futera, Niall J. English. Perturbation of hydration layer in solvated proteins by external electric and electromagnetic fields: Insights from non-equilibrium molecular dynamics. The Journal of Chemical Physics 2016, 145 (20) https://doi.org/10.1063/1.4967774
    51. Liliya Vugmeyster, Dmitry Ostrovsky, Matthew A. Clark, Isaac B. Falconer, Gina L. Hoatson, Wei Qiang. Fast Motions of Key Methyl Groups in Amyloid-β Fibrils. Biophysical Journal 2016, 111 (10) , 2135-2148. https://doi.org/10.1016/j.bpj.2016.10.001
    52. Wael Karain. THz frequency spectrum of protein–solvent interaction energy using a recurrence plot‐based Wiener–Khinchin method. Proteins: Structure, Function, and Bioinformatics 2016, 84 (10) , 1549-1557. https://doi.org/10.1002/prot.25097
    53. Salman Seyedi, Daniel R. Martin, Dmitry V. Matyushov. Dynamical and orientational structural crossovers in low-temperature glycerol. Physical Review E 2016, 94 (1) https://doi.org/10.1103/PhysRevE.94.012616
    54. E. Mamontov, P. Zolnierczuk, M. Ohl. Nanometer-sized dynamic entities in an aqueous system. Physical Chemistry Chemical Physics 2015, 17 (6) , 4466-4471. https://doi.org/10.1039/C4CP05081A
    55. Domenico Lombardo, Mikhail A. Kiselev, Salvatore Magazù, Pietro Calandra. Amphiphiles Self-Assembly: Basic Concepts and Future Perspectives of Supramolecular Approaches. Advances in Condensed Matter Physics 2015, 2015 , 1-22. https://doi.org/10.1155/2015/151683
    56. Zhe Wang, Emiliano Fratini, Mingda Li, Peisi Le, Eugene Mamontov, Piero Baglioni, Sow-Hsin Chen. Hydration-dependent dynamic crossover phenomenon in protein hydration water. Physical Review E 2014, 90 (4) https://doi.org/10.1103/PhysRevE.90.042705
    57. John J. Hill, Evgenyi Y. Shalaev, George Zografi. The Importance of Individual Protein Molecule Dynamics in Developing and Assessing Solid State Protein Preparations. Journal of Pharmaceutical Sciences 2014, 103 (9) , 2605-2614. https://doi.org/10.1002/jps.24021
    58. Alain Hédoux, Laurent Paccou, Yannick Guinet. Relationship between β-relaxation and structural stability of lysozyme: Microscopic insight on thermostabilization mechanism by trehalose from Raman spectroscopy experiments. The Journal of Chemical Physics 2014, 140 (22) https://doi.org/10.1063/1.4882058
    59. Kerstin Kämpf, Beke Kremmling, Michael Vogel. Vanishing amplitude of backbone dynamics causes a true protein dynamical transition: H 2 NMR studies on perdeuterated C-phycocyanin. Physical Review E 2014, 89 (3) https://doi.org/10.1103/PhysRevE.89.032710
    60. Margarita Fomina, Giorgio Schirò, Antonio Cupane. Hydration dependence of myoglobin dynamics studied with elastic neutron scattering, differential scanning calorimetry and broadband dielectric spectroscopy. Biophysical Chemistry 2014, 185 , 25-31. https://doi.org/10.1016/j.bpc.2013.11.004
    61. Silvina Cerveny, Jan Swenson. Dynamics of supercooled water in a biological model system of the amino acid l -lysine. Phys. Chem. Chem. Phys. 2014, 16 (40) , 22382-22390. https://doi.org/10.1039/C4CP02487G
    62. Antonio Benedetto. RETRACTED: Protein dynamics by neutron scattering. Biophysical Chemistry 2013, 182 , 16-22. https://doi.org/10.1016/j.bpc.2013.07.007
    63. Giorgio Schiró. Anharmonic onsets in polypeptides revealed by neutron scattering: Experimental evidences and quantitative description of energy resolution dependence. Biophysical Chemistry 2013, 180-181 , 29-36. https://doi.org/10.1016/j.bpc.2013.05.006
    64. Salvatore Magazù, Federica Migliardo, Antonio Benedetto, Beata Vertessy. Protein dynamics by neutron scattering: The protein dynamical transition and the fragile-to-strong dynamical crossover in hydrated lysozyme. Chemical Physics 2013, 424 , 26-31. https://doi.org/10.1016/j.chemphys.2013.03.001
    65. S. Magazù, F. Migliardo, B.G. Vertessy, M.T. Caccamo. Investigations of homologous disaccharides by elastic incoherent neutron scattering and wavelet multiresolution analysis. Chemical Physics 2013, 424 , 56-61. https://doi.org/10.1016/j.chemphys.2013.05.004
    66. K.L. Ngai, S. Capaccioli, A. Paciaroni. Nature of the water specific relaxation in hydrated proteins and aqueous mixtures. Chemical Physics 2013, 424 , 37-44. https://doi.org/10.1016/j.chemphys.2013.05.018
    67. Paul W. Fenimore, Hans Frauenfelder, Salvatore Magazù, Benjamin H. McMahon, Ferenc Mezei, Federica Migliardo, Robert D. Young, Izabela Stroe. Concepts and problems in protein dynamics. Chemical Physics 2013, 424 , 2-6. https://doi.org/10.1016/j.chemphys.2013.06.023
    68. F. Migliardo, M.T. Caccamo, S. Magazù. Elastic incoherent neutron scatterings wavevector and thermal analysis on glass-forming homologous disaccharides. Journal of Non-Crystalline Solids 2013, 378 , 144-151. https://doi.org/10.1016/j.jnoncrysol.2013.06.030
    69. Giorgio Schirò, Margarita Fomina, Antonio Cupane. Communication: Protein dynamical transition vs. liquid-liquid phase transition in protein hydration water. The Journal of Chemical Physics 2013, 139 (12) https://doi.org/10.1063/1.4822250
    70. W. Doster, H. Nakagawa, M. S. Appavou. Scaling analysis of bio-molecular dynamics derived from elastic incoherent neutron scattering experiments. The Journal of Chemical Physics 2013, 139 (4) https://doi.org/10.1063/1.4816513
    71. Kathleen Wood, François‐Xavier Gallat, Renee Otten, Auke J. van Heel, Mathilde Lethier, Lambert van Eijck, Martine Moulin, Michael Haertlein, Martin Weik, Frans A. A. Mulder. Protein Surface and Core Dynamics Show Concerted Hydration‐Dependent Activation. Angewandte Chemie 2013, 125 (2) , 693-696. https://doi.org/10.1002/ange.201205898
    72. Kathleen Wood, François‐Xavier Gallat, Renee Otten, Auke J. van Heel, Mathilde Lethier, Lambert van Eijck, Martine Moulin, Michael Haertlein, Martin Weik, Frans A. A. Mulder. Protein Surface and Core Dynamics Show Concerted Hydration‐Dependent Activation. Angewandte Chemie International Edition 2013, 52 (2) , 665-668. https://doi.org/10.1002/anie.201205898
    73. Philip Ball. The Importance of Water. 2013, 169-210. https://doi.org/10.1007/978-3-642-31730-9_6
    74. Mark R. Johnson, Gordon J. Kearley. Dynamics of Atoms and Molecules. 2013, 415-469. https://doi.org/10.1016/B978-0-12-398374-9.00007-3
    75. Christopher E. Bertrand, Yang Zhang, Sow-Hsin Chen. Deeply-cooled water under strong confinement: neutron scattering investigations and the liquid–liquid critical point hypothesis. Phys. Chem. Chem. Phys. 2013, 15 (3) , 721-745. https://doi.org/10.1039/C2CP43235H
    76. E. Mamontov, M. Ohl. Slow dynamics of water molecules in an aqueous solution of lithium chloride probed by neutron spin-echo. Physical Chemistry Chemical Physics 2013, 15 (26) , 10732. https://doi.org/10.1039/c3cp51355f
    77. A. M. Stadler, C. J. Garvey, A. Bocahut, S. Sacquin-Mora, I. Digel, G. J. Schneider, F. Natali, G. M. Artmann, G. Zaccai. Thermal fluctuations of haemoglobin from different species: adaptation to temperature via conformational dynamics. Journal of The Royal Society Interface 2012, 9 (76) , 2845-2855. https://doi.org/10.1098/rsif.2012.0364
    78. Jonathan D. Nickels, Hugh O’Neill, Liang Hong, Madhusudan Tyagi, Georg Ehlers, Kevin L. Weiss, Qiu Zhang, Zheng Yi, Eugene Mamontov, Jeremy C. Smith, Alexei P. Sokolov. Dynamics of Protein and its Hydration Water: Neutron Scattering Studies on Fully Deuterated GFP. Biophysical Journal 2012, 103 (7) , 1566-1575. https://doi.org/10.1016/j.bpj.2012.08.046
    79. Joachim Wuttke. Comment on “Elastic incoherent neutron scattering operating by varying instrumental energy resolution: Principle, simulations, and experiments of the resolution elastic neutron scattering (RENS)” [Rev. Sci. Instrum. 82, 105115 (2011)]. Review of Scientific Instruments 2012, 83 (10) https://doi.org/10.1063/1.4757973
    80. Salvatore Magazù, Federica Migliardo, Antonio Benedetto. Response to “Comment on ‘Elastic incoherent neutron scattering operating by varying instrumental energy resolution: Principle, simulations, and experiments of the resolution elastic neutron scattering (RENS)’” [Rev. Sci. Instrum. 83, 107101 (2012)]. Review of Scientific Instruments 2012, 83 (10) https://doi.org/10.1063/1.4758775
    81. Giorgio Schiró, Francesca Natali, Antonio Cupane. Physical Origin of Anharmonic Dynamics in Proteins: New Insights From Resolution-Dependent Neutron Scattering on Homomeric Polypeptides. Physical Review Letters 2012, 109 (12) https://doi.org/10.1103/PhysRevLett.109.128102
    82. Jörg Pieper, Marcus Trapp, Andrei Skomorokhov, Ireneusz Natkaniec, Judith Peters, Gernot Renger. Temperature-dependent vibrational and conformational dynamics of photosystem II membrane fragments from spinach investigated by elastic and inelastic neutron scattering. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2012, 1817 (8) , 1213-1219. https://doi.org/10.1016/j.bbabio.2012.03.020
    83. Derya Vural, Henry R. Glyde. Intrinsic mean-square displacements in proteins. Physical Review E 2012, 86 (1) https://doi.org/10.1103/PhysRevE.86.011926
    84. S. Magazù, F. Migliardo, A. Benedetto, R. La Torre, L. Hennet. Bio-protective effects of homologous disaccharides on biological macromolecules. European Biophysics Journal 2012, 41 (4) , 361-367. https://doi.org/10.1007/s00249-011-0760-x
    85. Masahiro Nakanishi, Philip Griffin, Eugene Mamontov, Alexei P. Sokolov. No fragile-to-strong crossover in LiCl-H2O solution. The Journal of Chemical Physics 2012, 136 (12) https://doi.org/10.1063/1.3697841
    86. A Benedetto, S Magazù, F Migliardo, C Mondelli, M A Gonzalez. Resolution Effects on the Mean Square Displacement as Obtained by the Self-Distribution-Function Procedure. Journal of Physics: Conference Series 2012, 340 , 012093. https://doi.org/10.1088/1742-6596/340/1/012093
    87. Eugene Mamontov, Xiang-qiang Chu. Water–protein dynamic coupling and new opportunities for probing it at low to physiological temperatures in aqueous solutions. Physical Chemistry Chemical Physics 2012, 14 (33) , 11573. https://doi.org/10.1039/c2cp41443k
    88. Salvatore Magazù, Federica Migliardo, Antonio Benedetto. Elastic incoherent neutron scattering operating by varying instrumental energy resolution: Principle, simulations, and experiments of the resolution elastic neutron scattering (RENS). Review of Scientific Instruments 2011, 82 (10) https://doi.org/10.1063/1.3641870
    89. Xiang-qiang Chu, Georg Ehlers, Eugene Mamontov, Andrey Podlesnyak, Wei Wang, David J. Wesolowski. Diffusion processes in water on oxide surfaces: Quasielastic neutron scattering study of hydration water in rutile nanopowder. Physical Review E 2011, 84 (3) https://doi.org/10.1103/PhysRevE.84.031505

    The Journal of Physical Chemistry B

    Cite this: J. Phys. Chem. B 2011, 115, 24, 7736–7743
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp111421m
    Published May 25, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    1194

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.