ACS Publications. Most Trusted. Most Cited. Most Read
Copper Nitrate Redispersion To Arrive at Highly Active Silica-Supported Copper Catalysts
My Activity

Figure 1Loading Img
    Article

    Copper Nitrate Redispersion To Arrive at Highly Active Silica-Supported Copper Catalysts
    Click to copy article linkArticle link copied!

    View Author Information
    Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, Post Office Box 80083, 3508 TB Utrecht, The Netherlands
    § §Chemical Catalysis and Johnson Matthey Technology Centre, Johnson Matthey Catalysts, Belasis Avenue, Post Office Box 1, Billingham TS23 1LB, United Kingdom
    Phone +31-30-253-6762/7400; fax +31-30-251-1027; e-mail [email protected]
    Other Access Options

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2011, 115, 30, 14698–14706
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp111778g
    Published July 12, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    In order to obtain copper catalysts with high dispersions at high copper loadings, the gas flow rate and gas composition was varied during calcination of silica gel impregnated with copper nitrate to a loading of 18 wt % of copper. Analysis by X-ray diffraction (XRD), N2O chemisorption, and transmission electron microscopy (TEM) showed that calcination in stagnant air resulted in very large copper crystallites and a low copper surface area (12 m2·gCu–1). A moderate flow of air was sufficient to greatly enhance the copper surface area (∼90 m2·gCu–1) based on a bimodal particle size distribution of few large crystallites and a highly dispersed phase. Changing to an N2 flow resulted in similar copper surface areas compared to samples calcined in air at the same space velocity, while calcination in a 2% NO/N2 flow resulted in a relatively narrow particle size distribution peaking around 8 nm and a slightly lower copper surface area (84 m2·gCu–1). By use of SBA-15 supported samples, in situ XRD and diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) showed that the decomposition of copper nitrate in NO occurred via a highly dispersed copper hydroxynitrate phase, while decomposition in N2 or air occurred partly via copper nitrate anhydrate and partly via poorly dispersed copper hydroxynitrate. The high CuO dispersions after calcination in an N2 or air flow were ascribed to the redispersion of copper nitrate anhydrate by interaction with the OH groups of the silica support. By utilization of this redispersion, high copper dispersions on silica gel with concomitant high activities were obtained for the gas-phase hydrogenation of butanal.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 115 publications.

    1. Laura Barberis, Christiaan I. Versteeg, Johannes D. Meeldijk, Joseph A. Stewart, Bart D. Vandegehuchte, Petra E. de Jongh. K and Na Promotion Enables High-Pressure Low-Temperature Reverse Water Gas Shift over Copper-Based Catalysts. ACS Catalysis 2024, 14 (12) , 9188-9197. https://doi.org/10.1021/acscatal.4c02293
    2. Savannah J. Turner, Dennie F. L. Wezendonk, Robert J. A. M. Terorde, Krijn P. de Jong. In Situ TEM Study of the Genesis of Supported Nickel Catalysts. The Journal of Physical Chemistry C 2023, 127 (16) , 7772-7783. https://doi.org/10.1021/acs.jpcc.3c01117
    3. Yuxin Zhao, Ahsan Jalal, Alper Uzun. Interplay between Copper Nanoparticle Size and Oxygen Vacancy on Mg-Doped Ceria Controls Partial Hydrogenation Performance and Stability. ACS Catalysis 2021, 11 (13) , 8116-8131. https://doi.org/10.1021/acscatal.1c01471
    4. Giorgio Totarella, Rolf Beerthuis, Nazila Masoud, Catherine Louis, Laurent Delannoy, Petra E. de Jongh. Supported Cu Nanoparticles as Selective and Stable Catalysts for the Gas Phase Hydrogenation of 1,3-Butadiene in Alkene-Rich Feeds. The Journal of Physical Chemistry C 2021, 125 (1) , 366-375. https://doi.org/10.1021/acs.jpcc.0c08077
    5. Jonglack Kim, Bidyut B. Sarma, Eva Andrés, Norbert Pfänder, Patricia Concepción, Gonzalo Prieto. Surface Lewis Acidity of Periphery Oxide Species as a General Kinetic Descriptor for CO2 Hydrogenation to Methanol on Supported Copper Nanoparticles. ACS Catalysis 2019, 9 (11) , 10409-10417. https://doi.org/10.1021/acscatal.9b02412
    6. Scott L. Nauert, Andrew S. Rosen, Hacksung Kim, Randall Q. Snurr, Peter C. Stair, Justin M. Notestein. Evidence for Copper Dimers in Low-Loaded CuOx/SiO2 Catalysts for Cyclohexane Oxidative Dehydrogenation. ACS Catalysis 2018, 8 (10) , 9775-9789. https://doi.org/10.1021/acscatal.8b02532
    7. Atsushi Segawa, Akio Nakashima, Ryoichi Nojima, Naohiro Yoshida, Masaki Okamoto. Acetaldehyde Production from Ethanol by Eco-Friendly Non-Chromium Catalysts Consisting of Copper and Calcium Silicate. Industrial & Engineering Chemistry Research 2018, 57 (35) , 11852-11857. https://doi.org/10.1021/acs.iecr.8b02498
    8. Gregory M. Biausque, Paco V. Laveille, Dalaver H. Anjum, Bei Zhang, Xixiang Zhang, Valérie Caps, and Jean-Marie Basset . One-Pot Synthesis of Size- and Composition-Controlled Ni-Rich NiPt Alloy Nanoparticles in a Reverse Microemulsion System and Their Application. ACS Applied Materials & Interfaces 2017, 9 (36) , 30643-30653. https://doi.org/10.1021/acsami.7b08201
    9. Cedric J. Gommes, Gonzalo Prieto, and Petra E. de Jongh . Small-Angle Scattering Analysis of Empty or Loaded Hierarchical Porous Materials. The Journal of Physical Chemistry C 2016, 120 (3) , 1488-1506. https://doi.org/10.1021/acs.jpcc.5b09556
    10. Carlo Angelici, Florian Meirer, Ad M. J. van der Eerden, Herrick L. Schaink, Andrey Goryachev, Jan P. Hofmann, Emiel J. M. Hensen, Bert M. Weckhuysen, and Pieter C. A. Bruijnincx . Ex Situ and Operando Studies on the Role of Copper in Cu-Promoted SiO2–MgO Catalysts for the Lebedev Ethanol-to-Butadiene Process. ACS Catalysis 2015, 5 (10) , 6005-6015. https://doi.org/10.1021/acscatal.5b00755
    11. Peter Munnik, Petra E. de Jongh, and Krijn P. de Jong . Recent Developments in the Synthesis of Supported Catalysts. Chemical Reviews 2015, 115 (14) , 6687-6718. https://doi.org/10.1021/cr500486u
    12. Roy van den Berg, Tanja E. Parmentier, Christian F. Elkjær, Cedric J.Gommes, Jens Sehested, Stig Helveg, Petra E. de Jongh, and Krijn P. de Jong . Support Functionalization To Retard Ostwald Ripening in Copper Methanol Synthesis Catalysts. ACS Catalysis 2015, 5 (7) , 4439-4448. https://doi.org/10.1021/acscatal.5b00833
    13. Peter Munnik, Nynke A. Krans, Petra E. de Jongh, and Krijn P. de Jong . Effects of Drying Conditions on the Synthesis of Co/SiO2 and Co/Al2O3 Fischer–Tropsch Catalysts. ACS Catalysis 2014, 4 (9) , 3219-3226. https://doi.org/10.1021/cs5006772
    14. James J. Spivey, Katla Sai Krishna, Challa S.S.R. Kumar, Kerry M. Dooley, John C. Flake, Louis H. Haber, Ye Xu, Michael J. Janik, Susan B. Sinnott, Yu-Ting Cheng, Tao Liang, David S. Sholl, Thomas A. Manz, Ulrike Diebold, Gareth S. Parkinson, David A. Bruce, and Petra de Jongh . Synthesis, Characterization, and Computation of Catalysts at the Center for Atomic-Level Catalyst Design. The Journal of Physical Chemistry C 2014, 118 (35) , 20043-20069. https://doi.org/10.1021/jp502556u
    15. Gonzalo Prieto, Mozaffar Shakeri, Krijn P. de Jong, and Petra E. de Jongh . Quantitative Relationship between Support Porosity and the Stability of Pore-Confined Metal Nanoparticles Studied on CuZnO/SiO2 Methanol Synthesis Catalysts. ACS Nano 2014, 8 (3) , 2522-2531. https://doi.org/10.1021/nn406119j
    16. Adrian Ungureanu, Brindusa Dragoi, Alexandru Chirieac, Carmen Ciotonea, Sébastien Royer, Daniel Duprez, Anne Sophie Mamede, and Emil Dumitriu . Composition-Dependent Morphostructural Properties of Ni–Cu Oxide Nanoparticles Confined within the Channels of Ordered Mesoporous SBA-15 Silica. ACS Applied Materials & Interfaces 2013, 5 (8) , 3010-3025. https://doi.org/10.1021/am302733m
    17. Ching S. Chen, Yuan T. Lai, Tzu W. Lai, Jia H. Wu, Ching H. Chen, Jyh F. Lee, and Hsien M. Kao . Formation of Cu Nanoparticles in SBA-15 Functionalized with Carboxylic Acid Groups and Their Application in the Water–Gas Shift Reaction. ACS Catalysis 2013, 3 (4) , 667-677. https://doi.org/10.1021/cs400032e
    18. Martina Cazzolaro, Jia Yang, De Chen. Exploring the influence of copper precursors and solvents on catalyst performance in the hydrogenation of hydroxyacetone to 1,2-Propanediol. Results in Chemistry 2025, 13 , 101914. https://doi.org/10.1016/j.rechem.2024.101914
    19. Ágnes Szegedi, Károly Lázár, Hanna Solt, Margarita Popova. Peculiar redox properties of SBA-15 supported copper ferrite catalysts promoting total oxidation of a model volatile organic air pollutant. Surfaces and Interfaces 2024, 119 , 105498. https://doi.org/10.1016/j.surfin.2024.105498
    20. Giorgio Totarella, Petra E. de Jongh. Selective Hydrogenation of 2‐Methyl‐3‐butyn‐2‐ol Over Supported Cu Nanocatalysts. ChemCatChem 2024, 2009 https://doi.org/10.1002/cctc.202400334
    21. Matías G. Rinaudo, Maria K. López González, Luis E. Cadús, M. Roxana Morales. On the scope of mechanochemical activation: The case of Cu/ZnO catalytic systems. Journal of Physics and Chemistry of Solids 2023, 183 , 111661. https://doi.org/10.1016/j.jpcs.2023.111661
    22. Olga A. Bulavchenko, Zakhar S. Vinokurov. In Situ X-ray Diffraction as a Basic Tool to Study Oxide and Metal Oxide Catalysts. Catalysts 2023, 13 (11) , 1421. https://doi.org/10.3390/catal13111421
    23. Moctar Mbebou, Safa Polat, Huseyin Zengin. Sustainable Cauliflower-Patterned CuFe2O4 Electrode Production from Chalcopyrite for Supercapacitor Applications. Nanomaterials 2023, 13 (6) , 1105. https://doi.org/10.3390/nano13061105
    24. Niina Koivikko, Satu Ojala, Tiina Laitinen, Felipe Lopes da Silva, Lauri Hautala, Zouhair El Assal, Mari Honkanen, Minnamari Vippola, Mika Huuhtanen, Marko Huttula, Teuvo Maunula, Riitta L. Keiski. Activity and in situ DRIFT studies on vanadia catalysts during oxidative dehydrogenation of sulfur-contaminated methanol. Applied Catalysis B: Environmental 2022, 318 , 121803. https://doi.org/10.1016/j.apcatb.2022.121803
    25. Giorgio Totarella, Jan Willem de Rijk, Laurent Delannoy, Petra E. de Jongh. Particle Size Effects in the Selective Hydrogenation of Alkadienes over Supported Cu Nanoparticles. ChemCatChem 2022, 14 (19) https://doi.org/10.1002/cctc.202200348
    26. Laura Barberis, Amir H. Hakimioun, Philipp N. Plessow, Nienke L. Visser, Joseph A. Stewart, Bart D. Vandegehuchte, Felix Studt, Petra E. de Jongh. Competition between reverse water gas shift reaction and methanol synthesis from CO 2 : influence of copper particle size. Nanoscale 2022, 14 (37) , 13551-13560. https://doi.org/10.1039/D2NR02612K
    27. Yuhang Ye, Han Chen, Yuchuan Ye, Huiqiu Zhang, Jing Xu, Luhui Wang, Liuye Mo. Silica-Supported Copper (II) Oxide Cluster via Ball Milling Method for Catalytic Combustion of Ethyl Acetate. Catalysts 2022, 12 (5) , 497. https://doi.org/10.3390/catal12050497
    28. Petra H. Keijzer, Petra E. de Jongh, Krijn P. de Jong. Utilization of Silver Silicate for the Formation of Highly Dispersed Silver on Silica Catalysts. ChemCatChem 2022, 14 (7) https://doi.org/10.1002/cctc.202101702
    29. Yuan Fang, Hao Sun, Bing Ma, Chen Zhao. K+-induced formation of granular and dense copper phyllosilicate precursor converts dimethyl oxalate to ethylene glycol in absence of H2. Journal of Catalysis 2022, 407 , 44-53. https://doi.org/10.1016/j.jcat.2021.12.001
    30. Timofey M. Karnaukhov, Grigory B. Veselov, Svetlana V. Cherepanova, Aleksey A. Vedyagin. Sol-Gel Synthesis and Characterization of the Cu-Mg-O System for Chemical Looping Application. Materials 2022, 15 (6) , 2021. https://doi.org/10.3390/ma15062021
    31. Petra H. Keijzer, Jeroen E. van den Reijen, Claudia J. Keijzer, Krijn P. de Jong, Petra E. de Jongh. Influence of atmosphere, interparticle distance and support on the stability of silver on α-alumina for ethylene epoxidation. Journal of Catalysis 2022, 405 , 534-544. https://doi.org/10.1016/j.jcat.2021.11.016
    32. Carmen Ciotonea, Alexandru Chirieac, Brindusa Dragoi, Cezar Catrinescu, Sébastien Royer, Adrian Ungureanu. Cu–Ga 2 O 3 nanoparticles supported on ordered mesoporous silica for the catalytic hydrogenation of cinnamaldehyde. Comptes Rendus. Chimie 2022, 25 (S3) , 81-94. https://doi.org/10.5802/crchim.141
    33. Mohammad Reza Khosravi-Nikou, Mohammad Hadi Safari, Amir Asadi Rad, Pouya Hassani, Mohammad Mohammadian, Maryam Ahmadi, Negin Ghafari, Maryam Naseri. Desulfurization of liquid fuels using aluminum modified mesoporous adsorbent: towards experimental and kinetic investigations. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-88439-6
    34. Christina H.M. van Oversteeg, Marisol Tapia Rosales, Kristiaan H. Helfferich, Mahnaz Ghiasi, Johannes D. Meeldijk, Nienke J. Firet, Peter Ngene, Celso de Mello Donegá, Petra E. de Jongh. Copper sulfide derived nanoparticles supported on carbon for the electrochemical reduction of carbon dioxide. Catalysis Today 2021, 377 , 157-165. https://doi.org/10.1016/j.cattod.2020.09.020
    35. Carmen Ciotonea, Alexandru Chirieac, Brandusa Dragoi, Jeremy Dhainaut, Maya Marinova, Stephane Pronier, Sandrine Arii-Clacens, Jean-Philippe Dacquin, Emil Dumitriu, Adrian Ungureanu, Sébastien Royer. Playing on 3D spatial distribution of Cu-Co (oxide) nanoparticles in inorganic mesoporous sieves: Impact on catalytic performance toward the cinnamaldehyde hydrogenation. Applied Catalysis A: General 2021, 623 , 118303. https://doi.org/10.1016/j.apcata.2021.118303
    36. Mengjiao Zhang, Youwei Yang, Antai Li, Dawei Yao, Yueqi Gao, Busha Assaba Fayisa, Mei‐Yan Wang, Shouying Huang, Jing Lv, Yue Wang, Xinbin Ma. Nanoflower‐like Cu/SiO 2 Catalyst for Hydrogenation of Ethylene Carbonate to Methanol and Ethylene Glycol: Enriching H 2 Adsorption. ChemCatChem 2020, 12 (14) , 3670-3678. https://doi.org/10.1002/cctc.202000365
    37. Jonglack Kim, Norbert Pfänder, Gonzalo Prieto. Recycling of CO 2 by Hydrogenation of Carbonate Derivatives to Methanol: Tuning Copper–Oxide Promotion Effects in Supported Catalysts. ChemSusChem 2020, 13 (8) , 2043-2052. https://doi.org/10.1002/cssc.202000166
    38. Zhenjie Yu, Lijun Zhang, Zhanming Zhang, Shu Zhang, Song Hu, Jun Xiang, Yi Wang, Qing Liu, Qianhe Liu, Xun Hu. Silica of varied pore sizes as supports of copper catalysts for hydrogenation of furfural and phenolics: Impacts of steric hindrance. International Journal of Hydrogen Energy 2020, 45 (4) , 2720-2728. https://doi.org/10.1016/j.ijhydene.2019.11.145
    39. Min LIN, Wei NA, Hai-chuan YE, Hai-hui HUO, Wen-gui GAO. Effect of additive on CuO-ZnO/SBA-15 catalytic performance of CO2 hydrogenation to methanol. Journal of Fuel Chemistry and Technology 2019, 47 (10) , 1214-1225. https://doi.org/10.1016/S1872-5813(19)30048-9
    40. Juntao Ying, Xueqing Han, Lei Ma, Chunshan Lu, Feng Feng, Qunfeng Zhang, Xiaonian Li. Effects of Basic Promoters on the Catalytic Performance of Cu/SiO2 in the Hydrogenation of Dimethyl Maleate. Catalysts 2019, 9 (9) , 704. https://doi.org/10.3390/catal9090704
    41. C.E. Pompe, D.L. van Uunen, L.I. van der Wal, J.E.S. van der Hoeven, K.P. de Jong, P.E. de Jongh. Stability of mesocellular foam supported copper catalysts for methanol synthesis. Catalysis Today 2019, 334 , 79-89. https://doi.org/10.1016/j.cattod.2019.01.053
    42. Maryam Ahmadi, Mohammad Mohammadian, Mohammad Reza Khosravi-Nikou, Alireza Baghban. Experimental, kinetic, and thermodynamic studies of adsorptive desulfurization and denitrogenation of model fuels using novel mesoporous materials. Journal of Hazardous Materials 2019, 374 , 129-139. https://doi.org/10.1016/j.jhazmat.2019.04.029
    43. Yushan Xi, Yue Wang, Dawei Yao, Antai Li, Jingyu Zhang, Yujun Zhao, Jing Lv, Xinbin Ma. Impact of the Oxygen Vacancies on Copper Electronic State and Activity of Cu‐Based Catalysts in the Hydrogenation of Methyl Acetate to Ethanol. ChemCatChem 2019, 11 (11) , 2607-2614. https://doi.org/10.1002/cctc.201900413
    44. Aylin Atakan, Julien Keraudy, Peter Mäkie, Christian Hulteberg, Emma M. Björk, Magnus Odén. Impact of the morphological and chemical properties of copper-zirconium-SBA-15 catalysts on the conversion and selectivity in carbon dioxide hydrogenation. Journal of Colloid and Interface Science 2019, 546 , 163-173. https://doi.org/10.1016/j.jcis.2019.03.046
    45. Kuo Chen, Jian Yu, Bin Liu, Congcong Si, Hongyan Ban, Weijie Cai, Congming Li, Zhong Li, Kaoru Fujimoto. Simple strategy synthesizing stable CuZnO/SiO2 methanol synthesis catalyst. Journal of Catalysis 2019, 372 , 163-173. https://doi.org/10.1016/j.jcat.2019.02.035
    46. Mariya Shamzhy, Maksym Opanasenko, Patricia Concepción, Agustín Martínez. New trends in tailoring active sites in zeolite-based catalysts. Chemical Society Reviews 2019, 48 (4) , 1095-1149. https://doi.org/10.1039/C8CS00887F
    47. Xin Jiang, Xinchao Chen, Chen Ling, Shuaishuai Chen, Zhongbiao Wu. High-performance Cu/ZnO catalysts prepared using a three-channel microreactor. Applied Catalysis A: General 2019, 570 , 192-199. https://doi.org/10.1016/j.apcata.2018.11.023
    48. Linxu Xu, Jiajia Zhang, Zhenhui Li, Qinghai Ma, Yan Wang, Fang Cui, Tieyu Cui. In situ generation of ultrasmall sized and highly dispersed CuO nanoparticles embedded in silica matrix and their catalytic application. New Journal of Chemistry 2019, 43 (1) , 520-526. https://doi.org/10.1039/C8NJ04517H
    49. C.E. Pompe, Mark Slagter, Petra E. de Jongh, Krijn P. de Jong. Impact of heterogeneities in silica-supported copper catalysts on their stability for methanol synthesis. Journal of Catalysis 2018, 365 , 1-9. https://doi.org/10.1016/j.jcat.2018.06.014
    50. Nien-Chu Lai, Ming-Chieh Tsai, Chun-Hsia Liu, Ching-Shiun Chen, Chia-Min Yang. Efficient selective oxidation of propylene by dioxygen on mesoporous-silica-nanoparticle-supported nanosized copper. Journal of Catalysis 2018, 365 , 411-419. https://doi.org/10.1016/j.jcat.2018.07.014
    51. Liuye Mo, Eng-Toon Saw, Yasotha Kathiraser, Ming Li Ang, Sibudjing Kawi. Preparation of highly dispersed Cu/SiO2 doped with CeO2 and its application for high temperature water gas shift reaction. International Journal of Hydrogen Energy 2018, 43 (33) , 15891-15897. https://doi.org/10.1016/j.ijhydene.2018.06.135
    52. Sharanjit Singh, Ravinder Kumar, Herma Dina Setiabudi, Sonil Nanda, Dai-Viet N. Vo. Advanced synthesis strategies of mesoporous SBA-15 supported catalysts for catalytic reforming applications: A state-of-the-art review. Applied Catalysis A: General 2018, 559 , 57-74. https://doi.org/10.1016/j.apcata.2018.04.015
    53. Fatima Abi Ghaida, Sébastien Clément, Ahmad Mehdi. Heterogenized Catalysis on Metals Impregnated Mesoporous Silica. 2018, 323-349. https://doi.org/10.1002/9781119156253.ch10
    54. Mohammad Mohammadian, Mohammad Reza Khosravi-Nikou, Ahmad Shariati, Masoud Aghajani. Model fuel desulfurization and denitrogenation using copper and cerium modified mesoporous material (MSU-S) through adsorption process. Clean Technologies and Environmental Policy 2018, 20 (1) , 95-112. https://doi.org/10.1007/s10098-017-1460-8
    55. Qing-Nan Wang, Lei Shi, Wei Li, Wen-Cui Li, Rui Si, Ferdi Schüth, An-Hui Lu. Cu supported on thin carbon layer-coated porous SiO 2 for efficient ethanol dehydrogenation. Catalysis Science & Technology 2018, 8 (2) , 472-479. https://doi.org/10.1039/C7CY02057K
    56. J.E. van den Reijen, S. Kanungo, T.A.J. Welling, M. Versluijs-Helder, T.A. Nijhuis, K.P. de Jong, P.E. de Jongh. Preparation and particle size effects of Ag/α-Al2O3 catalysts for ethylene epoxidation. Journal of Catalysis 2017, 356 , 65-74. https://doi.org/10.1016/j.jcat.2017.10.001
    57. Pratichi Singh, Deepak Yadav, J. Pandey, R. Prasad. Reactive Calcination Route for Synthesis of Highly Active NiCo2O4 Catalyst for Abatement of Cold-Start CO–HC Emissions from LPG Vehicles. Catalysis Letters 2017, 147 (9) , 2385-2398. https://doi.org/10.1007/s10562-017-2141-2
    58. Yifeng Zhu, Xiao Kong, Junqing Yin, Rui You, Bin Zhang, Hongyan Zheng, Xiaodong Wen, Yulei Zhu, Yong-Wang Li. Covalent-bonding to irreducible SiO2 leads to high-loading and atomically dispersed metal catalysts. Journal of Catalysis 2017, 353 , 315-324. https://doi.org/10.1016/j.jcat.2017.07.030
    59. Yujia Liang, Ryan Felix, Howard Glicksman, Sheryl Ehrman. Cu-Sn binary metal particle generation by spray pyrolysis. Aerosol Science and Technology 2017, 51 (4) , 430-442. https://doi.org/10.1080/02786826.2016.1265912
    60. Mohan Varkolu, David Raju Burri, Seetha Rama Rao Kamaraju, Sreekantha B. Jonnalagadda, Werner E. van Zyl. Hydrogenation of Levulinic Acid Using Formic Acid as a Hydrogen Source over Ni/SiO 2 Catalysts. Chemical Engineering & Technology 2017, 40 (4) , 719-726. https://doi.org/10.1002/ceat.201600429
    61. Dennis Großmann, Konstantin Klementiev, Ilya Sinev, Wolfgang Grünert. Surface Alloy or Metal–Cation Interaction‐The State of Zn Promoting the Active Cu Sites in Methanol Synthesis Catalysts. ChemCatChem 2017, 9 (2) , 365-372. https://doi.org/10.1002/cctc.201601102
    62. Leila Karam, Sandra Casale, Henri El Zakhem, Nissrine El Hassan. Tuning the properties of nickel nanoparticles inside SBA-15 mesopores for enhanced stability in methane reforming. Journal of CO2 Utilization 2017, 17 , 119-124. https://doi.org/10.1016/j.jcou.2016.12.002
    63. M. Berger, P. Fioux, S. Dorge, H. Nouali, D. Habermacher, E. Fiani, M. Vierling, M. Moliere, J. F. Brilhac, J. Patarin. Structure-performance relationship in CuO/SBA-15-type SO x adsorbent: evolution of copper-based species under different regenerative treatments. Catalysis Science & Technology 2017, 7 (18) , 4115-4128. https://doi.org/10.1039/C7CY01010A
    64. B. Dragoi, I. Mazilu, A. Chirieac, C. Ciotonea, A. Ungureanu, E. Marceau, E. Dumitriu, S. Royer. Highly dispersed copper (oxide) nanoparticles prepared on SBA-15 partially occluded with the P123 surfactant: toward the design of active hydrogenation catalysts. Catalysis Science & Technology 2017, 7 (22) , 5376-5385. https://doi.org/10.1039/C7CY01015J
    65. Roy van den Berg, Gonzalo Prieto, Gerda Korpershoek, Lars I. van der Wal, Arnoldus J. van Bunningen, Susanne Lægsgaard-Jørgensen, Petra E. de Jongh, Krijn P. de Jong. Structure sensitivity of Cu and CuZn catalysts relevant to industrial methanol synthesis. Nature Communications 2016, 7 (1) https://doi.org/10.1038/ncomms13057
    66. Guoqiang Zhang, Zhong Li, Huayan Zheng, Zhiqiang Hao, Xia Wang, Jiajun Wang. Influence of surface oxygenated groups on the formation of active Cu species and the catalytic activity of Cu/AC catalyst for the synthesis of dimethyl carbonate. Applied Surface Science 2016, 390 , 68-77. https://doi.org/10.1016/j.apsusc.2016.08.054
    67. Pierrick Gaudin, Philippe Fioux, Sophie Dorge, Habiba Nouali, Matthieu Vierling, Emmanuel Fiani, Michel Molière, Jean-François Brilhac, Joël Patarin. Formation and role of Cu+ species on highly dispersed CuO/SBA-15 mesoporous materials for SOx removal: An XPS study. Fuel Processing Technology 2016, 153 , 129-136. https://doi.org/10.1016/j.fuproc.2016.07.015
    68. Xin Jiang, Lu Zheng, Zhiyong Wang, Jiangang Lu. Microstructure characters of Cu/ZnO catalyst precipitated inside microchannel reactor. Journal of Molecular Catalysis A: Chemical 2016, 423 , 457-462. https://doi.org/10.1016/j.molcata.2016.07.046
    69. Qi Xin, Antonella Glisenti, Constantine Philippopoulos, Evangelos Poulakis, Myrjam Mertens, Jeff Nyalosaso, Vera Meynen, Pegie Cool. Comparison between a Water-Based and a Solvent-Based Impregnation Method towards Dispersed CuO/SBA-15 Catalysts: Texture, Structure and Catalytic Performance in Automotive Exhaust Gas Abatement. Catalysts 2016, 6 (10) , 164. https://doi.org/10.3390/catal6100164
    70. Gang Wang, Roy van den Berg, Celso de Mello Donega, Krijn P. de Jong, Petra E. de Jongh. Silica-supported Cu2O nanoparticles with tunable size for sustainable hydrogen generation. Applied Catalysis B: Environmental 2016, 192 , 199-207. https://doi.org/10.1016/j.apcatb.2016.03.044
    71. Roy van den Berg, Jovana Zečević, Jens Sehested, Stig Helveg, Petra E. de Jongh, Krijn P. de Jong. Impact of the synthesis route of supported copper catalysts on the performance in the methanol synthesis reaction. Catalysis Today 2016, 272 , 87-93. https://doi.org/10.1016/j.cattod.2015.08.052
    72. Pierrick Gaudin, Laure Michelin, Ludovic Josien, Habiba Nouali, Sophie Dorge, Jean-François Brilhac, Emmanuel Fiani, Matthieu Vierling, Michel Molière, Joël Patarin. Highly dispersed copper species supported on SBA-15 mesoporous materials for SOx removal: Influence of the CuO loading and of the support. Fuel Processing Technology 2016, 148 , 1-11. https://doi.org/10.1016/j.fuproc.2016.02.025
    73. Alexandru Chirieac, Brindusa Dragoi, Adrian Ungureanu, Carmen Ciotonea, Irina Mazilu, Sebastien Royer, Anne Sophie Mamede, Elisabetta Rombi, Italo Ferino, Emil Dumitriu. Facile synthesis of highly dispersed and thermally stable copper-based nanoparticles supported on SBA-15 occluded with P123 surfactant for catalytic applications. Journal of Catalysis 2016, 339 , 270-283. https://doi.org/10.1016/j.jcat.2016.04.004
    74. Gregor Koch, Lena Schmack, Thorsten Ressler. Tuning Size and Reducibility of Copper Oxide Particles Supported on SBA‐15. ChemistrySelect 2016, 1 (9) , 2040-2049. https://doi.org/10.1002/slct.201600428
    75. B. Dragoi, A. Ungureanu, C. Ciotonea, A. Chirieac, S. Petit, S. Royer, E. Dumitriu. Controlling the distribution of cobalt (oxide) nanoparticles in the dual pore system of SBA-15 scaffolds. Microporous and Mesoporous Materials 2016, 224 , 176-189. https://doi.org/10.1016/j.micromeso.2015.11.028
    76. Meijiao Ren, Jun Ren, Panpan Hao, Jinzhou Yang, Donglei Wang, Yongli Pei, Jian‐Ying Lin, Zhong Li. Influence of Microwave Irradiation on the Structural Properties of Carbon‐Supported Hollow Copper Nanoparticles and Their Effect on the Synthesis of Dimethyl Carbonate. ChemCatChem 2016, 8 (4) , 861-871. https://doi.org/10.1002/cctc.201501182
    77. Pierrick Gaudin, Sophie Dorge, Habiba Nouali, Matthieu Vierling, Emmanuel Fiani, Michel Molière, Jean-François Brilhac, Joël Patarin. CuO/SBA-15 materials synthesized by solid state grinding: Influence of CuO dispersion and multicycle operation on DeSO performances. Applied Catalysis B: Environmental 2016, 181 , 379-388. https://doi.org/10.1016/j.apcatb.2015.08.011
    78. Weiwei Yang, Huimin Liu, Yuming Li, Hao Wu, Dehua He. CO2 reforming of methane to syngas over highly-stable Ni/SBA-15 catalysts prepared by P123-assisted method. International Journal of Hydrogen Energy 2016, 41 (3) , 1513-1523. https://doi.org/10.1016/j.ijhydene.2015.11.044
    79. Xiaohui Sun, Sina Sartipi, Freek Kapteijn, Jorge Gascon. Effect of pretreatment atmosphere on the activity and selectivity of Co/mesoHZSM-5 for Fischer–Tropsch synthesis. New Journal of Chemistry 2016, 40 (5) , 4167-4177. https://doi.org/10.1039/C5NJ02462E
    80. Xiaoning Hou, Shaojun Qing, Yajie Liu, Hongjuan Xi, Tianfu Wang, Xiang Wang, Zhixian Gao. Reshaping CuO on silica to generate a highly active Cu/SiO 2 catalyst. Catalysis Science & Technology 2016, 6 (16) , 6311-6319. https://doi.org/10.1039/C6CY00770H
    81. Stuart Soled. Silica-supported catalysts get a new breath of life. Science 2015, 350 (6265) , 1171-1172. https://doi.org/10.1126/science.aad2204
    82. Guoqiang Zhang, Zhong Li, Huayan Zheng, Tingjun Fu, Yubo Ju, Yuchun Wang. Influence of the surface oxygenated groups of activated carbon on preparation of a nano Cu/AC catalyst and heterogeneous catalysis in the oxidative carbonylation of methanol. Applied Catalysis B: Environmental 2015, 179 , 95-105. https://doi.org/10.1016/j.apcatb.2015.05.001
    83. Baitao Li, Xin Luo, Yanrun Zhu, Xiujun Wang. Immobilization of Cu(II) in KIT-6 supported Co3O4 and catalytic performance for epoxidation of styrene. Applied Surface Science 2015, 359 , 609-620. https://doi.org/10.1016/j.apsusc.2015.10.131
    84. Maria Girleanu, Susana Lopes Silva, Dris Ihiawakrim, Alexandra Chaumonnot, Audrey Bonduelle-Skrzypczak, Fréderic Lefebvre, Véronique Dufaud, Anne-Sophie Gay, Ovidiu Ersen. HAADF-STEM high-resolution study of nanometric MoS2 inside mesoporous SBA-15. Microporous and Mesoporous Materials 2015, 217 , 190-195. https://doi.org/10.1016/j.micromeso.2015.06.021
    85. Liuye Mo, Eng Toon Saw, Yonghua Du, Armando Borgna, Ming Li Ang, Yasotha Kathiraser, Ziwei Li, Warintorn Thitsartarn, Ming Lin, Sibudjing Kawi. Highly dispersed supported metal catalysts prepared via in-situ self-assembled core-shell precursor route. International Journal of Hydrogen Energy 2015, 40 (39) , 13388-13398. https://doi.org/10.1016/j.ijhydene.2015.07.105
    86. Cedric J. Gommes, Gonzalo Prieto, Jovana Zecevic, Maja Vanhalle, Bart Goderis, Krijn P. de Jong, Petra E. de Jongh. Mesoscale Characterization of Nanoparticles Distribution Using X‐ray Scattering. Angewandte Chemie 2015, 127 (40) , 11970-11974. https://doi.org/10.1002/ange.201505359
    87. Cedric J. Gommes, Gonzalo Prieto, Jovana Zecevic, Maja Vanhalle, Bart Goderis, Krijn P. de Jong, Petra E. de Jongh. Mesoscale Characterization of Nanoparticles Distribution Using X‐ray Scattering. Angewandte Chemie International Edition 2015, 54 (40) , 11804-11808. https://doi.org/10.1002/anie.201505359
    88. Brindusa Dragoi, Adrian Ungureanu, Alexandru Chirieac, Carmen Ciotonea, Constantin Rudolf, Sebastien Royer, Emil Dumitriu. Structural and catalytic properties of mono- and bimetallic nickel–copper nanoparticles derived from MgNi(Cu)Al-LDHs under reductive conditions. Applied Catalysis A: General 2015, 504 , 92-102. https://doi.org/10.1016/j.apcata.2014.11.016
    89. Dennis Großmann, Axel Dreier, Christian W. Lehmann, Wolfgang Grünert. Encapsulation of copper and zinc oxide nanoparticles inside small diameter carbon nanotubes. Microporous and Mesoporous Materials 2015, 202 , 189-197. https://doi.org/10.1016/j.micromeso.2014.09.057
    90. Constantin Rudolf, Fatima Abi-Ghaida, Brindusa Dragoi, Adrian Ungureanu, Ahmad Mehdi, Emil Dumitriu. An efficient route to prepare highly dispersed metallic copper nanoparticles on ordered mesoporous silica with outstanding activity for hydrogenation reactions. Catalysis Science & Technology 2015, 5 (7) , 3735-3745. https://doi.org/10.1039/C5CY00428D
    91. Senem Yetgin, Devrim Balkose. Calf thymus DNA characterization and its adsorption on different silica surfaces. RSC Adv. 2015, 5 (71) , 57950-57959. https://doi.org/10.1039/C5RA01810B
    92. Pierrick Gaudin, Sophie Dorge, Habiba Nouali, Joël Patarin, Jean-François Brilhac, Emmanuel Fiani, Matthieu Vierling, Michel Molière. Synthesis of CuO/SBA-15 adsorbents for SOx removal applications, using different impregnation methods. Comptes Rendus. Chimie 2015, 18 (10) , 1013-1029. https://doi.org/10.1016/j.crci.2015.07.002
    93. Chun-Hsia Liu, Nien-Chu Lai, Jyh-Fu Lee, Ching-Shiun Chen, Chia-Min Yang. SBA-15-supported highly dispersed copper catalysts: Vacuum–thermal preparation and catalytic studies in propylene partial oxidation to acrolein. Journal of Catalysis 2014, 316 , 231-239. https://doi.org/10.1016/j.jcat.2014.05.013
    94. L. F. Jô, R. Marcus, O. Marcelin. Nitric acid recycling and copper nitrate recovery from effluent. Environmental Science and Pollution Research 2014, 21 (11) , 6975-6981. https://doi.org/10.1007/s11356-014-2724-z
    95. Nezar H. Khdary, Mohamed A. Ghanem, Mohamed G. Merajuddine, Fahad M. Bin Manie. Incorporation of Cu, Fe, Ag, and Au nanoparticles in mercapto-silica (MOS) and their CO2 adsorption capacities. Journal of CO2 Utilization 2014, 5 , 17-23. https://doi.org/10.1016/j.jcou.2013.11.003
    96. E.S. Vasiliadou, T.M. Eggenhuisen, P. Munnik, P.E. de Jongh, K.P. de Jong, A.A. Lemonidou. Synthesis and performance of highly dispersed Cu/SiO2 catalysts for the hydrogenolysis of glycerol. Applied Catalysis B: Environmental 2014, 145 , 108-119. https://doi.org/10.1016/j.apcatb.2012.12.044
    97. Qiongxiao Wu, Winnie L. Eriksen, Linus D. L. Duchstein, Jakob M. Christensen, Christian D. Damsgaard, Jakob B. Wagner, Burcin Temel, Jan-Dierk Grunwaldt, Anker D. Jensen. Influence of preparation method on supported Cu–Ni alloys and their catalytic properties in high pressure CO hydrogenation. Catal. Sci. Technol. 2014, 4 (2) , 378-386. https://doi.org/10.1039/C3CY00546A
    98. Liuye Mo, Sibudjing Kawi. An in situ self-assembled core–shell precursor route to prepare ultrasmall copper nanoparticles on silica catalysts. Journal of Materials Chemistry A 2014, 2 (21) , 7837. https://doi.org/10.1039/c3ta14592a
    99. Andrew M. Beale, Jan Philipp Hofmann, Meenakshisundaram Sankar, Evelien M. Schrojenstein Lantman, Bert M. Weckhuysen. Recent Trends in Operando and In Situ Characterization: Techniques for Rational Design of Catalysts. 2013, 365-411. https://doi.org/10.1002/9783527658985.ch12
    100. Hirsa M. Torres Galvis, Ard C.J. Koeken, Johannes H. Bitter, Thomas Davidian, Matthijs Ruitenbeek, A. Iulian Dugulan, Krijn P. de Jong. Effect of precursor on the catalytic performance of supported iron catalysts for the Fischer–Tropsch synthesis of lower olefins. Catalysis Today 2013, 215 , 95-102. https://doi.org/10.1016/j.cattod.2013.03.018
    Load all citations

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2011, 115, 30, 14698–14706
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp111778g
    Published July 12, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    3006

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.