ACS Publications. Most Trusted. Most Cited. Most Read
Computational Design and Selection of Optimal Organic Photovoltaic Materials
My Activity

Figure 1Loading Img
    Article

    Computational Design and Selection of Optimal Organic Photovoltaic Materials
    Click to copy article linkArticle link copied!

    View Author Information
    Analytical and Biological Chemistry Research Facility, University College Cork, Western Road, Cork, Ireland
    Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2011, 115, 32, 16200–16210
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp202765c
    Published July 6, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Conjugated organic polymers are key building blocks of low-cost photovoltaic materials. We have examined over 90 000 copolymers using computational predictions to solve the “inverse design” of molecular structures with optimum properties for highly efficient solar cells (specifically matching optical excitation energies and excited-state energies). Our approach, which uses a genetic algorithm to search the space of synthetically accessible copolymers of six or eight monomer units, yields hundreds of candidate copolymers with predicted efficiencies over 8% (the current experimental record), including many predicted to be over 10% efficient. We discuss trends in polymer sequences and motifs found in the most frequent monomers and dimers in these highly efficient targets and derive design rules for the selection of appropriate donor and acceptor molecules. We show how additional computationally intensive filtering steps can be used, for example, to eliminate targets likely to have poor hole mobilities. Our method effectively targets optimum electronic structure and optical properties far more efficiently than time-consuming serial experiments or computational studies and can be applied to similar problems in other areas of materials science.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Complete text of ref 48, table of monomer structures, full details of the genetic algorithm implementation, figures and data for calibration of PM6/ZINDO excitation energies and ionization potentials with experiment, and tables of top tetramers, hexamers, and octamers. Details can be found at http://hutchison.chem.pitt.edu/. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 150 publications.

    1. Tanzeela Noor, Muhammad Waqas, Mohamed Shaban, Shanza Hameed, Ateeq-ur-Rehman, Samia Ben Ahmed, H. A. Alrafai, Sameerah I. Al-Saeedi, Mahmoud A. A. Ibrahim, N. M. A. Hadia, Rasheed Ahmad Khera, Abeer A. Hassan. Designing Thieno[3,4-c]pyrrole-4,6-dione Core-Based, A2–D–A1–D–A2-Type Acceptor Molecules for Promising Photovoltaic Parameters in Organic Photovoltaic Cells. ACS Omega 2024, 9 (6) , 6403-6422. https://doi.org/10.1021/acsomega.3c04970
    2. Surya Prakash Tiwari, Wei Shi, Samir Budhathoki, James Baker, Ali K. Sekizkardes, Lingxiang Zhu, Victor A. Kusuma, David P. Hopkinson, Janice A. Steckel. Creation of Polymer Datasets with Targeted Backbones for Screening of High-Performance Membranes for Gas Separation. Journal of Chemical Information and Modeling 2024, 64 (3) , 638-652. https://doi.org/10.1021/acs.jcim.3c01232
    3. Brianna L. Greenstein, Geoffrey R. Hutchison. Screening Efficient Tandem Organic Solar Cells with Machine Learning and Genetic Algorithms. The Journal of Physical Chemistry C 2023, 127 (13) , 6179-6191. https://doi.org/10.1021/acs.jpcc.3c00267
    4. Omri D. Abarbanel, Julisa Rozon, Geoffrey R. Hutchison. Strategies for Computer-Aided Discovery of Novel Open-Shell Polymers. The Journal of Physical Chemistry Letters 2022, 13 (9) , 2158-2164. https://doi.org/10.1021/acs.jpclett.2c00509
    5. Chencheng Fan, Mohammad Molayem, Michael Springborg, Moritz Kick, Yaqing Feng. Role of the Backbone when Optimizing Functional Groups─A Theoretical Study Based on an Improved Inverse-Design Approach. The Journal of Physical Chemistry A 2022, 126 (7) , 1289-1299. https://doi.org/10.1021/acs.jpca.1c10437
    6. Yuta Miyake, Akinori Saeki. Machine Learning-Assisted Development of Organic Solar Cell Materials: Issues, Analyses, and Outlooks. The Journal of Physical Chemistry Letters 2021, 12 (51) , 12391-12401. https://doi.org/10.1021/acs.jpclett.1c03526
    7. Urwah Azeem, Rasheed Ahmad Khera, Ayesha Naveed, Muhammad Imran, Mohammed A. Assiri, Muhammad Khalid, Javed Iqbal. Tuning of a A–A–D–A–A-Type Small Molecule with Benzodithiophene as a Central Core with Efficient Photovoltaic Properties for Organic Solar Cells. ACS Omega 2021, 6 (43) , 28923-28935. https://doi.org/10.1021/acsomega.1c03975
    8. Matthew K. Matlock, Max Hoffman, Na Le Dang, Dakota L. Folmsbee, Luke A. Langkamp, Geoffrey R. Hutchison, Neeraj Kumar, Kathryn Sarullo, S. Joshua Swamidass. Deep Learning Coordinate-Free Quantum Chemistry. The Journal of Physical Chemistry A 2021, 125 (40) , 8978-8986. https://doi.org/10.1021/acs.jpca.1c04462
    9. Julia Westermayr, Philipp Marquetand. Machine Learning for Electronically Excited States of Molecules. Chemical Reviews 2021, 121 (16) , 9873-9926. https://doi.org/10.1021/acs.chemrev.0c00749
    10. Hehuan Ma, Weizhi An, Yuhong Wang, Hongmao Sun, Ruili Huang, Junzhou Huang. Deep Graph Learning with Property Augmentation for Predicting Drug-Induced Liver Injury. Chemical Research in Toxicology 2021, 34 (2) , 495-506. https://doi.org/10.1021/acs.chemrestox.0c00322
    11. Muhammet E. Köse. Theoretical Estimation of Donor Strength of Common Conjugated Units for Organic Electronics. The Journal of Physical Chemistry A 2019, 123 (26) , 5566-5573. https://doi.org/10.1021/acs.jpca.9b03604
    12. Jessica G. Freeze, H. Ray Kelly, Victor S. Batista. Search for Catalysts by Inverse Design: Artificial Intelligence, Mountain Climbers, and Alchemists. Chemical Reviews 2019, 119 (11) , 6595-6612. https://doi.org/10.1021/acs.chemrev.8b00759
    13. Liam Wilbraham, Enrico Berardo, Lukas Turcani, Kim E. Jelfs, Martijn A. Zwijnenburg. High-Throughput Screening Approach for the Optoelectronic Properties of Conjugated Polymers. Journal of Chemical Information and Modeling 2018, 58 (12) , 2450-2459. https://doi.org/10.1021/acs.jcim.8b00256
    14. Haichen Li, Christopher Collins, Matteus Tanha, Geoffrey J. Gordon, David J. Yaron. A Density Functional Tight Binding Layer for Deep Learning of Chemical Hamiltonians. Journal of Chemical Theory and Computation 2018, 14 (11) , 5764-5776. https://doi.org/10.1021/acs.jctc.8b00873
    15. Farren Curtis, Xiayue Li, Timothy Rose, Álvaro Vázquez-Mayagoitia, Saswata Bhattacharya, Luca M. Ghiringhelli, Noa Marom. GAtor: A First-Principles Genetic Algorithm for Molecular Crystal Structure Prediction. Journal of Chemical Theory and Computation 2018, 14 (4) , 2246-2264. https://doi.org/10.1021/acs.jctc.7b01152
    16. Rafael Gómez-Bombarelli, Jennifer N. Wei, David Duvenaud, José Miguel Hernández-Lobato, Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D. Hirzel, Ryan P. Adams, and Alán Aspuru-Guzik . Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules. ACS Central Science 2018, 4 (2) , 268-276. https://doi.org/10.1021/acscentsci.7b00572
    17. Yutaka Imamura, Motomichi Tashiro, Michio Katouda, and Masahiko Hada . Automatic High-Throughput Screening Scheme for Organic Photovoltaics: Estimating the Orbital Energies of Polymers from Oligomers and Evaluating the Photovoltaic Characteristics. The Journal of Physical Chemistry C 2017, 121 (51) , 28275-28286. https://doi.org/10.1021/acs.jpcc.7b08446
    18. Adrian Thierbach, Christian Neiss, Lukas Gallandi, Noa Marom, Thomas Körzdörfer, and Andreas Görling . Accurate Valence Ionization Energies from Kohn–Sham Eigenvalues with the Help of Potential Adjustors. Journal of Chemical Theory and Computation 2017, 13 (10) , 4726-4740. https://doi.org/10.1021/acs.jctc.7b00490
    19. Jefferson S. Martins, Aloisio A. Bartolomeu, Willian Henrique dos Santos, Luiz Carlos da Silva Filho, Eliezer Fernando de Oliveira, Francisco Carlos Lavarda, Alexandre Cuin, Cristiano Legnani, Indhira O. Maciel, Benjamin Fragneaud, and Welber G. Quirino . New Class of Organic Hole-Transporting Materials Based on Xanthene Derivatives for Organic Electronic Applications. The Journal of Physical Chemistry C 2017, 121 (24) , 12999-13007. https://doi.org/10.1021/acs.jpcc.7b02034
    20. Florbela Pereira, Kaixia Xiao, Diogo A. R. S. Latino, Chengcheng Wu, Qingyou Zhang, and Joao Aires-de-Sousa . Machine Learning Methods to Predict Density Functional Theory B3LYP Energies of HOMO and LUMO Orbitals. Journal of Chemical Information and Modeling 2017, 57 (1) , 11-21. https://doi.org/10.1021/acs.jcim.6b00340
    21. Shaopeng Zhang, Nicole E. Bauer, Ilana Y. Kanal, Wei You, Geoffrey R. Hutchison, and Tara Y. Meyer . Sequence Effects in Donor–Acceptor Oligomeric Semiconductors Comprising Benzothiadiazole and Phenylenevinylene Monomers. Macromolecules 2017, 50 (1) , 151-161. https://doi.org/10.1021/acs.macromol.6b02215
    22. Takatoshi Fujita, Sule Atahan-Evrenk, Nicolas P. D. Sawaya, and Alán Aspuru-Guzik . Coherent Dynamics of Mixed Frenkel and Charge-Transfer Excitons in Dinaphtho[2,3-b:2′3′-f]thieno[3,2-b]-thiophene Thin Films: The Importance of Hole Delocalization. The Journal of Physical Chemistry Letters 2016, 7 (7) , 1374-1380. https://doi.org/10.1021/acs.jpclett.6b00364
    23. Joseph W. Knight, Xiaopeng Wang, Lukas Gallandi, Olga Dolgounitcheva, Xinguo Ren, J. Vincent Ortiz, Patrick Rinke, Thomas Körzdörfer, and Noa Marom . Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules III: A Benchmark of GW Methods. Journal of Chemical Theory and Computation 2016, 12 (2) , 615-626. https://doi.org/10.1021/acs.jctc.5b00871
    24. Angela M. Bischof, Shaopeng Zhang, Tara Y. Meyer, and Benjamin J. Lear . Quantitative Assessment of the Connection between Steric Hindrance and Electronic Coupling in 2,5-Bis(alkoxy)benzene-Based Mixed-Valence Dimers. The Journal of Physical Chemistry C 2014, 118 (24) , 12693-12699. https://doi.org/10.1021/jp504887s
    25. Xiaofeng Liu, Yanming Sun, Ben B. Y. Hsu, Andreas Lorbach, Li Qi, Alan J. Heeger, and Guillermo C. Bazan . Design and Properties of Intermediate-Sized Narrow Band-Gap Conjugated Molecules Relevant to Solution-Processed Organic Solar Cells. Journal of the American Chemical Society 2014, 136 (15) , 5697-5708. https://doi.org/10.1021/ja413144u
    26. Racquel C. Jemison Richard D. McCullough . Techniques for the Molecular Design of Push-Pull Polymers towards Enhanced Organic Photovoltaic Performance. 2014, 71-109. https://doi.org/10.1021/bk-2014-1161.ch004
    27. Ilana Y. Kanal Jonathon S. Bechtel Geoffrey R. Hutchison . Sequence Matters: Determining the Sequence Effect of Electronic Structure Properties in π-Conjugated Polymers. 2014, 379-393. https://doi.org/10.1021/bk-2014-1170.ch025
    28. Richard Luis Martin and Maciej Haranczyk . Optimization-Based Design of Metal–Organic Framework Materials. Journal of Chemical Theory and Computation 2013, 9 (6) , 2816-2825. https://doi.org/10.1021/ct400255c
    29. Ilana Y. Kanal, Steven G. Owens, Jonathon S. Bechtel, and Geoffrey R. Hutchison . Efficient Computational Screening of Organic Polymer Photovoltaics. The Journal of Physical Chemistry Letters 2013, 4 (10) , 1613-1623. https://doi.org/10.1021/jz400215j
    30. Nicolas Bérubé, Vincent Gosselin, Josiane Gaudreau, and Michel Côté . Designing Polymers for Photovoltaic Applications Using ab Initio Calculations. The Journal of Physical Chemistry C 2013, 117 (16) , 7964-7972. https://doi.org/10.1021/jp309800f
    31. Benjamin N. Norris, Shaopeng Zhang, Casey M. Campbell, Jeffrey T. Auletta, Percy Calvo-Marzal, Geoffrey R. Hutchison, and Tara Y. Meyer . Sequence Matters: Modulating Electronic and Optical Properties of Conjugated Oligomers via Tailored Sequence. Macromolecules 2013, 46 (4) , 1384-1392. https://doi.org/10.1021/ma400123r
    32. Xin Wang , Kai-Chung Lau . Theoretical Investigations on Charge-Transfer Properties of Novel High Mobility n-Channel Organic Semiconductors – Diazapentacene Derivatives. The Journal of Physical Chemistry C 2012, 116 (43) , 22749-22758. https://doi.org/10.1021/jp309226z
    33. Andrei Kazakov, Mark O. McLinden, and Michael Frenkel . Computational Design of New Refrigerant Fluids Based on Environmental, Safety, and Thermodynamic Characteristics. Industrial & Engineering Chemistry Research 2012, 51 (38) , 12537-12548. https://doi.org/10.1021/ie3016126
    34. Laxman Pandey, Chad Risko, Joseph E. Norton, and Jean-Luc Brédas . Donor–Acceptor Copolymers of Relevance for Organic Photovoltaics: A Theoretical Investigation of the Impact of Chemical Structure Modifications on the Electronic and Optical Properties. Macromolecules 2012, 45 (16) , 6405-6414. https://doi.org/10.1021/ma301164e
    35. Silvio Osella, Akimitsu Narita, Matthias Georg Schwab, Yenny Hernandez, Xinliang Feng, Klaus Müllen, and David Beljonne . Graphene Nanoribbons as Low Band Gap Donor Materials for Organic Photovoltaics: Quantum Chemical Aided Design. ACS Nano 2012, 6 (6) , 5539-5548. https://doi.org/10.1021/nn301478c
    36. Saeedeh Kamalinahad, Esmail Vessally, Motahareh Noormohammadbeigi. Improving the efficiency of organic solar cells using non-fullerene acceptor for molecular engineering of IDT-based chromophores. Journal of Photochemistry and Photobiology A: Chemistry 2025, 462 , 116185. https://doi.org/10.1016/j.jphotochem.2024.116185
    37. Xia Wu, Xiaoyu Xie, Alessandro Troisi. Calibration of several first excited state properties for organic molecules through systematic comparison of TDDFT with experimental spectra. Journal of Materials Chemistry C 2024, 12 (46) , 18886-18892. https://doi.org/10.1039/D4TC03511A
    38. Yang Jiang, Chuang Yao, Yezi Yang, Jinshan Wang. Machine Learning Approaches for Predicting Power Conversion Efficiency in Organic Solar Cells: A Comprehensive Review. Solar RRL 2024, 8 (22) https://doi.org/10.1002/solr.202400567
    39. Cheng Ma, Lijing Gong, Wanfeng Lin, Jinkai Lv, Huan Guo. Modulating the nonlinear optical properties of TIDC-Cl by varying the terminal units. New Journal of Chemistry 2024, 48 (39) , 17337-17349. https://doi.org/10.1039/D4NJ03433C
    40. Chengxiang Liu, Lijing Gong, Binzhuo Gong. Theoretical investigation of the electronic and second-order non-linear optical properties of [n]helicene derivatives. Computational and Theoretical Chemistry 2024, 1238 , 114699. https://doi.org/10.1016/j.comptc.2024.114699
    41. Tao Liu, Linjiang Chen, Xiaoyan Wang, Andrew I. Cooper. Screening potential dye sensitizers for water splitting photocatalysts using a genetic algorithm. Physical Chemistry Chemical Physics 2024, 26 (23) , 16847-16858. https://doi.org/10.1039/D4CP01487A
    42. Rimsha Ijaz, Muhammad Waqas, Ahmed Mahal, Manel Essid, Imen Zghab, Rasheed Ahmad Khera, Hadil Faris Alotaibi, Maysoon Al-Haideri, Ali S. Alshomrany, Saba Zahid, Naifa S. Alatawi, Zouhaier Aloui. Tuning the optoelectronic properties of selenophene-diketopyrrolopyrrole-based non-fullerene acceptor to obtain efficient organic solar cells through end-capped modification. Journal of Molecular Graphics and Modelling 2024, 129 , 108745. https://doi.org/10.1016/j.jmgm.2024.108745
    43. Philipp Marquetand. Photodynamics With Neural Networks and Kernel Ridge Regression. 2024, 413-426. https://doi.org/10.1016/B978-0-12-821978-2.00071-4
    44. Hira Zubair, Muhamed Salim Akhter, Muhammad Waqas, Mariam Ishtiaq, Ijaz Ahmed Bhatti, Javed Iqbal, Ahmed M. Skawky, Rasheed Ahmad Khera. A computational insight into enhancement of photovoltaic properties of non-fullerene acceptors by end-group modulations in the structural framework of INPIC molecule. Journal of Molecular Graphics and Modelling 2024, 126 , 108664. https://doi.org/10.1016/j.jmgm.2023.108664
    45. Brianna L. Greenstein, Danielle C. Elsey, Geoffrey R. Hutchison. Determining best practices for using genetic algorithms in molecular discovery. The Journal of Chemical Physics 2023, 159 (9) https://doi.org/10.1063/5.0158053
    46. Zih‐Yu Lin, Jiaonan Sun, Stephen B. Shiring, Letian Dou, Brett M. Savoie. Design Rules for Two‐Dimensional Organic Semiconductor‐Incorporated Perovskites (OSiP) Gleaned from Thousands of Simulated Structures**. Angewandte Chemie 2023, 135 (33) https://doi.org/10.1002/ange.202305298
    47. Zih‐Yu Lin, Jiaonan Sun, Stephen B. Shiring, Letian Dou, Brett M. Savoie. Design Rules for Two‐Dimensional Organic Semiconductor‐Incorporated Perovskites (OSiP) Gleaned from Thousands of Simulated Structures**. Angewandte Chemie International Edition 2023, 62 (33) https://doi.org/10.1002/anie.202305298
    48. Zanib ul Ghazali, Humna Zahid, Alvina Rasool, Abraham Elmushyakhi, Ahmed M. Shawky, Muhammad Ans, Javed Iqbal. Role of end-capped acceptor moieties on optoelectronic properties of small molecules featuring B–N covalent bond-based organic solar cells. Journal of Computational Electronics 2023, 22 (3) , 874-886. https://doi.org/10.1007/s10825-023-02026-8
    49. Cheng Ma, Lijing Gong, Xiangyu Zhang, Hongmei Liu. Investigation of linear and second-order nonlinear optical properties of donor-acceptor interaction derivatives based on acceptor DCPPr core. Journal of Molecular Structure 2023, 1282 , 135203. https://doi.org/10.1016/j.molstruc.2023.135203
    50. Yunchao Xie, Kianoosh Sattari, Chi Zhang, Jian Lin. Toward autonomous laboratories: Convergence of artificial intelligence and experimental automation. Progress in Materials Science 2023, 132 , 101043. https://doi.org/10.1016/j.pmatsci.2022.101043
    51. Cheng Ma, Lijing Gong, Jinkai Lv, Li Wang, Bo Jiang. Theoretical study on photophysical properties of twisted D-A interaction TPA-BSM derivatives. Journal of Photochemistry and Photobiology A: Chemistry 2022, 433 , 114191. https://doi.org/10.1016/j.jphotochem.2022.114191
    52. Muhammad Waqas, N.M.A. Hadia, M.M. Hessien, Javed Iqbal, Gaber A.M. Mersal, Shanza Hameed, Ahmed M. Shawky, Zouhaier Aloui, Mahmoud A.A. Ibrahim, Rasheed Ahmad Khera. End-group modification of terminal acceptors on benzothiadiazole-based BT2F-IC4F molecule to establish efficient organic solar cells. Journal of Molecular Liquids 2022, 368 , 120770. https://doi.org/10.1016/j.molliq.2022.120770
    53. Muhammad Waqas, Javed Iqbal, Rana Farhat Mehmood, Sahar Javaid Akram, Ahmed M. Shawky, Muhammad Raheel, Ehsan Ullah Rashid, Rasheed Ahmad Khera. Impact of end-capped modification of MO-IDT based non-fullerene small molecule acceptors to improve the photovoltaic properties of organic solar cells. Journal of Molecular Graphics and Modelling 2022, 116 , 108255. https://doi.org/10.1016/j.jmgm.2022.108255
    54. Freja E. Storm, Linnea M. Folkmann, Thorsten Hansen, Kurt V. Mikkelsen. Machine learning the frontier orbital energies of SubPc based triads. Journal of Molecular Modeling 2022, 28 (10) https://doi.org/10.1007/s00894-022-05262-0
    55. Malik Muhammad Asif Iqbal, Muhammad Yasir Mehboob, Talha Hassan, Muhammad Shahzeb Khan, Muhammad Arshad. High electron mobility due to extra π-conjugation in the end-capped units of non-fullerene acceptor molecules: a DFT/TD-DFT-based prediction. Journal of Molecular Modeling 2022, 28 (9) https://doi.org/10.1007/s00894-022-05283-9
    56. Bernd Hartke. Non‐Deterministic Global Structure Optimization: An Introductory Tutorial. 2022, 1-43. https://doi.org/10.1002/9781119625933.ch1
    57. Lijing Gong, Jing Xu, Chunping Li, Xiangyu Zhang, Zhi Jiang. Linear and second‐order nonlinear optical properties of non‐fullerene acceptor derivatives with A–D–A structure. International Journal of Quantum Chemistry 2022, 122 (6) https://doi.org/10.1002/qua.26861
    58. Atanas Patronov, Kostas Papadopoulos, Ola Engkvist. Has Artificial Intelligence Impacted Drug Discovery?. 2022, 153-176. https://doi.org/10.1007/978-1-0716-1787-8_6
    59. Giovanni Cincilla, Simone Masoni, Jascha Blobel. Individual and collective human intelligence in drug design: evaluating the search strategy. Journal of Cheminformatics 2021, 13 (1) https://doi.org/10.1186/s13321-021-00556-6
    60. Rajendra P. Joshi, Neeraj Kumar. Artificial Intelligence for Autonomous Molecular Design: A Perspective. Molecules 2021, 26 (22) , 6761. https://doi.org/10.3390/molecules26226761
    61. Ömer H. Omar, Marcos del Cueto, Tahereh Nematiaram, Alessandro Troisi. High-throughput virtual screening for organic electronics: a comparative study of alternative strategies. Journal of Materials Chemistry C 2021, 9 (39) , 13557-13583. https://doi.org/10.1039/D1TC03256A
    62. Yu Liu, Cole Mathis, Michał Dariusz Bajczyk, Stuart M. Marshall, Liam Wilbraham, Leroy Cronin. Exploring and mapping chemical space with molecular assembly trees. Science Advances 2021, 7 (39) https://doi.org/10.1126/sciadv.abj2465
    63. Jie Feng, Hongshuai Wang, Yujin Ji, Youyong Li. Molecular design and performance improvement in organic solar cells guided by high‐throughput screening and machine learning. Nano Select 2021, 2 (9) , 1629-1641. https://doi.org/10.1002/nano.202100006
    64. Lukas Turcani, Andrew Tarzia, Filip T. Szczypiński, Kim E. Jelfs. stk : An extendable Python framework for automated molecular and supramolecular structure assembly and discovery. The Journal of Chemical Physics 2021, 154 (21) https://doi.org/10.1063/5.0049708
    65. Kakaraparthi Kranthiraja, Akinori Saeki. Experiment‐Oriented Machine Learning of Polymer:Non‐Fullerene Organic Solar Cells. Advanced Functional Materials 2021, 31 (23) https://doi.org/10.1002/adfm.202011168
    66. Adrian L. Dempwolff, Alexandra M. Belogolova, Alexander B. Trofimov, Andreas Dreuw. Intermediate state representation approach to physical properties of molecular electron-attached states: Theory, implementation, and benchmarking. The Journal of Chemical Physics 2021, 154 (10) https://doi.org/10.1063/5.0043337
    67. Shulin Luo, Tianshu Li, Xinjiang Wang, Muhammad Faizan, Lijun Zhang. High‐throughput computational materials screening and discovery of optoelectronic semiconductors. WIREs Computational Molecular Science 2021, 11 (1) https://doi.org/10.1002/wcms.1489
    68. Hehuan Ma, Chaochao Yan, Yuzhi Guo, Sheng Wang, Yuhong Wang, Hongmao Sun, Junzhou Huang. Improving Molecular Property Prediction on Limited Data with Deep Multi-Label Learning. 2020, 2779-2784. https://doi.org/10.1109/BIBM49941.2020.9313553
    69. Connor W. Coley, Natalie S. Eyke, Klavs F. Jensen. Autonome Entdeckung in den chemischen Wissenschaften, Teil I: Fortschritt. Angewandte Chemie 2020, 132 (51) , 23054-23091. https://doi.org/10.1002/ange.201909987
    70. Connor W. Coley, Natalie S. Eyke, Klavs F. Jensen. Autonomous Discovery in the Chemical Sciences Part I: Progress. Angewandte Chemie International Edition 2020, 59 (51) , 22858-22893. https://doi.org/10.1002/anie.201909987
    71. Michele Turelli, Domenico Alberga, Gianluca Lattanzi, Ilaria Ciofini, Carlo Adamo. Theoretical insights on acceptor–donor dyads for organic photovoltaics. Physical Chemistry Chemical Physics 2020, 22 (46) , 27413-27424. https://doi.org/10.1039/D0CP03038D
    72. Liam Wilbraham, Denisa Smajli, Isabelle Heath-Apostolopoulos, Martijn A. Zwijnenburg. Mapping the optoelectronic property space of small aromatic molecules. Communications Chemistry 2020, 3 (1) https://doi.org/10.1038/s42004-020-0256-7
    73. Julia Westermayr, Philipp Marquetand. Machine learning and excited-state molecular dynamics. Machine Learning: Science and Technology 2020, 1 (4) , 043001. https://doi.org/10.1088/2632-2153/ab9c3e
    74. Mario Krenn, Manuel Erhard, Anton Zeilinger. Computer-inspired quantum experiments. Nature Reviews Physics 2020, 2 (11) , 649-661. https://doi.org/10.1038/s42254-020-0230-4
    75. Ömer H. Omar, Daniele Padula, Alessandro Troisi. Elucidating the Relationship between Multiradical Character and Predicted Singlet Fission Activity. ChemPhotoChem 2020, 4 (10) , 5223-5229. https://doi.org/10.1002/cptc.202000098
    76. Steven Bennett, Andrew Tarzia, Martijn A. Zwijnenburg, Kim E. Jelfs. Artificial Intelligence Applied to the Prediction of Organic Materials. 2020, 280-310. https://doi.org/10.1039/9781839160233-00280
    77. Aamir AA Rahim, S Nurmaya Musa, S Ramesh, Ming K Lim. A systematic review on material selection methods. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 2020, 234 (7) , 1032-1059. https://doi.org/10.1177/1464420720916765
    78. Fan Li, Xiaoqi Peng, Zuo Wang, Yi Zhou, Yuxia Wu, Minlin Jiang, Min Xu. Machine Learning (ML)‐Assisted Design and Fabrication for Solar Cells. ENERGY & ENVIRONMENTAL MATERIALS 2019, 2 (4) , 280-291. https://doi.org/10.1002/eem2.12049
    79. Naruki Yoshikawa, Geoffrey R. Hutchison. Fast, efficient fragment-based coordinate generation for Open Babel. Journal of Cheminformatics 2019, 11 (1) https://doi.org/10.1186/s13321-019-0372-5
    80. Daniele Padula, Alessandro Troisi. Concurrent Optimization of Organic Donor–Acceptor Pairs through Machine Learning. Advanced Energy Materials 2019, 9 (40) https://doi.org/10.1002/aenm.201902463
    81. Collin F. Perkinson, Daniel P. Tabor, Markus Einzinger, Dennis Sheberla, Hendrik Utzat, Ting-An Lin, Daniel N. Congreve, Moungi G. Bawendi, Alán Aspuru-Guzik, Marc A. Baldo. Discovery of blue singlet exciton fission molecules via a high-throughput virtual screening and experimental approach. The Journal of Chemical Physics 2019, 151 (12) https://doi.org/10.1063/1.5114789
    82. Sheng Wang, Yuzhi Guo, Yuhong Wang, Hongmao Sun, Junzhou Huang. SMILES-BERT. 2019, 429-436. https://doi.org/10.1145/3307339.3342186
    83. Isabelle Heath-Apostolopoulos, Liam Wilbraham, Martijn A. Zwijnenburg. Computational high-throughput screening of polymeric photocatalysts: exploring the effect of composition, sequence isomerism and conformational degrees of freedom. Faraday Discussions 2019, 215 , 98-110. https://doi.org/10.1039/C8FD00171E
    84. Liam Wilbraham, Reiner Sebastian Sprick, Kim E. Jelfs, Martijn A. Zwijnenburg. Mapping binary copolymer property space with neural networks. Chemical Science 2019, 10 (19) , 4973-4984. https://doi.org/10.1039/C8SC05710A
    85. Zhenchuan Wen, Xuejian Ma, Xiaoyu Yang, Pengqing Bi, Mengsi Niu, Kangning Zhang, Lin Feng, Xiaotao Hao. Effects of various donor:acceptor blend ratios on photophysical properties in non-fullerene organic bulk heterojunctions. Chinese Chemical Letters 2019, 30 (5) , 995-999. https://doi.org/10.1016/j.cclet.2019.01.028
    86. Jan H. Jensen. A graph-based genetic algorithm and generative model/Monte Carlo tree search for the exploration of chemical space. Chemical Science 2019, 10 (12) , 3567-3572. https://doi.org/10.1039/C8SC05372C
    87. Debkumar Rana, Patrice Donfack, Arnulf Materny. Effect of External Electric Field on Reorganization Energy in Poly(3-Hexylthiophene): An Investigation Based on Density Functional Theory. 2019, 369-377. https://doi.org/10.1007/978-981-15-0202-6_28
    88. Xiaoyu Zhang, Sheng Wang, Feiyun Zhu, Zheng Xu, Yuhong Wang, Junzhou Huang. Seq3seq fingerprint. ACM SIGBioinformatics Record 2018, 8 (1) , 1-10. https://doi.org/10.1145/3284959.3284960
    89. Xiaoyu Zhang, Sheng Wang, Feiyun Zhu, Zheng Xu, Yuhong Wang, Junzhou Huang. Seq3seq Fingerprint. 2018, 404-413. https://doi.org/10.1145/3233547.3233548
    90. Harikrishna Sahu, Weining Rao, Alessandro Troisi, Haibo Ma. Toward Predicting Efficiency of Organic Solar Cells via Machine Learning and Improved Descriptors. Advanced Energy Materials 2018, 8 (24) https://doi.org/10.1002/aenm.201801032
    91. Christopher R. Collins, Geoffrey J. Gordon, O. Anatole von Lilienfeld, David J. Yaron. Constant size descriptors for accurate machine learning models of molecular properties. The Journal of Chemical Physics 2018, 148 (24) https://doi.org/10.1063/1.5020441
    92. Ricardo Pablo-Pedro, Hector Lopez-Rios, Jose-L. Mendoza-Cortes, Jing Kong, Serguei Fomine, Troy Van Voorhis, Mildred S. Dresselhaus. Exploring Low Internal Reorganization Energies for Silicene Nanoclusters. Physical Review Applied 2018, 9 (5) https://doi.org/10.1103/PhysRevApplied.9.054012
    93. Sangita Baniya, Dipak Khanal, Evan Lafalce, Wei You, Z. Valy Vardeny. Optical studies of native defects in π-conjugated donor–acceptor copolymers. Journal of Applied Physics 2018, 123 (16) https://doi.org/10.1063/1.5012995
    94. Ilana Y. Kanal, John A. Keith, Geoffrey R. Hutchison. A sobering assessment of small‐molecule force field methods for low energy conformer predictions. International Journal of Quantum Chemistry 2018, 118 (5) https://doi.org/10.1002/qua.25512
    95. Sara Tortorella, Filippo De Angelis, Gabriele Cruciani. Quantitative structure‐property relationship modeling of small organic molecules for solar cells applications. Journal of Chemometrics 2018, 32 (2) https://doi.org/10.1002/cem.2957
    96. Haydar Taylan Turan, Oğuzhan Kucur, Birce Kahraman, Seyhan Salman, Viktorya Aviyente. Design of donor–acceptor copolymers for organic photovoltaic materials: a computational study. Physical Chemistry Chemical Physics 2018, 20 (5) , 3581-3591. https://doi.org/10.1039/C7CP08176F
    97. B. Christopher Rinderspacher, Jennifer M. Elward. Enriched optimization of molecular properties under constraints: an electrochromic example. Molecular Systems Design & Engineering 2018, 3 (3) , 485-495. https://doi.org/10.1039/C7ME00126F
    98. Hui Jiang, Peng Hu, Jun Ye, Keke K. Zhang, Yi Long, Wenping Hu, Christian Kloc. Tuning of the degree of charge transfer and the electronic properties in organic binary compounds by crystal engineering: a perspective. Journal of Materials Chemistry C 2018, 6 (8) , 1884-1902. https://doi.org/10.1039/C7TC04982J
    99. Rafel Israels, Astrid Maaß, Jan Hamaekers. The octet rule in chemical space: generating virtual molecules. Molecular Diversity 2017, 21 (4) , 769-778. https://doi.org/10.1007/s11030-017-9775-2
    100. Yuxi He, Yingying Huang, Juanying Li, Xue Pang, Guochun Yang. Unveiling photophysical properties of phenanthro[9,10-d]imidazole derivatives for organic light-emitting diodes. Organic Electronics 2017, 50 , 220-227. https://doi.org/10.1016/j.orgel.2017.08.002
    Load all citations

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2011, 115, 32, 16200–16210
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp202765c
    Published July 6, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    3241

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.