ACS Publications. Most Trusted. Most Cited. Most Read
Molar Extinction Coefficient of Single-Wall Carbon Nanotubes
My Activity

Figure 1Loading Img
    Article

    Molar Extinction Coefficient of Single-Wall Carbon Nanotubes
    Click to copy article linkArticle link copied!

    View Author Information
    Institute of Physical and Theoretical Chemistry, Department of Chemistry and Pharmacy, Julius-Maximilians University of Würzburg, D-97074 Würzburg, Germany
    Department of Engineering, University of Cambridge, Cambridge, CB3 OFA, U.K.
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2011, 115, 30, 14682–14686
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp205289h
    Published June 22, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The molar extinction coefficient of single-wall carbon nanotubes (SWNTs) is determined using fluorescence tagging, as well as atomic force microscopy (AFM) imaging, which facilitate the correlation of nanotube concentrations with absorption spectra. Tagging of SWNTs is achieved using fluorescence-labeled single-strand DNA oligomers as the dispersion additive, while AFM imaging is used to determine the mass of SWNTs in the retentate of vacuum-filtered colloidal SWNT suspensions. The resulting absorption cross section for the first exciton transition of (6,5) nanotubes of 1.7 × 10–17 cm2 per C-atom corresponds to an extinction coefficient of (4400 ± 1000) M–1·cm–1, which is equivalent to an oscillator strength of 0.010 per carbon atom.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Absorption spectra of DGU enriched DNA-FAM-SWNT samples; geometrical considerations for determination of the length of a SWNT segment covered by a single-strand DNA oligomer; DNA coverage; optical absorption and absorption cross section; vacuum filtration; and AFM characterization. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 133 publications.

    1. Seongjoo Hwang, In-Seung Choi, Sang-Yong Ju. Excitonic Fano Scattering Behaviors of Carbon Nanotubes from Interference with Dispersant. The Journal of Physical Chemistry Letters 2025, 16 (14) , 3438-3446. https://doi.org/10.1021/acs.jpclett.5c00319
    2. C. Alexander Schrage, Phillip Galonska, Justus T. Metternich, Sebastian Kruss. Photophysical Properties of Tandem Quantum Defects in Carbon Nanotubes. The Journal of Physical Chemistry Letters 2025, 16 (6) , 1573-1581. https://doi.org/10.1021/acs.jpclett.4c03476
    3. Chen Ma, Tanuja Kistwal, Bjoern F. Hill, Krisztian Neutsch, Sebastian Kruss. Solvatochromic Dyes Increase the Sensitivity of Nanosensors. The Journal of Physical Chemistry C 2025, 129 (3) , 1824-1830. https://doi.org/10.1021/acs.jpcc.4c07273
    4. Mei-Tsan Kuo, Nigel F. Reuel. Resolving the Kinetics of Single-Walled Carbon Nanotube–Polyester Polyurethane Nanoparticle Conjugate Fluorescence Sensors toward Polymer Degrading Enzymes. Nano Letters 2025, 25 (2) , 715-721. https://doi.org/10.1021/acs.nanolett.4c04964
    5. Yoshiaki Niidome, Hiromu Matsumoto, Ryo Hamano, Koichiro Kato, Tsuyohiko Fujigaya, Tomohiro Shiraki. Polymer Wrapping State Changes at Defect Sites of Locally Functionalized Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry C 2024, 128 (12) , 5146-5155. https://doi.org/10.1021/acs.jpcc.3c07692
    6. Andrew T. Krasley, Eugene Li, Jesus M. Galeana, Chandima Bulumulla, Abraham G. Beyene, Gozde S. Demirer. Carbon Nanomaterial Fluorescent Probes and Their Biological Applications. Chemical Reviews 2024, 124 (6) , 3085-3185. https://doi.org/10.1021/acs.chemrev.3c00581
    7. Mei-Tsan Kuo, Jack F. Raffaelle, Ellise McKenna Waller, Vanessa A. Varaljay, Dominique Wagner, Nancy Kelley-Loughnane, Nigel F. Reuel. Screening Enzymatic Degradation of Polyester Polyurethane with Fluorescent Single-walled Carbon Nanotube and Polymer Nanoparticle Conjugates. ACS Nano 2023, 17 (17) , 17021-17030. https://doi.org/10.1021/acsnano.3c04347
    8. Chen Ma, C. Alexander Schrage, Juliana Gretz, Anas Akhtar, Linda Sistemich, Lena Schnitzler, Han Li, Kristina Tschulik, Benjamin S. Flavel, Sebastian Kruss. Stochastic Formation of Quantum Defects in Carbon Nanotubes. ACS Nano 2023, 17 (16) , 15989-15998. https://doi.org/10.1021/acsnano.3c04314
    9. Phillip Galonska, Jennifer M. Mohr, C. Alexander Schrage, Lena Schnitzler, Sebastian Kruss. Guanine Quantum Defects in Carbon Nanotubes for Biosensing. The Journal of Physical Chemistry Letters 2023, 14 (14) , 3483-3490. https://doi.org/10.1021/acs.jpclett.3c00358
    10. Ali A. Alizadehmojarad, Sergei M. Bachilo, R. Bruce Weisman. Compositional Analysis of ssDNA-Coated Single-Wall Carbon Nanotubes through UV Absorption Spectroscopy. Nano Letters 2022, 22 (20) , 8203-8209. https://doi.org/10.1021/acs.nanolett.2c02850
    11. Finn L. Sebastian, Nicolas F. Zorn, Simon Settele, Sebastian Lindenthal, Felix J. Berger, Christoph Bendel, Han Li, Benjamin S. Flavel, Jana Zaumseil. Absolute Quantification of sp3 Defects in Semiconducting Single-Wall Carbon Nanotubes by Raman Spectroscopy. The Journal of Physical Chemistry Letters 2022, 13 (16) , 3542-3548. https://doi.org/10.1021/acs.jpclett.2c00758
    12. Alexander Spreinat, Maria M. Dohmen, Jan Lüttgens, Niklas Herrmann, Lars F. Klepzig, Robert Nißler, Sabrina Weber, Florian A. Mann, Jannika Lauth, Sebastian Kruss. Quantum Defects in Fluorescent Carbon Nanotubes for Sensing and Mechanistic Studies. The Journal of Physical Chemistry C 2021, 125 (33) , 18341-18351. https://doi.org/10.1021/acs.jpcc.1c05432
    13. W. Russ Algar, Melissa Massey, Kelly Rees, Rehan Higgins, Katherine D. Krause, Ghinwa H. Darwish, William J. Peveler, Zhujun Xiao, Hsin-Yun Tsai, Rupsa Gupta, Kelsi Lix, Michael V. Tran, Hyungki Kim. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chemical Reviews 2021, 121 (15) , 9243-9358. https://doi.org/10.1021/acs.chemrev.0c01176
    14. Robert Nißler, Larissa Kurth, Han Li, Alexander Spreinat, Ilyas Kuhlemann, Benjamin S. Flavel, Sebastian Kruss. Sensing with Chirality-Pure Near-Infrared Fluorescent Carbon Nanotubes. Analytical Chemistry 2021, 93 (16) , 6446-6455. https://doi.org/10.1021/acs.analchem.1c00168
    15. Xiaoyun He, Ilia Kevlishvili, Katherina Murcek, Peng Liu, Alexander Star. [2π + 2π] Photocycloaddition of Enones to Single-Walled Carbon Nanotubes Creates Fluorescent Quantum Defects. ACS Nano 2021, 15 (3) , 4833-4844. https://doi.org/10.1021/acsnano.0c09583
    16. W. Russ Algar. Heroes or Villains? How Nontraditional Luminescent Materials Do and Do Not Enhance Bioanalysis and Imaging. Chemistry of Materials 2020, 32 (12) , 4863-4883. https://doi.org/10.1021/acs.chemmater.0c01130
    17. Feng Yang, Meng Wang, Daqi Zhang, Juan Yang, Ming Zheng, Yan Li. Chirality Pure Carbon Nanotubes: Growth, Sorting, and Characterization. Chemical Reviews 2020, 120 (5) , 2693-2758. https://doi.org/10.1021/acs.chemrev.9b00835
    18. Yunfeng Li, Xiaojian Wu, Mijin Kim, Jacob Fortner, Haoran Qu, YuHuang Wang. Fluorescent Ultrashort Nanotubes from Defect-Induced Chemical Cutting. Chemistry of Materials 2019, 31 (12) , 4536-4544. https://doi.org/10.1021/acs.chemmater.9b01196
    19. Robert Nißler, Florian A. Mann, Parth Chaturvedi, Jan Horlebein, Daniel Meyer, Lela Vuković, Sebastian Kruss. Quantification of the Number of Adsorbed DNA Molecules on Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry C 2019, 123 (8) , 4837-4847. https://doi.org/10.1021/acs.jpcc.8b11058
    20. Andrew J. Ferguson, Obadiah G. Reid, Sanjini U. Nanayakkara, Rachelle Ihly, Jeffrey L. Blackburn. Efficiency of Charge-Transfer Doping in Organic Semiconductors Probed with Quantitative Microwave and Direct-Current Conductance. The Journal of Physical Chemistry Letters 2018, 9 (23) , 6864-6870. https://doi.org/10.1021/acs.jpclett.8b03074
    21. Abraham G. Beyene, Ali A. Alizadehmojarad, Gabriel Dorlhiac, Natalie Goh, Aaron M. Streets, Petr Král, Lela Vuković, Markita P. Landry. Ultralarge Modulation of Fluorescence by Neuromodulators in Carbon Nanotubes Functionalized with Self-Assembled Oligonucleotide Rings. Nano Letters 2018, 18 (11) , 6995-7003. https://doi.org/10.1021/acs.nanolett.8b02937
    22. Felix J. Berger, Thomas M. Higgins, Marcel Rother, Arko Graf, Yuriy Zakharko, Sybille Allard, Maik Matthiesen, Jan M. Gotthardt, Ullrich Scherf, Jana Zaumseil. From Broadband to Electrochromic Notch Filters with Printed Monochiral Carbon Nanotubes. ACS Applied Materials & Interfaces 2018, 10 (13) , 11135-11142. https://doi.org/10.1021/acsami.8b00643
    23. Jeffrey L. Blackburn . Semiconducting Single-Walled Carbon Nanotubes in Solar Energy Harvesting. ACS Energy Letters 2017, 2 (7) , 1598-1613. https://doi.org/10.1021/acsenergylett.7b00228
    24. Thomas V. Galassi, Prakrit V. Jena, Daniel Roxbury, and Daniel A. Heller . Single Nanotube Spectral Imaging To Determine Molar Concentrations of Isolated Carbon Nanotube Species. Analytical Chemistry 2017, 89 (2) , 1073-1077. https://doi.org/10.1021/acs.analchem.6b04091
    25. Nicolai F. Hartmann, Rajib Pramanik, Anne-Marie Dowgiallo, Rachelle Ihly, Jeffrey L. Blackburn, and Stephen K. Doorn . Photoluminescence Imaging of Polyfluorene Surface Structures on Semiconducting Carbon Nanotubes: Implications for Thin Film Exciton Transport. ACS Nano 2016, 10 (12) , 11449-11458. https://doi.org/10.1021/acsnano.6b07168
    26. Stephen R. Sanchez, Sergei M. Bachilo, Yara Kadria-Vili, Ching-Wei Lin, and R. Bruce Weisman . (n,m)-Specific Absorption Cross Sections of Single-Walled Carbon Nanotubes Measured by Variance Spectroscopy. Nano Letters 2016, 16 (11) , 6903-6909. https://doi.org/10.1021/acs.nanolett.6b02819
    27. Abasi Abudulimu, Florian Spaeth, Imge Namal, Tobias Hertel, and Larry Lüer . Chirality Specific Triplet Exciton Dynamics in Highly Enriched (6,5) and (7,5) Carbon Nanotube Networks. The Journal of Physical Chemistry C 2016, 120 (35) , 19778-19784. https://doi.org/10.1021/acs.jpcc.6b03923
    28. Huaping Li, Hongyu Liu, Yifan Tang, Wenmin Guo, Lili Zhou, and Nina Smolinski . Electronically Pure Single-Chirality Semiconducting Single-Walled Carbon Nanotube for Large-Scale Electronic Devices. ACS Applied Materials & Interfaces 2016, 8 (32) , 20527-20533. https://doi.org/10.1021/acsami.6b06647
    29. Christoph Mann and Tobias Hertel . 13 nm Exciton Size in (6,5) Single-Wall Carbon Nanotubes. The Journal of Physical Chemistry Letters 2016, 7 (12) , 2276-2280. https://doi.org/10.1021/acs.jpclett.6b00797
    30. Randy D. Mehlenbacher, Jialiang Wang, Nicholas M. Kearns, Matthew J. Shea, Jessica T. Flach, Thomas J. McDonough, Meng-Yin Wu, Michael S. Arnold, and Martin T. Zanni . Ultrafast Exciton Hopping Observed in Bare Semiconducting Carbon Nanotube Thin Films with Two-Dimensional White-Light Spectroscopy. The Journal of Physical Chemistry Letters 2016, 7 (11) , 2024-2031. https://doi.org/10.1021/acs.jpclett.6b00650
    31. Anne-Marie Dowgiallo, Kevin S. Mistry, Justin C. Johnson, Obadiah G. Reid, and Jeffrey L. Blackburn . Probing Exciton Diffusion and Dissociation in Single-Walled Carbon Nanotube–C60 Heterojunctions. The Journal of Physical Chemistry Letters 2016, 7 (10) , 1794-1799. https://doi.org/10.1021/acs.jpclett.6b00604
    32. Frank K. Brunecker, Friedrich Schöppler, and Tobias Hertel . Interaction of Polymers with Single-Wall Carbon Nanotubes. The Journal of Physical Chemistry C 2016, 120 (18) , 10094-10103. https://doi.org/10.1021/acs.jpcc.6b02198
    33. Frank Hennrich, Wenshan Li, Regina Fischer, Sergei Lebedkin, Ralph Krupke, and Manfred M. Kappes . Length-Sorted, Large-Diameter, Polyfluorene-Wrapped Semiconducting Single-Walled Carbon Nanotubes for High-Density, Short-Channel Transistors. ACS Nano 2016, 10 (2) , 1888-1895. https://doi.org/10.1021/acsnano.5b05572
    34. Holger Hartleb, Florian Späth, and Tobias Hertel . Evidence for Strong Electronic Correlations in the Spectra of Gate-Doped Single-Wall Carbon Nanotubes. ACS Nano 2015, 9 (10) , 10461-10470. https://doi.org/10.1021/acsnano.5b04707
    35. Daniel Schilling, Christoph Mann, Pascal Kunkel, Friedrich Schöppler, and Tobias Hertel . Ultrafast Spectral Exciton Diffusion in Single-Wall Carbon Nanotubes Studied by Time-Resolved Hole Burning. The Journal of Physical Chemistry C 2015, 119 (42) , 24116-24123. https://doi.org/10.1021/acs.jpcc.5b06865
    36. Munechiyo Iwamura, Naoto Akizuki, Yuhei Miyauchi, Shinichiro Mouri, Jonah Shaver, Zhenghong Gao, Laurent Cognet, Brahim Lounis, and Kazunari Matsuda . Nonlinear Photoluminescence Spectroscopy of Carbon Nanotubes with Localized Exciton States. ACS Nano 2014, 8 (11) , 11254-11260. https://doi.org/10.1021/nn503803b
    37. Matthew J. Shea, Randy D. Mehlenbacher, Martin T. Zanni, and Michael S. Arnold . Experimental Measurement of the Binding Configuration and Coverage of Chirality-Sorting Polyfluorenes on Carbon Nanotubes. The Journal of Physical Chemistry Letters 2014, 5 (21) , 3742-3749. https://doi.org/10.1021/jz5017813
    38. Jack A. Alexander-Webber, Clement Faugeras, Piotr Kossacki, Marek Potemski, Xu Wang, Hee Dae Kim, Samuel D. Stranks, Robert A. Taylor, and Robin J. Nicholas . Hyperspectral Imaging of Exciton Photoluminescence in Individual Carbon Nanotubes Controlled by High Magnetic Fields. Nano Letters 2014, 14 (9) , 5194-5200. https://doi.org/10.1021/nl502016q
    39. Han Li, Tilman C. Hain, Andreas Muzha, Friedrich Schöppler, and Tobias Hertel . Dynamical Contact Line Pinning and Zipping during Carbon Nanotube Coffee Stain Formation. ACS Nano 2014, 8 (6) , 6417-6424. https://doi.org/10.1021/nn501957y
    40. Rishabh M. Jain, Kevin Tvrdy, Rebecca Han, Zachary Ulissi, and Michael S. Strano . Quantitative Theory of Adsorptive Separation for the Electronic Sorting of Single-Walled Carbon Nanotubes. ACS Nano 2014, 8 (4) , 3367-3379. https://doi.org/10.1021/nn4058402
    41. Lingjie Meng, Wenjian Xia, Li Liu, Lvye Niu, and Qinghua Lu . Golden Single-Walled Carbon Nanotubes Prepared Using Double Layer Polysaccharides Bridge for Photothermal Therapy. ACS Applied Materials & Interfaces 2014, 6 (7) , 4989-4996. https://doi.org/10.1021/am406031n
    42. Jason K. Streit, Sergei M. Bachilo, Saunab Ghosh, Ching-Wei Lin, and R. Bruce Weisman . Directly Measured Optical Absorption Cross Sections for Structure-Selected Single-Walled Carbon Nanotubes. Nano Letters 2014, 14 (3) , 1530-1536. https://doi.org/10.1021/nl404791y
    43. Takeshi Koyama, Shohei Yoshimitsu, Yasumitsu Miyata, Hisanori Shinohara, Hideo Kishida, and Arao Nakamura . Transient Absorption Kinetics Associated with Higher Exciton States in Semiconducting Single-Walled Carbon Nanotubes: Relaxation of Excitons and Phonons. The Journal of Physical Chemistry C 2013, 117 (39) , 20289-20299. https://doi.org/10.1021/jp406650t
    44. Argyrios Malapanis, Vasili Perebeinos, Dhiraj Prasad Sinha, Everett Comfort, and Ji Ung Lee . Quantum Efficiency and Capture Cross Section of First and Second Excitonic Transitions of Single-Walled Carbon Nanotubes Measured through Photoconductivity. Nano Letters 2013, 13 (8) , 3531-3538. https://doi.org/10.1021/nl400939b
    45. Felix F. Bergler, Friedrich Schöppler, Frank K. Brunecker, Michael Hailman, and Tobias Hertel . Fluorescence Spectroscopy of Gel-Immobilized Single-Wall Carbon Nanotubes with Microfluidic Control of the Surfactant Environment. The Journal of Physical Chemistry C 2013, 117 (25) , 13318-13323. https://doi.org/10.1021/jp403711e
    46. Laura Oudjedi, A. Nicholas G. Parra-Vasquez, Antoine G. Godin, Laurent Cognet, and Brahim Lounis . Metrological Investigation of the (6,5) Carbon Nanotube Absorption Cross Section. The Journal of Physical Chemistry Letters 2013, 4 (9) , 1460-1464. https://doi.org/10.1021/jz4003372
    47. Alexander L. Antaris, Joshua T. Robinson, Omar K. Yaghi, Guosong Hong, Shuo Diao, Richard Luong, and Hongjie Dai . Ultra-Low Doses of Chirality Sorted (6,5) Carbon Nanotubes for Simultaneous Tumor Imaging and Photothermal Therapy. ACS Nano 2013, 7 (4) , 3644-3652. https://doi.org/10.1021/nn4006472
    48. Kevin Tvrdy, Rishabh M. Jain, Rebecca Han, Andrew J. Hilmer, Thomas P. McNicholas, and Michael S. Strano . A Kinetic Model for the Deterministic Prediction of Gel-Based Single-Chirality Single-Walled Carbon Nanotube Separation. ACS Nano 2013, 7 (2) , 1779-1789. https://doi.org/10.1021/nn305939k
    49. Takeshi Koyama, Yasumitsu Miyata, Hideo Kishida, Hisanori Shinohara, and Arao Nakamura . Photophysics in Single-Walled Carbon Nanotubes with (6,4) Chirality at High Excitation Densities: Bimolecular Auger Recombination and Phase-Space Filling of Excitons. The Journal of Physical Chemistry C 2013, 117 (4) , 1974-1981. https://doi.org/10.1021/jp312798h
    50. Constantine Y. Khripin, Xiaomin Tu, John Howarter, Jeffrey Fagan, and Ming Zheng . Concentration Measurement of Length-Fractionated Colloidal Single-Wall Carbon Nanotubes. Analytical Chemistry 2012, 84 (20) , 8733-8739. https://doi.org/10.1021/ac302023n
    51. Martha Sibrian-Vazquez, Jorge O. Escobedo, Mark Lowry, Frank R. Fronczek, and Robert M. Strongin . Field Effects Induce Bathochromic Shifts in Xanthene Dyes. Journal of the American Chemical Society 2012, 134 (25) , 10502-10508. https://doi.org/10.1021/ja302445w
    52. D. Christofilos, J.-C. Blancon, J. Arvanitidis, A. San Miguel, A. Ayari, N. Del Fatti, F. Vallée. Optical Imaging and Absolute Absorption Cross Section Measurement of Individual Nano-objects on Opaque Substrates: Single-Wall Carbon Nanotubes on Silicon. The Journal of Physical Chemistry Letters 2012, 3 (9) , 1176-1181. https://doi.org/10.1021/jz300361g
    53. Michael C. Gwinner, Florian Jakubka, Florentina Gannott, Henning Sirringhaus, and Jana Zaumseil . Enhanced Ambipolar Charge Injection with Semiconducting Polymer/Carbon Nanotube Thin Films for Light-Emitting Transistors. ACS Nano 2012, 6 (1) , 539-548. https://doi.org/10.1021/nn203874a
    54. Chaima Benine, Djahra Ali Boutlelis, Laiche Ammar Touhami, Elhafnaoui Lanez, Djilani Ghemam Amara, Gatrane Rim, Najjaa Hanen, Wafa Zahnit, Mohammed Messaoudi. Green synthesis, characterization, antioxidant, interaction with DNA/BSA, and investigation of cytotoxicity against MCF-7 cancer cells of zinc oxide nanoparticles using Hammada scoparia (Pomel) Iljin extract. International Journal of Biological Macromolecules 2025, 295 , 139709. https://doi.org/10.1016/j.ijbiomac.2025.139709
    55. Ryo Hamano, Yoshiaki Niidome, Naoki Tanaka, Tomohiro Shiraki, Tsuyohiko Fujigaya. Temperature response of defect photoluminescence in locally functionalized single-walled carbon nanotubes. RSC Advances 2025, 15 (6) , 4137-4148. https://doi.org/10.1039/D4RA08569H
    56. Shruti Sharma, Mukesh Kumar, Anurag Gautam, Sivasubramanian Palanisamy, Ashutosh Sharma. Metallic Nanoparticles, Carbon-Based Nanocomposites for Drug Delivery System. 2025, 495-521. https://doi.org/10.1007/978-981-97-8086-0_17
    57. Sanjana S. Nalige, Phillip Galonska, Payam Kelich, Linda Sistemich, Christian Herrmann, Lela Vukovic, Sebastian Kruss, Martina Havenith. Fluorescence changes in carbon nanotube sensors correlate with THz absorption of hydration. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-50968-9
    58. Andreas Sperlich, Klaus H. Eckstein, Florian Oberndorfer, Bernd K. Sturdza, Michael Auth, Vladimir Dyakonov, Roland Mitric, Tobias Hertel. Onset of spin entanglement in doped carbon nanotubes studied by EPR. The Journal of Chemical Physics 2024, 160 (23) https://doi.org/10.1063/5.0207502
    59. Ryo Hamano, Naoki Tanaka, Tsuyohiko Fujigaya. Size exclusion chromatography-based length sorting of single-walled carbon nanotubes stably coated with cross-linked polymers. Materials Advances 2024, 5 (6) , 2482-2490. https://doi.org/10.1039/D3MA01069D
    60. Julia Ackermann, Eline Reger, Sebastian Jung, Jennifer Mohr, Svenja Herbertz, Karsten Seidl, Sebastian Kruss. Smart Slides for Optical Monitoring of Cellular Processes. Advanced Functional Materials 2024, 34 (6) https://doi.org/10.1002/adfm.202309064
    61. Julia Ackermann, Jan Stegemann, Tim Smola, Eline Reger, Sebastian Jung, Anne Schmitz, Svenja Herbertz, Luise Erpenbeck, Karsten Seidl, Sebastian Kruss. High Sensitivity Near‐Infrared Imaging of Fluorescent Nanosensors. Small 2023, 19 (14) https://doi.org/10.1002/smll.202206856
    62. Mahreen Arooj, Javad B. M. Parambath, Nisar Ali, Adnan Khan, Sumeet Malik, Muhammad Bilal, Ahmed A. Mohamed. Experimental and theoretical review on covalent coupling and elemental doping of carbon nanomaterials for environmental photocatalysis. Critical Reviews in Solid State and Materials Sciences 2023, 48 (2) , 215-256. https://doi.org/10.1080/10408436.2022.2049697
    63. Mohyeddin Assali, Naim Kittana, Sahar Alhaj-Qasem, Muna Hajjyahya, Hanood Abu-Rass, Walhan Alshaer, Rula Al-Buqain. Noncovalent functionalization of carbon nanotubes as a scaffold for tissue engineering. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-16247-7
    64. P. Clément, J. Ackermann, N. Sahin-Solmaz, S. Herbertz, G. Boero, S. Kruss, J. Brugger. Comparison of electrical and optical transduction modes of DNA-wrapped SWCNT nanosensors for the reversible detection of neurotransmitters.. Biosensors and Bioelectronics 2022, 216 , 114642. https://doi.org/10.1016/j.bios.2022.114642
    65. Mikhail R. Predtechenskiy, Alexander A. Khasin, Alexander E. Bezrodny, Oleg F. Bobrenok, Dmitry Yu. Dubov, Vyacheslav E. Muradyan, Vladimir O. Saik, Sergei N. Smirnov. New perspectives in SWCNT applications: Tuball SWCNTs. Part 1. Tuball by itself—All you need to know about it. Carbon Trends 2022, 8 , 100175. https://doi.org/10.1016/j.cartre.2022.100175
    66. Ana M. DiLillo, Ka Keung Chan, Xue-Long Sun, Geyou Ao. Glycopolymer-Wrapped Carbon Nanotubes Show Distinct Interaction of Carbohydrates With Lectins. Frontiers in Chemistry 2022, 10 https://doi.org/10.3389/fchem.2022.852988
    67. Florian A. Mann, Phillip Galonska, Niklas Herrmann, Sebastian Kruss. Quantum defects as versatile anchors for carbon nanotube functionalization. Nature Protocols 2022, 17 (3) , 727-747. https://doi.org/10.1038/s41596-021-00663-6
    68. Nicholas Ouassil, Rebecca L. Pinals, Jackson Travis Del Bonis-O’Donnell, Jeffrey W. Wang, Markita P. Landry. Supervised learning model predicts protein adsorption to carbon nanotubes. Science Advances 2022, 8 (1) https://doi.org/10.1126/sciadv.abm0898
    69. Kanae Oi, Junichi Komoto, Tsuyoshi Kawai, Yoshiyuki Nonoguchi. Low background estimation of metallic-to-semiconducting carbon nanotube ratio by using infrared spectroscopy. Synthetic Metals 2021, 282 , 116958. https://doi.org/10.1016/j.synthmet.2021.116958
    70. Nicolas F. Zorn, Jana Zaumseil. Charge transport in semiconducting carbon nanotube networks. Applied Physics Reviews 2021, 8 (4) https://doi.org/10.1063/5.0065730
    71. Sebastiano Bellani, Antonino Bartolotta, Antonio Agresti, Giuseppe Calogero, Giulia Grancini, Aldo Di Carlo, Emmanuel Kymakis, Francesco Bonaccorso. Solution-processed two-dimensional materials for next-generation photovoltaics. Chemical Society Reviews 2021, 50 (21) , 11870-11965. https://doi.org/10.1039/D1CS00106J
    72. Suresh Thangudu, Navpreet Kaur, Chiranjeevi Korupalli, Vinay Sharma, Poliraju Kalluru, Raviraj Vankayala. Recent advances in near infrared light responsive multi-functional nanostructures for phototheranostic applications. Biomaterials Science 2021, 9 (16) , 5472-5483. https://doi.org/10.1039/D1BM00631B
    73. Rebecca L. Pinals, Darwin Yang, Daniel J. Rosenberg, Tanya Chaudhary, Andrew R. Crothers, Anthony T. Iavarone, Michal Hammel, Markita P. Landry. Quantitative Protein Corona Composition and Dynamics on Carbon Nanotubes in Biological Environments. Angewandte Chemie 2020, 132 (52) , 23876-23885. https://doi.org/10.1002/ange.202008175
    74. Rebecca L. Pinals, Darwin Yang, Daniel J. Rosenberg, Tanya Chaudhary, Andrew R. Crothers, Anthony T. Iavarone, Michal Hammel, Markita P. Landry. Quantitative Protein Corona Composition and Dynamics on Carbon Nanotubes in Biological Environments. Angewandte Chemie International Edition 2020, 59 (52) , 23668-23677. https://doi.org/10.1002/anie.202008175
    75. Ali A. Alizadehmojarad, Xingcheng Zhou, Abraham G. Beyene, Kevin E. Chacon, Younghun Sung, Rebecca L. Pinals, Markita P. Landry, Lela Vuković. Binding Affinity and Conformational Preferences Influence Kinetic Stability of Short Oligonucleotides on Carbon Nanotubes. Advanced Materials Interfaces 2020, 7 (15) https://doi.org/10.1002/admi.202000353
    76. Florian A. Mann, Zhiyi Lv, Jörg Großhans, Felipe Opazo, Sebastian Kruss. Nanoröhren‐Nanobody‐Konjugate als zielgerichtete Sonden und Marker für die In‐vivo ‐ Nahinfrarot‐Bildgebung. Angewandte Chemie 2019, 131 (33) , 11591-11596. https://doi.org/10.1002/ange.201904167
    77. Florian A. Mann, Zhiyi Lv, Jörg Großhans, Felipe Opazo, Sebastian Kruss. Nanobody‐Conjugated Nanotubes for Targeted Near‐Infrared In Vivo Imaging and Sensing. Angewandte Chemie International Edition 2019, 58 (33) , 11469-11473. https://doi.org/10.1002/anie.201904167
    78. Zhang-Kai Zhou, Jingfeng Liu, Yanjun Bao, Lin Wu, Ching Eng Png, Xue-Hua Wang, Cheng-Wei Qiu. Quantum plasmonics get applied. Progress in Quantum Electronics 2019, 65 , 1-20. https://doi.org/10.1016/j.pquantelec.2019.04.002
    79. Mirko Maturi, Erica Locatelli, Ilaria Monaco, Mauro Comes Franchini. Current concepts in nanostructured contrast media development for in vivo photoacoustic imaging. Biomaterials Science 2019, 7 (5) , 1746-1775. https://doi.org/10.1039/C8BM01444B
    80. Manuel Hertzog, Mao Wang, Jürgen Mony, Karl Börjesson. Strong light–matter interactions: a new direction within chemistry. Chemical Society Reviews 2019, 48 (3) , 937-961. https://doi.org/10.1039/C8CS00193F
    81. Simon Haziza, Laurent Cognet, François Treussart. Tracking Photoluminescent Carbon Nanomaterials in Biological Systems. 2019, 115-137. https://doi.org/10.1002/9781119373476.ch6
    82. Florian A. Mann, Jan Horlebein, Nils Frederik Meyer, Daniel Meyer, Franziska Thomas, Sebastian Kruss. Carbon Nanotubes Encapsulated in Coiled‐Coil Peptide Barrels. Chemistry – A European Journal 2018, 24 (47) , 12241-12245. https://doi.org/10.1002/chem.201800993
    83. Jo-Eun Um, Sun Gu Song, Pil J. Yoo, Changsik Song, Woo-Jae Kim. Large-scale separation of single-walled carbon nanotubes by electronic type using click chemistry. Applied Surface Science 2018, 429 , 278-283. https://doi.org/10.1016/j.apsusc.2017.06.092
    84. Daquan Wang, Lingjie Meng, Zhaofu Fei, Chen Hou, Jiangang Long, Leli Zeng, Paul J. Dyson, Peng Huang. Multi-layered tumor-targeting photothermal-doxorubicin releasing nanotubes eradicate tumors in vivo with negligible systemic toxicity. Nanoscale 2018, 10 (18) , 8536-8546. https://doi.org/10.1039/C8NR00663F
    85. Dejan M Djokić, Aranya Goswami. Quantum yield in polymer wrapped single walled carbon nanotubes: a computational model. Nanotechnology 2017, 28 (46) , 465204. https://doi.org/10.1088/1361-6528/aa8f38
    86. Chunyan Wang, Brendan Meany, YuHuang Wang. Optically Triggered Melting of DNA on Individual Semiconducting Carbon Nanotubes. Angewandte Chemie 2017, 129 (32) , 9454-9458. https://doi.org/10.1002/ange.201703332
    87. Chunyan Wang, Brendan Meany, YuHuang Wang. Optically Triggered Melting of DNA on Individual Semiconducting Carbon Nanotubes. Angewandte Chemie International Edition 2017, 56 (32) , 9326-9330. https://doi.org/10.1002/anie.201703332
    88. Florian Mann, Niklas Herrmann, Daniel Meyer, Sebastian Kruss. Tuning Selectivity of Fluorescent Carbon Nanotube-Based Neurotransmitter Sensors. Sensors 2017, 17 (7) , 1521. https://doi.org/10.3390/s17071521
    89. Isabel Fraga Domínguez, Andreas Distler, Larry Lüer. Stability of Organic Solar Cells: The Influence of Nanostructured Carbon Materials. Advanced Energy Materials 2017, 7 (10) https://doi.org/10.1002/aenm.201601320
    90. Huaping Li. 35‐1: Invited Paper : Carbon Nanotube Thin Film Transistors and Vertically Gated OLEDs. SID Symposium Digest of Technical Papers 2017, 48 (1) , 494-496. https://doi.org/10.1002/sdtp.11668
    91. Elena-Laura Ursu, Florica Doroftei, Dragos Peptanariu, Mariana Pinteala, Alexandru Rotaru. DNA-assisted decoration of single-walled carbon nanotubes with gold nanoparticles for applications in surface-enhanced Raman scattering imaging of cells. Journal of Nanoparticle Research 2017, 19 (5) https://doi.org/10.1007/s11051-017-3876-9
    92. Rafael N. Gontijo, Gustavo A.M. Sáfar, Ariete Righi, Rishabh M. Jain, Michael S. Strano, Cristiano Fantini. Quantifying (n,m) species in single-wall carbon nanotubes dispersions by combining Raman and optical absorption spectroscopies. Carbon 2017, 115 , 681-687. https://doi.org/10.1016/j.carbon.2017.01.041
    93. O.S. Aréstegui, E.C.O. Silva, A.L. Baggio, R.N. Gontijo, J.M. Hickmann, C. Fantini, M.A.R.C. Alencar, E.J.S. Fonseca. Tuning the nonlinear response of (6,5)-enriched single-wall carbon nanotubes dispersions. Optical Materials 2017, 66 , 281-286. https://doi.org/10.1016/j.optmat.2017.02.013
    94. Philipp Reineck, Brant C. Gibson. Near‐Infrared Fluorescent Nanomaterials for Bioimaging and Sensing. Advanced Optical Materials 2017, 5 (2) https://doi.org/10.1002/adom.201600446
    95. Stefano Bottacchi, Francesca Bottacchi. Introduction and Physical Background. 2017, 1-18. https://doi.org/10.1016/B978-0-323-52731-6.00001-8
    96. Li Wei, Benjamin S. Flavel, Wenshan Li, Ralph Krupke, Yuan Chen. Exploring the upper limit of single-walled carbon nanotube purity by multiple-cycle aqueous two-phase separation. Nanoscale 2017, 9 (32) , 11640-11646. https://doi.org/10.1039/C7NR03302H
    97. A. Eckstein, V. Bertašius, V. Jašinskas, I. Namal, T. Hertel, V. Gulbinas. Carrier photogeneration, drift and recombination in a semiconducting carbon nanotube network. Nanoscale 2017, 9 (34) , 12441-12448. https://doi.org/10.1039/C7NR03813E
    98. Arko Graf, Laura Tropf, Yuriy Zakharko, Jana Zaumseil, Malte C. Gather. Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities. Nature Communications 2016, 7 (1) https://doi.org/10.1038/ncomms13078
    99. Priya Vijayaraghavan, Chi‐Shiun Chiang, Huihua Kenny Chiang, Meng‐Lin Li, Kuo Chu Hwang. Multi‐Branched Plasmonic Gold Nanoechinus‐Based Triple Modal Bioimaging: An Efficient NIR‐to‐NIR Up and Down‐Conversion Emission and Photoacoustic Imaging. Advanced Materials Technologies 2016, 1 (7) https://doi.org/10.1002/admt.201600107
    100. Francesca Bottacchi, Stefano Bottacchi, Florian Späth, Imge Namal, Tobias Hertel, Thomas D. Anthopoulos. Nanoscale Charge Percolation Analysis in Polymer‐Sorted (7,5) Single‐Walled Carbon Nanotube Networks. Small 2016, 12 (31) , 4211-4221. https://doi.org/10.1002/smll.201600922
    Load all citations

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2011, 115, 30, 14682–14686
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp205289h
    Published June 22, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    4767

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.