ACS Publications. Most Trusted. Most Cited. Most Read
Does Nitric Acid Dissociate at the Aqueous Solution Surface?
My Activity

Figure 1Loading Img
    Article

    Does Nitric Acid Dissociate at the Aqueous Solution Surface?
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, University of California, Irvine, California 92697, United States
    Helmholtz-Zentrum Berlin für Materialien und Energie, and BESSY, D-12489 Berlin, Germany
    § Chemical and Materials Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
    E-mail: [email protected]. Tel: 949-824-5796. Fax: 949-824-2095.
    Other Access Options

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2011, 115, 43, 21183–21190
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp205842w
    Published September 7, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Nitric acid is a prevalent component of atmospheric aerosols, and the extent of nitric acid dissociation at aqueous interfaces is relevant to its role in heterogeneous atmospheric chemistry. Several experimental and theoretical studies have suggested that the extent of dissociation of nitric acid near aqueous interfaces is less than that in bulk solution. Here dissociation of HNO3 at the surface of aqueous solution is quantified using X-ray photoelectron spectroscopy of the nitrogen local electronic structure. The relative amounts of undissociated HNO3(aq) and dissociated NO3(aq) are identified by the distinguishable N1s core-level photoelectron spectra of the two species, and we determine the degree of dissociation, αint, in the interface (approximately the first three layers of solution) as a function of HNO3 concentration. Our measurements show that dissociation is decreased by ∼20% near the solution interface compared with bulk solution and furthermore that dissociation occurs in the topmost solution layer. The experimental results are supported by first-principles MD simulations, which show that hydrogen bonds between HNO3 and water molecules at the solution surface stabilize the molecular form even at low concentration by analogy to the stabilization of molecular HNO3 that occurs in bulk solution at high concentration.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 75 publications.

    1. Nønne L. Prisle. Surfaces of Atmospheric Droplet Models Probed with Synchrotron XPS on a Liquid Microjet. Accounts of Chemical Research 2024, 57 (2) , 177-187. https://doi.org/10.1021/acs.accounts.3c00201
    2. Ted Hullar, Theo Tran, Cort Anastasio. Nitrate Photolysis at the Air–Ice Interface of Nature-Identical Snow. ACS Earth and Space Chemistry 2023, 7 (9) , 1791-1797. https://doi.org/10.1021/acsearthspacechem.3c00166
    3. Héloïse Tissot, Romain Coustel, François Rochet, Anthony Boucly, Cédric Carteret, Erwan André, Fabrice Bournel, Jean-Jacques Gallet. Deciphering Radiolytic Oxidation in Halide Aqueous Solutions: A Pathway Toward Improved Synchrotron NAP-XPS Analysis. The Journal of Physical Chemistry C 2023, 127 (32) , 15825-15838. https://doi.org/10.1021/acs.jpcc.3c03676
    4. Markus Ammann, Luca Artiglia. Solvation, Surface Propensity, and Chemical Reactions of Solutes at Atmospheric Liquid–Vapor Interfaces. Accounts of Chemical Research 2022, 55 (24) , 3641-3651. https://doi.org/10.1021/acs.accounts.2c00604
    5. Xiao-Fei Gao, Gilbert M. Nathanson. Exploring Gas–Liquid Reactions with Microjets: Lessons We Are Learning. Accounts of Chemical Research 2022, 55 (23) , 3294-3302. https://doi.org/10.1021/acs.accounts.2c00602
    6. Miguel de la Puente, Rolf David, Axel Gomez, Damien Laage. Acids at the Edge: Why Nitric and Formic Acid Dissociations at Air–Water Interfaces Depend on Depth and on Interface Specific Area. Journal of the American Chemical Society 2022, 144 (23) , 10524-10529. https://doi.org/10.1021/jacs.2c03099
    7. Sayoni Mitra, Thien Khuu, Tae Hoon Choi, Rachel M. Huchmala, Kenneth D. Jordan, Anne B. McCoy, Mark A. Johnson. Vibrational Signatures of HNO3 Acidity When Complexed with Microhydrated Alkali Metal Ions, M+·(HNO3)(H2O)n=5 (M = Li, K, Na, Rb, Cs), at 20 K. The Journal of Physical Chemistry A 2022, 126 (10) , 1640-1647. https://doi.org/10.1021/acs.jpca.1c10352
    8. Sayoni Mitra, Nan Yang, Laura M. McCaslin, R. Benny Gerber, Mark A. Johnson. Size-Dependent Onset of Nitric Acid Dissociation in Cs+·(HNO3)(H2O)n=0–11 Clusters at 20 K. The Journal of Physical Chemistry Letters 2021, 12 (13) , 3335-3342. https://doi.org/10.1021/acs.jpclett.1c00235
    9. Josep M. Anglada, Marilia T. C. Martins-Costa, Joseph S. Francisco, Manuel F. Ruiz-López. Reactivity of Undissociated Molecular Nitric Acid at the Air–Water Interface. Journal of the American Chemical Society 2021, 143 (1) , 453-462. https://doi.org/10.1021/jacs.0c11841
    10. Josep M. Anglada, Marilia T. C. Martins-Costa, Joseph S. Francisco, Manuel F. Ruiz-López. Photoinduced Oxidation Reactions at the Air–Water Interface. Journal of the American Chemical Society 2020, 142 (38) , 16140-16155. https://doi.org/10.1021/jacs.0c06858
    11. Santanu Roy, Gregory K. Schenter, Joseph A. Napoli, Marcel D. Baer, Thomas E. Markland, Christopher J. Mundy. Resolving Heterogeneous Dynamics of Excess Protons in Aqueous Solution with Rate Theory. The Journal of Physical Chemistry B 2020, 124 (27) , 5665-5675. https://doi.org/10.1021/acs.jpcb.0c02649
    12. Rodrigo M. Cordeiro, Maksudbek Yusupov, Jamoliddin Razzokov, Annemie Bogaerts. Parametrization and Molecular Dynamics Simulations of Nitrogen Oxyanions and Oxyacids for Applications in Atmospheric and Biomolecular Sciences. The Journal of Physical Chemistry B 2020, 124 (6) , 1082-1089. https://doi.org/10.1021/acs.jpcb.9b08172
    13. Quin R. S. Miller, David A. Dixon, Sarah D. Burton, Eric D. Walter, David W. Hoyt, Ashley S. McNeill, Joshua D. Moon, K. Sahan Thanthiriwatte, Eugene S. Ilton, Odeta Qafoku, Christopher J. Thompson, Herbert T. Schaef, Kevin M. Rosso, John S. Loring. Surface-Catalyzed Oxygen Exchange during Mineral Carbonation in Nanoscale Water Films. The Journal of Physical Chemistry C 2019, 123 (20) , 12871-12885. https://doi.org/10.1021/acs.jpcc.9b02215
    14. Tanza Lewis, Bernd Winter, Stephan Thürmer, Robert Seidel, Anne B. Stephansen, J. Alfredo Freites, Douglas J. Tobias, John C. Hemminger. Molecular Arrangement of a Mixture of Organosulfur Surfactants at the Aqueous Solution–Vapor Interface Studied by Photoelectron Intensity and Angular Distribution Measurements and Molecular Dynamics Simulations. The Journal of Physical Chemistry C 2019, 123 (13) , 8160-8170. https://doi.org/10.1021/acs.jpcc.8b08260
    15. Nicholas H. C. Lewis, Joseph A. Fournier, William B. Carpenter, Andrei Tokmakoff. Direct Observation of Ion Pairing in Aqueous Nitric Acid Using 2D Infrared Spectroscopy. The Journal of Physical Chemistry B 2019, 123 (1) , 225-238. https://doi.org/10.1021/acs.jpcb.8b10019
    16. Junting Qiu, Shinnosuke Ishizuka, Kenichi Tonokura, Shinichi Enami. Reactions of Criegee Intermediates with Benzoic Acid at the Gas/Liquid Interface. The Journal of Physical Chemistry A 2018, 122 (30) , 6303-6310. https://doi.org/10.1021/acs.jpca.8b04995
    17. Anthony M. Rizzuto, Erik S. Cheng, Royce K. Lam, and Richard J. Saykally . Surprising Effects of Hydrochloric Acid on the Water Evaporation Coefficient Observed by Raman Thermometry. The Journal of Physical Chemistry C 2017, 121 (8) , 4420-4425. https://doi.org/10.1021/acs.jpcc.6b12851
    18. Noam Agmon, Huib J. Bakker, R. Kramer Campen, Richard H. Henchman, Peter Pohl, Sylvie Roke, Martin Thämer, and Ali Hassanali . Protons and Hydroxide Ions in Aqueous Systems. Chemical Reviews 2016, 116 (13) , 7642-7672. https://doi.org/10.1021/acs.chemrev.5b00736
    19. Olle Björneholm, Martin H. Hansen, Andrew Hodgson, Li-Min Liu, David T. Limmer, Angelos Michaelides, Philipp Pedevilla, Jan Rossmeisl, Huaze Shen, Gabriele Tocci, Eric Tyrode, Marie-Madeleine Walz, Josephina Werner, and Hendrik Bluhm . Water at Interfaces. Chemical Reviews 2016, 116 (13) , 7698-7726. https://doi.org/10.1021/acs.chemrev.6b00045
    20. J. R. Roscioli, M. S. Zahniser, D. D. Nelson, S. C. Herndon, and C. E. Kolb . New Approaches to Measuring Sticky Molecules: Improvement of Instrumental Response Times Using Active Passivation. The Journal of Physical Chemistry A 2016, 120 (9) , 1347-1357. https://doi.org/10.1021/acs.jpca.5b04395
    21. Michael D. Daily, Marcel D. Baer, and Christopher J. Mundy . Divalent Ion Parameterization Strongly Affects Conformation and Interactions of an Anionic Biomimetic Polymer. The Journal of Physical Chemistry B 2016, 120 (9) , 2198-2208. https://doi.org/10.1021/acs.jpcb.5b12277
    22. Jennifer A. Faust, Thomas B. Sobyra, and Gilbert M. Nathanson . Gas–Microjet Reactive Scattering: Collisions of HCl and DCl with Cool Salty Water. The Journal of Physical Chemistry Letters 2016, 7 (4) , 730-735. https://doi.org/10.1021/acs.jpclett.5b02848
    23. Matthew A. Brown, Ming-Tao Lee, Armin Kleibert, Markus Ammann, and Javier B. Giorgi . Ion Spatial Distributions at the Air– and Vacuum–Aqueous K2CO3 Interfaces. The Journal of Physical Chemistry C 2015, 119 (9) , 4976-4982. https://doi.org/10.1021/acs.jpcc.5b00257
    24. Isaak Unger, Stephan Thürmer, Daniel Hollas, Emad F. Aziz, Bernd Winter, and Petr Slavíček . Ultrafast Proton and Electron Dynamics in Core-Ionized Hydrated Hydrogen Peroxide: Photoemission Measurements with Isotopically Substituted Hydrogen Peroxide. The Journal of Physical Chemistry C 2014, 118 (50) , 29142-29150. https://doi.org/10.1021/jp504707h
    25. Olle Björneholm, Josephina Werner, Niklas Ottosson, Gunnar Öhrwall, Victor Ekholm, Bernd Winter, Isaak Unger, and Johan Söderström . Deeper Insight into Depth-Profiling of Aqueous Solutions Using Photoelectron Spectroscopy. The Journal of Physical Chemistry C 2014, 118 (50) , 29333-29339. https://doi.org/10.1021/jp505569c
    26. Jefferson G. Pruyne, Ming-Tao Lee, Csaba Fábri, Amaia Beloqui Redondo, Armin Kleibert, Markus Ammann, Matthew A. Brown, and Maria J. Krisch . Liquid–Vapor Interface of Formic Acid Solutions in Salt Water: A Comparison of Macroscopic Surface Tension and Microscopic in Situ X-ray Photoelectron Spectroscopy Measurements. The Journal of Physical Chemistry C 2014, 118 (50) , 29350-29360. https://doi.org/10.1021/jp5056039
    27. Kathryn A. Perrine, Marijke H. C. Van Spyk, Alexandria M. Margarella, Bernd Winter, Manfred Faubel, Hendrik Bluhm, and John C. Hemminger . Characterization of the Acetonitrile Aqueous Solution/Vapor Interface by Liquid-Jet X-ray Photoelectron Spectroscopy. The Journal of Physical Chemistry C 2014, 118 (50) , 29378-29388. https://doi.org/10.1021/jp505947h
    28. Marcel D. Baer, Douglas J. Tobias, and Christopher J. Mundy . Investigation of Interfacial and Bulk Dissociation of HBr, HCl, and HNO3 Using Density Functional Theory-Based Molecular Dynamics Simulations. The Journal of Physical Chemistry C 2014, 118 (50) , 29412-29420. https://doi.org/10.1021/jp5062896
    29. Marcel D. Baer, I-Feng W. Kuo, Douglas J. Tobias, and Christopher J. Mundy . Toward a Unified Picture of the Water Self-Ions at the Air–Water Interface: A Density Functional Theory Perspective. The Journal of Physical Chemistry B 2014, 118 (28) , 8364-8372. https://doi.org/10.1021/jp501854h
    30. Marcel D. Baer, John L. Fulton, Mahalingam Balasubramanian, Gregory K. Schenter, and Christopher J. Mundy . Persistent Ion Pairing in Aqueous Hydrochloric Acid. The Journal of Physical Chemistry B 2014, 118 (26) , 7211-7220. https://doi.org/10.1021/jp501091h
    31. Mirza Galib and Gabriel Hanna . The Role of Hydrogen Bonding in the Decomposition of H2CO3 in Water: Mechanistic Insights from Ab Initio Metadynamics Studies of Aqueous Clusters. The Journal of Physical Chemistry B 2014, 118 (22) , 5983-5993. https://doi.org/10.1021/jp5029195
    32. Guillaume Marcotte, Patrick Ayotte, Azzedine Bendounan, Fausto Sirotti, Carine Laffon, and Philippe Parent . Dissociative Adsorption of Nitric Acid at the Surface of Amorphous Solid Water Revealed by X-ray Absorption Spectroscopy. The Journal of Physical Chemistry Letters 2013, 4 (16) , 2643-2648. https://doi.org/10.1021/jz401310j
    33. Alexandria M. Margarella, Kathryn A. Perrine, Tanza Lewis, Manfred Faubel, Bernd Winter, and John C. Hemminger . Dissociation of Sulfuric Acid in Aqueous Solution: Determination of the Photoelectron Spectral Fingerprints of H2SO4, HSO4–, and SO42– in Water. The Journal of Physical Chemistry C 2013, 117 (16) , 8131-8137. https://doi.org/10.1021/jp308090k
    34. Amanda J. Casella, Tatiana G. Levitskaia, James M. Peterson, and Samuel A. Bryan . Water O–H Stretching Raman Signature for Strong Acid Monitoring via Multivariate Analysis. Analytical Chemistry 2013, 85 (8) , 4120-4128. https://doi.org/10.1021/ac4001628
    35. Adéla Křepelová, Thorsten Bartels-Rausch, Matthew A. Brown, Hendrik Bluhm, and Markus Ammann . Adsorption of Acetic Acid on Ice Studied by Ambient-Pressure XPS and Partial-Electron-Yield NEXAFS Spectroscopy at 230–240 K. The Journal of Physical Chemistry A 2013, 117 (2) , 401-409. https://doi.org/10.1021/jp3102332
    36. Patrick Marchand, Guillaume Marcotte, and Patrick Ayotte . Spectroscopic Study of HNO3 Dissociation on Ice. The Journal of Physical Chemistry A 2012, 116 (49) , 12112-12122. https://doi.org/10.1021/jp309533f
    37. Nicole K. Richards and Barbara J. Finlayson-Pitts . Production of Gas Phase NO2 and Halogens from the Photochemical Oxidation of Aqueous Mixtures of Sea Salt and Nitrate Ions at Room Temperature. Environmental Science & Technology 2012, 46 (19) , 10447-10454. https://doi.org/10.1021/es300607c
    38. Nikolai V. Kryzhevoi and Lorenz S. Cederbaum . Exploring Protonation and Deprotonation Effects with Auger Electron Spectroscopy. The Journal of Physical Chemistry Letters 2012, 3 (18) , 2733-2737. https://doi.org/10.1021/jz301130t
    39. Audrey Dell Hammerich , Victoria Buch . Ab Initio Molecular Dynamics Simulations of the Liquid/Vapor Interface of Sulfuric Acid Solutions. The Journal of Physical Chemistry A 2012, 116 (23) , 5637-5652. https://doi.org/10.1021/jp2126398
    40. Robert Seidel, Samira Ghadimi, Kathrin M. Lange, Sébastien Bonhommeau, Mikhail A. Soldatov, Ronny Golnak, Alexander Kothe, René Könnecke, Alexander Soldatov, Stephan Thürmer, Bernd Winter, and Emad F. Aziz . Origin of Dark-Channel X-ray Fluorescence from Transition-Metal Ions in Water. Journal of the American Chemical Society 2012, 134 (3) , 1600-1605. https://doi.org/10.1021/ja207931r
    41. Haitao Zhou, Linchen Xie, Jiaqi Wang, Xueqin Wu, Kun Huang. Differentiated dissociation and distribution of species in concentrated hydrochloric acid at interface and in the bulk: Controllable separation based on specific ion recognition. Chemical Engineering Science 2025, 309 , 121436. https://doi.org/10.1016/j.ces.2025.121436
    42. Clemens Richter, Rémi Dupuy, Florian Trinter, Tillmann Buttersack, Louisa Cablitz, Shirin Gholami, Dominik Stemer, Christophe Nicolas, Robert Seidel, Bernd Winter, Hendrik Bluhm. Surface accumulation and acid–base equilibrium of phenol at the liquid–vapor interface. Physical Chemistry Chemical Physics 2024, 26 (43) , 27292-27300. https://doi.org/10.1039/D4CP02212B
    43. Arya Das, Sk. Musharaf Ali. Structure and dynamics of dissociated and undissociated forms of nitric acid and their implications in interfacial mass transfer: insights from molecular dynamics simulations. Physical Chemistry Chemical Physics 2024, 26 (8) , 6916-6938. https://doi.org/10.1039/D3CP05622H
    44. Anastasiya Khramchenkova, Andriy Pysanenko, Jozef Ďurana, Barbora Kocábková, Michal Fárník, Jozef Lengyel. Does HNO 3 dissociate on gas-phase ice nanoparticles?. Physical Chemistry Chemical Physics 2023, 25 (32) , 21154-21161. https://doi.org/10.1039/D3CP02757K
    45. Kyle J. Angle, Vicki H. Grassian. Direct quantification of changes in pH within single levitated microdroplets and the kinetics of nitrate and chloride depletion. Chemical Science 2023, 14 (23) , 6259-6268. https://doi.org/10.1039/D2SC06994F
    46. Dechao Xiao, Haitao Zhou, Kaihui Cui, Kun Huang. Separation of Pd(II) and Pt(IV) in concentrated hydrochloric acid using thin-layer oil membrane and comparison with conventional extraction. Hydrometallurgy 2022, 210 , 105848. https://doi.org/10.1016/j.hydromet.2022.105848
    47. Arya Das, Sk. Musharaf Ali. Deciphering the curved profile of uranyl ions at the aqueous-organic interface by atomistic simulations. Journal of Molecular Liquids 2021, 343 , 117599. https://doi.org/10.1016/j.molliq.2021.117599
    48. Ivan Kajan, Markéta Florianová, Christian Ekberg, Artem V. Matyskin. Effect of diluent on the extraction of europium( iii ) and americium( iii ) with N , N , N ′, N ′-tetraoctyl diglycolamide (TODGA). RSC Advances 2021, 11 (58) , 36707-36718. https://doi.org/10.1039/D1RA07534A
    49. Samuel P. Niblett, Mirza Galib, David T. Limmer. Learning intermolecular forces at liquid–vapor interfaces. The Journal of Chemical Physics 2021, 155 (16) https://doi.org/10.1063/5.0067565
    50. Rémi Dupuy, Clemens Richter, Bernd Winter, Gerard Meijer, Robert Schlögl, Hendrik Bluhm. Core level photoelectron spectroscopy of heterogeneous reactions at liquid–vapor interfaces: Current status, challenges, and prospects. The Journal of Chemical Physics 2021, 154 (6) https://doi.org/10.1063/5.0036178
    51. Sayoni Mitra, Chinh H. Duong, Laura M. McCaslin, R. Benny Gerber, Mark A. Johnson. Isomer-specific cryogenic ion vibrational spectroscopy of the D 2 tagged Cs + (HNO 3 )(H 2 O) n=0–2 complexes: ion-driven enhancement of the acidic H-bond to water. Physical Chemistry Chemical Physics 2020, 22 (8) , 4501-4507. https://doi.org/10.1039/C9CP06689F
    52. Marvin N. Pohl, Eva Muchová, Robert Seidel, Hebatallah Ali, Štěpán Sršeň, Iain Wilkinson, Bernd Winter, Petr Slavíček. Do water's electrons care about electrolytes?. Chemical Science 2019, 10 (3) , 848-865. https://doi.org/10.1039/C8SC03381A
    53. Chang Q Sun. Lewis Acidic Solutions: H↔H Fragilization. 2019, 85-102. https://doi.org/10.1007/978-981-13-8441-7_4
    54. Chang Q. Sun. Aqueous charge injection: solvation bonding dynamics, molecular nonbond interactions, and extraordinary solute capabilities. International Reviews in Physical Chemistry 2018, 37 (3-4) , 363-558. https://doi.org/10.1080/0144235X.2018.1544446
    55. Kanak Roy, Luca Artiglia, Jeroen A. van Bokhoven. Ambient Pressure Photoelectron Spectroscopy: Opportunities in Catalysis from Solids to Liquids and Introducing Time Resolution. ChemCatChem 2018, 10 (4) , 666-682. https://doi.org/10.1002/cctc.201701522
    56. Markus Ammann, Luca Artiglia, Thorsten Bartels-Rausch. X-Ray Excited Electron Spectroscopy to Study Gas–Liquid Interfaces of Atmospheric Relevance. 2018, 135-166. https://doi.org/10.1016/B978-0-12-813641-6.00006-6
    57. Hebatallah Ali, Robert Seidel, Marvin N. Pohl, Bernd Winter. Molecular species forming at the α-Fe 2 O 3 nanoparticle–aqueous solution interface. Chemical Science 2018, 9 (19) , 4511-4523. https://doi.org/10.1039/C7SC05156E
    58. Josephina Werner, Ingmar Persson, Olle Björneholm, Delphine Kawecki, Clara-Magdalena Saak, Marie-Madeleine Walz, Victor Ekholm, Isaak Unger, Corina Valtl, Carl Caleman, Gunnar Öhrwall, Nønne L. Prisle. Shifted equilibria of organic acids and bases in the aqueous surface region. Physical Chemistry Chemical Physics 2018, 20 (36) , 23281-23293. https://doi.org/10.1039/C8CP01898G
    59. Barak Hirshberg, Estefanía Rossich Molina, Andreas W. Götz, Audrey D. Hammerich, Gilbert M. Nathanson, Timothy H. Bertram, Mark A. Johnson, R. Benny Gerber. N 2 O 5 at water surfaces: binding forces, charge separation, energy accommodation and atmospheric implications. Physical Chemistry Chemical Physics 2018, 20 (26) , 17961-17976. https://doi.org/10.1039/C8CP03022G
    60. Robert Seidel, Marvin N. Pohl, Hebatallah Ali, Bernd Winter, Emad F. Aziz. Advances in liquid phase soft-x-ray photoemission spectroscopy: A new experimental setup at BESSY II. Review of Scientific Instruments 2017, 88 (7) https://doi.org/10.1063/1.4990797
    61. Giorgia Olivieri, Javier B. Giorgi, Richard G. Green, Matthew A. Brown. 5 years of ambient pressure photoelectron spectroscopy (APPES) at the Swiss Light Source (SLS). Journal of Electron Spectroscopy and Related Phenomena 2017, 216 , 1-16. https://doi.org/10.1016/j.elspec.2017.01.003
    62. Royce K. Lam, Jacob W. Smith, Anthony M. Rizzuto, Osman Karslıoğlu, Hendrik Bluhm, Richard J. Saykally. Reversed interfacial fractionation of carbonate and bicarbonate evidenced by X-ray photoemission spectroscopy. The Journal of Chemical Physics 2017, 146 (9) https://doi.org/10.1063/1.4977046
    63. Wei Gan, Wei Wu, Fangyuan Yang, Deping Hu, Hui Fang, Zhenggang Lan, Qunhui Yuan. The behavior of hydroxide and hydronium ions at the hexadecane–water interface studied with second harmonic generation and zeta potential measurements. Soft Matter 2017, 13 (43) , 7962-7968. https://doi.org/10.1039/C7SM00813A
    64. Garold Murdachaew, Gilbert M. Nathanson, R. Benny Gerber, Lauri Halonen. Deprotonation of formic acid in collisions with a liquid water surface studied by molecular dynamics and metadynamics simulations. Physical Chemistry Chemical Physics 2016, 18 (43) , 29756-29770. https://doi.org/10.1039/C6CP06071D
    65. Mirza Galib, Gabriel Hanna. Molecular dynamics simulations predict an accelerated dissociation of H 2 CO 3 at the air–water interface. Phys. Chem. Chem. Phys. 2014, 16 (46) , 25573-25582. https://doi.org/10.1039/C4CP03302G
    66. Mychel E. Varner, Barbara J. Finlayson-Pitts, R. Benny Gerber. Reaction of a charge-separated ONONO2 species with water in the formation of HONO: an MP2 Molecular Dynamics study. Physical Chemistry Chemical Physics 2014, 16 (10) , 4483. https://doi.org/10.1039/c3cp55024a
    67. Douglas J. Tobias, Abraham C. Stern, Marcel D. Baer, Yan Levin, Christopher J. Mundy. Simulation and Theory of Ions at Atmospherically Relevant Aqueous Liquid-Air Interfaces. Annual Review of Physical Chemistry 2013, 64 (1) , 339-359. https://doi.org/10.1146/annurev-physchem-040412-110049
    68. Himanshu Mishra, Robert J. Nielsen, Shinichi Enami, Michael R. Hoffmann, Agustín J. Colussi, William A. Goddard. Quantum chemical insights into the dissociation of nitric acid on the surface of aqueous electrolytes. International Journal of Quantum Chemistry 2013, 113 (4) , 413-417. https://doi.org/10.1002/qua.24151
    69. Jessica Hughes, Eric J. Krebs, David Roundy. A classical density-functional theory for describing water interfaces. The Journal of Chemical Physics 2013, 138 (2) https://doi.org/10.1063/1.4774155
    70. S. G. Moussa, A. C. Stern, J. D. Raff, C. W. Dilbeck, D. J. Tobias, B. J. Finlayson-Pitts. Experimental and theoretical studies of the interaction of gas phase nitric acid and water with a self-assembled monolayer. Phys. Chem. Chem. Phys. 2013, 15 (2) , 448-458. https://doi.org/10.1039/C2CP42405C
    71. S. Hlushak, J. P. Simonin, S. De Sio, O. Bernard, A. Ruas, P. Pochon, S. Jan, P. Moisy. Speciation in aqueous solutions of nitric acid. Dalton Trans. 2013, 42 (8) , 2853-2860. https://doi.org/10.1039/C2DT32256K
    72. Marcel D. Baer, Christopher J. Mundy. An ab initio approach to understanding the specific ion effect. Faraday Discuss. 2013, 160 , 89-101. https://doi.org/10.1039/C2FD20113E
    73. Himanshu Mishra, Shinichi Enami, Robert J. Nielsen, Michael R. Hoffmann, William A. Goddard, Agustín J. Colussi. Anions dramatically enhance proton transfer through aqueous interfaces. Proceedings of the National Academy of Sciences 2012, 109 (26) , 10228-10232. https://doi.org/10.1073/pnas.1200949109
    74. C. Gaillard, V. Mazan, S. Georg, O. Klimchuk, M. Sypula, I. Billard, R. Schurhammer, G. Wipff. Acid extraction to a hydrophobic ionic liquid: the role of added tributylphosphate investigated by experiments and simulations. Physical Chemistry Chemical Physics 2012, 14 (15) , 5187. https://doi.org/10.1039/c2cp40129k
    75. N. L. Prisle, N. Ottosson, G. Öhrwall, J. Söderström, M. Dal Maso, O. Björneholm. Surface/bulk partitioning and acid/base speciation of aqueous decanoate: direct observations and atmospheric implications. Atmospheric Chemistry and Physics 2012, 12 (24) , 12227-12242. https://doi.org/10.5194/acp-12-12227-2012

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2011, 115, 43, 21183–21190
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp205842w
    Published September 7, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    1782

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.