ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Positioning of Antioxidant Quercetin and Its Metabolites in Lipid Bilayer Membranes: Implication for Their Lipid-Peroxidation Inhibition

View Author Information
LCSN−EA1069, School of Pharmacy, Université de Limoges, 2 rue du Dr. Marcland, 87025 Limoges, France
Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, 17. listopadu 1192/12, 77146 Olomouc, Czech Republic
§ Laboratoire de Chimie des Matériaux Nouveaux, Université de Mons, Place du Parc 20, 7000 Mons, Belgium
Cite this: J. Phys. Chem. B 2012, 116, 4, 1309–1318
Publication Date (Web):December 27, 2011
https://doi.org/10.1021/jp208731g
Copyright © 2011 American Chemical Society

    Article Views

    1418

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Among numerous biological activities, natural polyphenols are antioxidants widely distributed in plants capable of inhibiting lipid peroxidation, which belongs to the most serious degenerative cell processes. Positioning of antioxidants in lipid bilayers can provide an insight to the lipid-peroxidation inhibition at the molecular level. This work aims at determining the location and orientation of quercetin and its most representative (glucuronidated, methylated, and sulfated) metabolites in lipid bilayer via molecular dynamic simulations. We show that quercetin derivatives penetrate the lipid bilayer and that the depths of penetration depend on molecular charge and substitutional variations. In the presence of charged substituents (sulfates and glucuronidates), the molecule is pulled toward the lipid bilayer surface. The orientation also depends on substitution as H-bonds are formed between the polar head groups of the bilayer and the (i) OH groups, (ii) sugar, and (iii) sulfate moieties of the antioxidants. As flavonoids and their derivatives are preferentially localized in the lipid bilayer membrane or on the bilayer/water interface, they readily concentrate in a relatively narrow membrane region. Despite the low concentrations of flavonoids in food, their spatial confinement in the membrane greatly enhances their local concentration in this vital region, thus increasing their importance for in vivo biological activities including oxidative stress defense.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Position of the center of mass along the MD simulations for all compounds (molecules described by RESP charges and PRODRG charges), distribution curve of angle defined by bilayer normal and plane defined by atoms C2, C3, and C6 of quercetin (molecules described by RESP charges and PRODRG charges), number densities describing position of compounds in lipid bilayer (compounds described by PRODRG charges), free energy profile for quercetin described by PRODRG charges, average distances of different molecule groups from membrane center, average number of H-bonds (compounds described by PRODRG charges), atomic partial charges and dipole moments of quercetin obtained by different RESP methods, and atomic partial charges of atoms obtained by PRODRG and RESP method. This material is available free of charge via the Internet at http://pubs.acs.org..

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 113 publications.

    1. Ruifeng Wang, Xin Shi, Chunmei Li. Insights into the Surface Binding and Structural Interference of Polyphenols with the Membrane Raft Domains in Relation to Their Distinctive Ability to Inhibit Preadipocyte Differentiation in 3T3-L1 Cells. Journal of Agricultural and Food Chemistry 2023, 71 (49) , 19845-19855. https://doi.org/10.1021/acs.jafc.3c06747
    2. Ruifeng Wang, Wei Zhu, Meizhu Dang, Xiangyi Deng, Xin Shi, Yajie Zhang, Kaikai Li, Chunmei Li. Targeting Lipid Rafts as a Rapid Screening Strategy for Potential Antiadipogenic Polyphenols along with the Structure–Activity Relationship and Mechanism Elucidation. Journal of Agricultural and Food Chemistry 2022, 70 (12) , 3872-3885. https://doi.org/10.1021/acs.jafc.2c00444
    3. Dongmei Zhang, Chu Gong, Jie Wang, Dong Xing, Lingling Zhao, Danyang Li, Xinxing Zhang. Unravelling Melatonin’s Varied Antioxidizing Protection of Membrane Lipids Determined by its Spatial Distribution. The Journal of Physical Chemistry Letters 2021, 12 (31) , 7387-7393. https://doi.org/10.1021/acs.jpclett.1c01965
    4. Didem Sanver, Amin Sadeghpour, Michael Rappolt, Florent Di Meo, Patrick Trouillas. Structure and Dynamics of Dioleoyl-Phosphatidylcholine Bilayers under the Influence of Quercetin and Rutin. Langmuir 2020, 36 (40) , 11776-11786. https://doi.org/10.1021/acs.langmuir.0c01484
    5. Hong Yang, Huarong Li, Liu Liu, Yang Zhou, Xinping Long. Molecular Simulation Studies on the Interactions of 2,4,6-Trinitrotoluene and Its Metabolites with Lipid Membranes. The Journal of Physical Chemistry B 2019, 123 (30) , 6481-6491. https://doi.org/10.1021/acs.jpcb.9b03033
    6. Wilhelmina Kalt, Jane E. McDonald, Yan Liu, and Sherry A. E. Fillmore . Flavonoid Metabolites in Human Urine during Blueberry Anthocyanin Intake. Journal of Agricultural and Food Chemistry 2017, 65 (8) , 1582-1591. https://doi.org/10.1021/acs.jafc.6b05455
    7. Didem Sanver, Brent S. Murray, Amin Sadeghpour, Michael Rappolt, and Andrew L. Nelson . Experimental Modeling of Flavonoid–Biomembrane Interactions. Langmuir 2016, 32 (49) , 13234-13243. https://doi.org/10.1021/acs.langmuir.6b02219
    8. Patrick Trouillas, Juan C. Sancho-García, Victor De Freitas, Johannes Gierschner, Michal Otyepka, and Olivier Dangles . Stabilizing and Modulating Color by Copigmentation: Insights from Theory and Experiment. Chemical Reviews 2016, 116 (9) , 4937-4982. https://doi.org/10.1021/acs.chemrev.5b00507
    9. Mihaela Bacalum, Lina Wang, Stijn Boodts, Peijia Yuan, Volker Leen, Nick Smisdom, Eduard Fron, Stefan Knippenberg, Gabin Fabre, Patrick Trouillas, David Beljonne, Wim Dehaen, Noël Boens, and Marcel Ameloot . A Blue-Light-Emitting BODIPY Probe for Lipid Membranes. Langmuir 2016, 32 (14) , 3495-3505. https://doi.org/10.1021/acs.langmuir.6b00478
    10. Markéta Paloncýová, Gabin Fabre, Russell H. DeVane, Patrick Trouillas, Karel Berka, and Michal Otyepka . Benchmarking of Force Fields for Molecule–Membrane Interactions. Journal of Chemical Theory and Computation 2014, 10 (9) , 4143-4151. https://doi.org/10.1021/ct500419b
    11. Joakim P. M. Jämbeck and Alexander P. Lyubartsev . Update to the General Amber Force Field for Small Solutes with an Emphasis on Free Energies of Hydration. The Journal of Physical Chemistry B 2014, 118 (14) , 3793-3804. https://doi.org/10.1021/jp4111234
    12. Yu-Jiao Chen, Ning Deng, Bin Hu, Yan Wang, and Jian-Bo He . Thin Layer-Based Spectral and Electrophoretic Study of Electro-Oxidation of Solid Ellagic Acid. The Journal of Physical Chemistry B 2014, 118 (8) , 2001-2008. https://doi.org/10.1021/jp4097259
    13. Markéta Paloncýová, Russell DeVane, Bruce Murch, Karel Berka, and Michal Otyepka . Amphiphilic Drug-Like Molecules Accumulate in a Membrane below the Head Group Region. The Journal of Physical Chemistry B 2014, 118 (4) , 1030-1039. https://doi.org/10.1021/jp4112052
    14. Chris Neale, Chris Madill, Sarah Rauscher, and Régis Pomès . Accelerating Convergence in Molecular Dynamics Simulations of Solutes in Lipid Membranes by Conducting a Random Walk along the Bilayer Normal. Journal of Chemical Theory and Computation 2013, 9 (8) , 3686-3703. https://doi.org/10.1021/ct301005b
    15. Pavlína Podloucká, Karel Berka, Gabin Fabre, Markéta Paloncýová, Jean-Luc Duroux, Michal Otyepka, and Patrick Trouillas . Lipid Bilayer Membrane Affinity Rationalizes Inhibition of Lipid Peroxidation by a Natural Lignan Antioxidant. The Journal of Physical Chemistry B 2013, 117 (17) , 5043-5049. https://doi.org/10.1021/jp3127829
    16. Markéta Paloncýová, Karel Berka, and Michal Otyepka . Molecular Insight into Affinities of Drugs and Their Metabolites to Lipid Bilayers. The Journal of Physical Chemistry B 2013, 117 (8) , 2403-2410. https://doi.org/10.1021/jp311802x
    17. Eliana P. Ortiz, Luis F. Ospina, Diana M. Aragón. Gastroprotective effect of the butanolic fraction from Physalis peruviana fruits. 2024, 455-472. https://doi.org/10.1016/B978-0-443-15433-1.00043-1
    18. José Villalaín. Bergamottin: location, aggregation and interaction with the plasma membrane. Journal of Biomolecular Structure and Dynamics 2023, 41 (21) , 12026-12037. https://doi.org/10.1080/07391102.2022.2164521
    19. Alejandro Escobar-Peso, Emma Martínez-Alonso, Jaime Masjuan, Alberto Alcázar. Development of Pharmacological Strategies with Therapeutic Potential in Ischemic Stroke. Antioxidants 2023, 12 (12) , 2102. https://doi.org/10.3390/antiox12122102
    20. Justyna Kapral-Piotrowska, Jakub W. Strawa, Katarzyna Jakimiuk, Adrian Wiater, Michał Tomczyk, Wiesław I. Gruszecki, Bożena Pawlikowska-Pawlęga. Investigation of the Membrane Localization and Interaction of Selected Flavonoids by NMR and FTIR Spectroscopy. International Journal of Molecular Sciences 2023, 24 (20) , 15275. https://doi.org/10.3390/ijms242015275
    21. Anja Sadžak, Zlatko Brkljača, Mihael Eraković, Manfred Kriechbaum, Nadica Maltar-Strmečki, Jan Přibyl, Suzana Šegota. Puncturing lipid membranes: onset of pore formation and the role of hydrogen bonding in the presence of flavonoids. Journal of Lipid Research 2023, 64 (10) , 100430. https://doi.org/10.1016/j.jlr.2023.100430
    22. Hugo Aceves-Luna, Daniel Glossman-Mitnik, Norma Flores-Holguín. Permeability of antioxidants through a lipid bilayer model with coarse-grained simulations. Journal of Biomolecular Structure and Dynamics 2023, 59 , 1-19. https://doi.org/10.1080/07391102.2023.2262044
    23. Andres Carrillo-Garmendia, Luis Alberto Madrigal-Perez, Carlos Regalado-Gonzalez. The multifaceted role of quercetin derived from its mitochondrial mechanism. Molecular and Cellular Biochemistry 2023, 45 https://doi.org/10.1007/s11010-023-04833-w
    24. Elizabeth Tobar-Delgado, Diego Mejía-España, Oswaldo Osorio-Mora, Liliana Serna-Cock. Rutin: Family Farming Products’ Extraction Sources, Industrial Applications and Current Trends in Biological Activity Protection. Molecules 2023, 28 (15) , 5864. https://doi.org/10.3390/molecules28155864
    25. José Villalaín. Labyrinthopeptin A2 disrupts raft domains. Chemistry and Physics of Lipids 2023, 253 , 105303. https://doi.org/10.1016/j.chemphyslip.2023.105303
    26. Maria Magdalena Barreca, Riccardo Alessandro, Chiara Corrado. Effects of Flavonoids on Cancer, Cardiovascular and Neurodegenerative Diseases: Role of NF-κB Signaling Pathway. International Journal of Molecular Sciences 2023, 24 (11) , 9236. https://doi.org/10.3390/ijms24119236
    27. Ana Amić, Denisa Mastiľák Cagardová. A DFT Study on the Kinetics of HOO•, CH3OO•, and O2•− Scavenging by Quercetin and Flavonoid Catecholic Metabolites. Antioxidants 2023, 12 (6) , 1154. https://doi.org/10.3390/antiox12061154
    28. Jakub W. Strawa, Katarzyna Jakimiuk, Bożena Pawlikowska-Pawlęga, Wiesław I. Gruszecki, Justyna Kapral-Piotrowska, Adrian Wiater, Michał Tomczyk. Polar localization of new flavonoids from aerial parts of Scleranthus perennis and Hottonia palustris and their modulatory action on lipid membranes properties. Biochimica et Biophysica Acta (BBA) - Biomembranes 2023, 1865 (4) , 184142. https://doi.org/10.1016/j.bbamem.2023.184142
    29. José Villalaín. SARS-CoV-2 Protein S Fusion Peptide Is Capable of Wrapping Negatively-Charged Phospholipids. Membranes 2023, 13 (3) , 344. https://doi.org/10.3390/membranes13030344
    30. Mehdi Benmameri, Benjamin Chantemargue, Antoine Humeau, Patrick Trouillas, Gabin Fabre. MemCross: Accelerated Weight Histogram method to assess membrane permeability. Biochimica et Biophysica Acta (BBA) - Biomembranes 2023, 1865 (3) , 184120. https://doi.org/10.1016/j.bbamem.2023.184120
    31. Ipek Sahin, Çağatay Ceylan, Oguz Bayraktar. Ruscogenin interacts with DPPC and DPPG model membranes and increases the membrane fluidity: FTIR and DSC studies. Archives of Biochemistry and Biophysics 2023, 733 , 109481. https://doi.org/10.1016/j.abb.2022.109481
    32. Sonia Losada-Barreiro, Zerrin Sezgin-Bayindir, Fátima Paiva-Martins, Carlos Bravo-Díaz. Biochemistry of Antioxidants: Mechanisms and Pharmaceutical Applications. Biomedicines 2022, 10 (12) , 3051. https://doi.org/10.3390/biomedicines10123051
    33. Cintia A. Menéndez, Alejandro R. Verde, Laureano M. Alarcón, Gustavo A. Appignanesi. Biophysical interactions of phenolic acids from yerba mate tea with lipid membranes. Biophysical Chemistry 2022, 291 , 106911. https://doi.org/10.1016/j.bpc.2022.106911
    34. Ruifeng Wang, Jinming Peng, Xin Shi, Sijia Cao, Yawei Xu, Gengsheng Xiao, Chunmei Li. Change in membrane fluidity induced by polyphenols is highly dependent on the position and number of galloyl groups. Biochimica et Biophysica Acta (BBA) - Biomembranes 2022, 1864 (11) , 184015. https://doi.org/10.1016/j.bbamem.2022.184015
    35. Tiantian Xu, Jingwen Zhang, Risheng Jin, Rong Cheng, Xiaonan Wang, Chuanxun Yuan, Changsheng Gan. Physicochemical properties, antioxidant activities and in vitro sustained release behaviour of co‐encapsulated liposomes as vehicle for vitamin E and β‐carotene. Journal of the Science of Food and Agriculture 2022, 102 (13) , 5759-5767. https://doi.org/10.1002/jsfa.11925
    36. Chong Chen, Dongxiao Sun-Waterhouse, Jie Zhao, Yi Zhang, Geoffrey I.N. Waterhouse, Lijing Lin, Mouming Zhao, Weizheng Sun. Method for loading liposomes with soybean protein isolate hydrolysate influences the antioxidant efficiency of liposomal systems: Adding after liposomes formation or before lipid film hydration. Food Hydrocolloids 2022, 129 , 107629. https://doi.org/10.1016/j.foodhyd.2022.107629
    37. Guilherme Henrique da Cruz Ramos Pires, Vitor Torres Freire, Rafael Guimarães Pereira, Leonardo José Amaral de Siqueira, Eric Umehara, João Henrique Ghilardi Lago, Luciano Caseli. Sakuranetin interacting with cell membranes models: Surface chemistry combined with molecular simulation. Colloids and Surfaces B: Biointerfaces 2022, 216 , 112546. https://doi.org/10.1016/j.colsurfb.2022.112546
    38. José Villalaín. Procyanidin C1 Location, Interaction, and Aggregation in Two Complex Biomembranes. Membranes 2022, 12 (7) , 692. https://doi.org/10.3390/membranes12070692
    39. Maarit Karonen. Insights into Polyphenol–Lipid Interactions: Chemical Methods, Molecular Aspects and Their Effects on Membrane Structures. Plants 2022, 11 (14) , 1809. https://doi.org/10.3390/plants11141809
    40. Seyedeh Roya Alizadeh, Mohammad Ali Ebrahimzadeh. O-substituted quercetin derivatives: Structural classification, drug design, development, and biological activities, a review. Journal of Molecular Structure 2022, 1254 , 132392. https://doi.org/10.1016/j.molstruc.2022.132392
    41. S. Siari, M. Mehri, M. Sharafi. Supplementation of Beltsville extender with quercetin improves the quality of frozen-thawed rooster semen. British Poultry Science 2022, 63 (2) , 252-260. https://doi.org/10.1080/00071668.2021.1955331
    42. Seyedeh Roya Alizadeh, Mohammad Ali Ebrahimzadeh. Quercetin derivatives: Drug design, development, and biological activities, a review. European Journal of Medicinal Chemistry 2022, 229 , 114068. https://doi.org/10.1016/j.ejmech.2021.114068
    43. Natália Bueno Leite, Danubia Batista Martins, Dayane S. Alvares, Marcia Perez dos Santos Cabrera. Quercetin induces lipid domain-dependent permeability. Chemistry and Physics of Lipids 2022, 242 , 105160. https://doi.org/10.1016/j.chemphyslip.2021.105160
    44. Ana Marta de Matos, Maria Teresa Blázquez-Sánchez, Carla Sousa, Maria Conceição Oliveira, Rodrigo F. M. de Almeida, Amélia P. Rauter. C-Glucosylation as a tool for the prevention of PAINS-induced membrane dipole potential alterations. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-83032-3
    45. Ana Reis, Rosa Perez-Gregorio, Nuno Mateus, Victor de Freitas. Interactions of dietary polyphenols with epithelial lipids: advances from membrane and cell models in the study of polyphenol absorption, transport and delivery to the epithelium. Critical Reviews in Food Science and Nutrition 2021, 61 (18) , 3007-3030. https://doi.org/10.1080/10408398.2020.1791794
    46. Rong-zu Nie, Mei-zhu Dang, Zhen-zhen Ge, Yin-qiang Huo, Bo Yu, Shang-wen Tang. Interactions of chlorogenic acid and isochlorogenic acid A with model lipid bilayer membranes: Insights from molecular dynamics simulations. Chemistry and Physics of Lipids 2021, 240 , 105136. https://doi.org/10.1016/j.chemphyslip.2021.105136
    47. Ana Amić, Jasmina M. Dimitrić Marković, Zoran Marković, Dejan Milenković, Žiko Milanović, Marko Antonijević, Denisa Mastiľák Cagardová, Jaime Rodríguez-Guerra Pedregal. Theoretical Study of Radical Inactivation, LOX Inhibition, and Iron Chelation: The Role of Ferulic Acid in Skin Protection against UVA Induced Oxidative Stress. Antioxidants 2021, 10 (8) , 1303. https://doi.org/10.3390/antiox10081303
    48. Huijuan Zheng, Jun Li, Fangjian Ning, Wahyu Wijaya, Yunjiao Chen, Jie Xiao, Yong Cao, Qingrong Huang. Improving in vitro bioaccessibility and bioactivity of carnosic acid using a lecithin-based nanoemulsion system. Food & Function 2021, 12 (4) , 1558-1568. https://doi.org/10.1039/D0FO02636K
    49. Silvio Osella, Stefan Knippenberg. The influence of lipid membranes on fluorescent probes' optical properties. Biochimica et Biophysica Acta (BBA) - Biomembranes 2021, 1863 (2) , 183494. https://doi.org/10.1016/j.bbamem.2020.183494
    50. Jad Eid, Alia Jraij, Hélène Greige-Gerges, Luca Monticelli. Effect of quercetin on lipid membrane rigidity: assessment by atomic force microscopy and molecular dynamics simulations. BBA Advances 2021, 1 , 100018. https://doi.org/10.1016/j.bbadva.2021.100018
    51. Ana Reis, Victor de Freitas. When polyphenols meet lipids: Challenges in membrane biophysics and opportunities in epithelial lipidomics. Food Chemistry 2020, 333 , 127509. https://doi.org/10.1016/j.foodchem.2020.127509
    52. Anja Sadžak, Zlatko Brkljača, Ivo Crnolatac, Goran Baranović, Suzana Šegota. Flavonol clustering in model lipid membranes: DSC, AFM, force spectroscopy and MD simulations study. Colloids and Surfaces B: Biointerfaces 2020, 193 , 111147. https://doi.org/10.1016/j.colsurfb.2020.111147
    53. Vicente Galiano, José A. Encinar, José Villalaín. Location, Orientation and Aggregation of Bardoxolone-ME, CDDO-ME, in a Complex Phospholipid Bilayer Membrane. The Journal of Membrane Biology 2020, 253 (2) , 115-128. https://doi.org/10.1007/s00232-020-00106-5
    54. Natália Pereira da Silva Araújo, Natália Alves de Matos, Suianne Leticia Antunes Mota, Ana Beatriz Farias de Souza, Sílvia Dantas Cangussú, Rodrigo Cunha Alvim de Menezes, Frank Silva Bezerra. Quercetin Attenuates Acute Lung Injury Caused by Cigarette Smoke Both In Vitro and In Vivo. COPD: Journal of Chronic Obstructive Pulmonary Disease 2020, 17 (2) , 205-214. https://doi.org/10.1080/15412555.2020.1749253
    55. Yi-Ming Zhou, Xiao-Chen Liu, Yu-Qian Li, Peng Wang, Rui-Min Han, Jian-Ping Zhang, Leif H. Skibsted. Synergy between plant phenols and carotenoids in stabilizing lipid-bilayer membranes of giant unilamellar vesicles against oxidative destruction. Soft Matter 2020, 16 (7) , 1792-1800. https://doi.org/10.1039/C9SM01415B
    56. Ana Reis, Sónia Soares, Carla F. Sousa, Ricardo Dias, Paula Gameiro, Susana Soares, Victor de Freitas. Interaction of polyphenols with model membranes: Putative implications to mouthfeel perception. Biochimica et Biophysica Acta (BBA) - Biomembranes 2020, 1862 (2) , 183133. https://doi.org/10.1016/j.bbamem.2019.183133
    57. Luka Šturm, Nataša Poklar Ulrih. Propolis flavonoids and terpenes, and their interactions with model lipid membranes: a review. 2020, 25-52. https://doi.org/10.1016/bs.abl.2020.04.003
    58. Monika Naumowicz, Magdalena Kusaczuk, Marcin Andrzej Kruszewski, Miroslav Gál, Rafał Krętowski, Marzanna Cechowska-Pasko, Joanna Kotyńska. The modulating effect of lipid bilayer/p-coumaric acid interactions on electrical properties of model lipid membranes and human glioblastoma cells. Bioorganic Chemistry 2019, 92 , 103242. https://doi.org/10.1016/j.bioorg.2019.103242
    59. Marcin Andrzej Kruszewski, Joanna Kotyńska, Magdalena Kusaczuk, Miroslav Gál, Monika Naumowicz. The Modulating Effect of p-Coumaric Acid on The Surface Charge Density of Human Glioblastoma Cell Membranes. International Journal of Molecular Sciences 2019, 20 (21) , 5286. https://doi.org/10.3390/ijms20215286
    60. Wilhelmina Kalt. Anthocyanins and Their C6-C3-C6 Metabolites in Humans and Animals. Molecules 2019, 24 (22) , 4024. https://doi.org/10.3390/molecules24224024
    61. Larissa Socrier, Marie Rosselin, Ana Milena Gomez Giraldo, Benjamin Chantemargue, Florent Di Meo, Patrick Trouillas, Grégory Durand, Sandrine Morandat. Nitrone-Trolox conjugate as an inhibitor of lipid oxidation: Towards synergistic antioxidant effects. Biochimica et Biophysica Acta (BBA) - Biomembranes 2019, 1861 (8) , 1489-1501. https://doi.org/10.1016/j.bbamem.2019.06.008
    62. Changjiang Huang, Huangjie Wang, Lida Tang, Fancui Meng. Penetration enhancement of menthol on quercetin through skin: insights from atomistic simulation. Journal of Molecular Modeling 2019, 25 (8) https://doi.org/10.1007/s00894-019-4135-z
    63. Tamara Hoppenbrouwers, Jelena H. Cvejić Hogervorst, Johan Garssen, Harry J. Wichers, Linette E. M. Willemsen. Long Chain Polyunsaturated Fatty Acids (LCPUFAs) in the Prevention of Food Allergy. Frontiers in Immunology 2019, 10 https://doi.org/10.3389/fimmu.2019.01118
    64. António de Granada-Flor, Carla Sousa, Hugo A. L. Filipe, M. Soledade C. S. Santos, Rodrigo F. M. de Almeida. Quercetin dual interaction at the membrane level. Chemical Communications 2019, 55 (12) , 1750-1753. https://doi.org/10.1039/C8CC09656B
    65. Larissa Socrier, Anthony Quéro, Margaux Verdu, Yiming Song, Roland Molinié, David Mathiron, Serge Pilard, François Mesnard, Sandrine Morandat. Flax phenolic compounds as inhibitors of lipid oxidation: Elucidation of their mechanisms of action. Food Chemistry 2019, 274 , 651-658. https://doi.org/10.1016/j.foodchem.2018.08.126
    66. Neda Martinović, Helena Abramovič, Nataša Poklar Ulrih. Inhibition of copper-induced lipid peroxidation by sinapic acid and its derivatives in correlation to their effect on the membrane structural properties. Biochimica et Biophysica Acta (BBA) - Biomembranes 2019, 1861 (1) , 1-8. https://doi.org/10.1016/j.bbamem.2018.10.008
    67. Martial Caillaud, Benjamin Chantemargue, Laurence Richard, Laetitia Vignaud, Frédéric Favreau, Pierre-Antoine Faye, Philippe Vignoles, Franck Sturtz, Patrick Trouillas, Jean-Michel Vallat, Alexis Desmoulière, Fabrice Billet. Local low dose curcumin treatment improves functional recovery and remyelination in a rat model of sciatic nerve crush through inhibition of oxidative stress. Neuropharmacology 2018, 139 , 98-116. https://doi.org/10.1016/j.neuropharm.2018.07.001
    68. Ji Hoon Ha, Yun Ju Jeong, A Young Kim, In Ki Hong, Nan Hee Lee, Soo Nam Park. Preparation and Physicochemical Properties of a Cysteine Derivative‐Loaded Deformable Liposomes in Hydrogel for Enhancing Whitening Effects. European Journal of Lipid Science and Technology 2018, 120 (9) https://doi.org/10.1002/ejlt.201800125
    69. Sarmistha Saha, Ramtej J. Verma. Molecular interactions of active constituents of essential oils in zwitterionic lipid bilayers. Chemistry and Physics of Lipids 2018, 213 , 76-87. https://doi.org/10.1016/j.chemphyslip.2018.03.008
    70. Ajda Ota, Katja Istenič, Mihaela Skrt, Nataša Šegatin, Nada Žnidaršič, Ksenija Kogej, Nataša Poklar Ulrih. Encapsulation of pantothenic acid into liposomes and into alginate or alginate–pectin microparticles loaded with liposomes. Journal of Food Engineering 2018, 229 , 21-31. https://doi.org/10.1016/j.jfoodeng.2017.06.036
    71. Ana Amić, Zoran Marković, Erik Klein, Jasmina M. Dimitrić Marković, Dejan Milenković. Theoretical study of the thermodynamics of the mechanisms underlying antiradical activity of cinnamic acid derivatives. Food Chemistry 2018, 246 , 481-489. https://doi.org/10.1016/j.foodchem.2017.11.100
    72. Bozena Pawlikowska-Pawlega, Justyna Kapral, Antoni Gawron, Anna Stochmal, Jerzy Zuchowski, Lukasz Pecio, Rafal Luchowski, Wojciech Grudzinski, Wieslaw I. Gruszecki. Interaction of a quercetin derivative - lensoside Aβ with liposomal membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes 2018, 1860 (2) , 292-299. https://doi.org/10.1016/j.bbamem.2017.10.027
    73. Izabela Dobrzyńska, Agnieszka Gęgotek, Ewelina Gajko, Elżbieta Skrzydlewska, Zbigniew A. Figaszewski. Effects of rutin on the physicochemical properties of skin fibroblasts membrane disruption following UV radiation. Chemico-Biological Interactions 2018, 282 , 29-35. https://doi.org/10.1016/j.cbi.2018.01.012
    74. Hugo A.L. Filipe, Carla Sousa, Joaquim T. Marquês, Diogo Vila-Viçosa, António de Granada-Flor, Ana S. Viana, M. Soledade C.S. Santos, Miguel Machuqueiro, Rodrigo F.M. de Almeida. Differential targeting of membrane lipid domains by caffeic acid and its ester derivatives. Free Radical Biology and Medicine 2018, 115 , 232-245. https://doi.org/10.1016/j.freeradbiomed.2017.12.002
    75. Adela Štimac, Jasmina Lapić, Valentino Blasina, Marija Lukinac, Senka Djaković, Ivo Crnolatac, Leo Frkanec, Ruža Frkanec. Adamantyl ferrocene derivatives: Antioxidant abilities and effects on model lipid membranes. Applied Organometallic Chemistry 2018, 32 (2) https://doi.org/10.1002/aoc.4042
    76. Kateřina Valentová, Kristýna Káňová, Florent Di Meo, Helena Pelantová, Christopher Chambers, Lenka Rydlová, Lucie Petrásková, Alena Křenková, Josef Cvačka, Patrick Trouillas, Vladimír Křen. Chemoenzymatic Preparation and Biophysical Properties of Sulfated Quercetin Metabolites. International Journal of Molecular Sciences 2017, 18 (11) , 2231. https://doi.org/10.3390/ijms18112231
    77. Wei Zhu, Xiangyi Deng, Jinming Peng, Bo Zou, Chunmei Li. A-type ECG and EGCG dimers inhibit 3T3-L1 differentiation by binding to cholesterol in lipid rafts. The Journal of Nutritional Biochemistry 2017, 48 , 62-73. https://doi.org/10.1016/j.jnutbio.2017.06.012
    78. Emmanuel Fajardo-Sánchez, Vicente Galiano, José Villalaín. Location of the bioactive pentacyclic triterpene ursolic acid in the membrane. A molecular dynamics study. Journal of Biomolecular Structure and Dynamics 2017, 35 (12) , 2688-2700. https://doi.org/10.1080/07391102.2016.1229219
    79. Paulina Strugała, Tomasz Tronina, Ewa Huszcza, Janina Gabrielska. Bioactivity In Vitro of Quercetin Glycoside Obtained in Beauveria bassiana Culture and Its Interaction with Liposome Membranes. Molecules 2017, 22 (9) , 1520. https://doi.org/10.3390/molecules22091520
    80. Agnieszka Gęgotek, Katarzyna Bielawska, Michał Biernacki, Izabela Dobrzyńska, Elżbieta Skrzydlewska. Time-dependent effect of rutin on skin fibroblasts membrane disruption following UV radiation. Redox Biology 2017, 12 , 733-744. https://doi.org/10.1016/j.redox.2017.04.014
    81. Eva Vavříková, Vladimír Křen, Lubica Jezova-Kalachova, Michal Biler, Benjamin Chantemargue, Michaela Pyszková, Sergio Riva, Marek Kuzma, Kateřina Valentová, Jitka Ulrichová, Jiří Vrba, Patrick Trouillas, Jan Vacek. Novel flavonolignan hybrid antioxidants: From enzymatic preparation to molecular rationalization. European Journal of Medicinal Chemistry 2017, 127 , 263-274. https://doi.org/10.1016/j.ejmech.2016.12.051
    82. Olivier Dangles, Claire Dufour, Claire Tonnelé, Patrick Trouillas. The Physical Chemistry of Polyphenols. 2017, 1-35. https://doi.org/10.1002/9781118883303.ch1
    83. Werner E. G. Müller, Xiaohong Wang, Heinz C. Schröder. New Target Sites for Treatment of Osteoporosis. 2017, 187-219. https://doi.org/10.1007/978-3-319-51284-6_6
    84. A. Sadeghpour, D. Sanver, M. Rappolt. Interactions of Flavonoids With Lipidic Mesophases. 2017, 95-123. https://doi.org/10.1016/bs.abl.2016.12.002
    85. Valentina Longobardi, Gianluigi Zullo, Angela Salzano, Carolina De Canditiis, Andrea Cammarano, Luca De Luise, Maria Valeria Puzio, Gianluca Neglia, Bianca Gasparrini. Resveratrol prevents capacitation-like changes and improves in vitro fertilizing capability of buffalo frozen-thawed sperm. Theriogenology 2017, 88 , 1-8. https://doi.org/10.1016/j.theriogenology.2016.09.046
    86. Veronika Zeindlhofer, Diana Khlan, Katharina Bica, Christian Schröder. Computational analysis of the solvation of coffee ingredients in aqueous ionic liquid mixtures. RSC Advances 2017, 7 (6) , 3495-3504. https://doi.org/10.1039/C6RA24736A
    87. Wei Zhu, Le Xiong, Jinming Peng, Xiangyi Deng, Jun Gao, Chun-mei Li. Molecular Insight into Affinities of Gallated and Nongallated Proanthocyanidins Dimers to Lipid Bilayers. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep37680
    88. Antoaneta V. Popova, Dirk K. Hincha. Effects of flavonol glycosides on liposome stability during freezing and drying. Biochimica et Biophysica Acta (BBA) - Biomembranes 2016, 1858 (12) , 3050-3060. https://doi.org/10.1016/j.bbamem.2016.09.020
    89. Yoochan Myung, Seongyeol Yeom, Sanghwa Han. A niosomal bilayer of sorbitan monostearate in complex with flavones: a molecular dynamics simulation study. Journal of Liposome Research 2016, 26 (4) , 336-344. https://doi.org/10.3109/08982104.2016.1144204
    90. K. Zielniok, K. Szkoda, M. Gajewska, J. Wilczak. Effect of biologically active substances present in water extracts of white mustard and coriander on antioxidant status and lipid peroxidation of mouse C 2 C 12 skeletal muscle cells. Journal of Animal Physiology and Animal Nutrition 2016, 100 (5) , 988-1002. https://doi.org/10.1111/jpn.12412
    91. Florent Di Meo, Gabin Fabre, Karel Berka, Tahani Ossman, Benjamin Chantemargue, Markéta Paloncýová, Pierre Marquet, Michal Otyepka, Patrick Trouillas. In silico pharmacology: Drug membrane partitioning and crossing. Pharmacological Research 2016, 111 , 471-486. https://doi.org/10.1016/j.phrs.2016.06.030
    92. Isabelle Fourré, Florent Di Meo, Pavlína Podloucká, Michal Otyepka, Patrick Trouillas. Dimerization of quercetin, Diels-Alder vs. radical-coupling approach: a joint thermodynamics, kinetics, and topological study. Journal of Molecular Modeling 2016, 22 (8) https://doi.org/10.1007/s00894-016-3051-8
    93. Vicente Galiano, José Villalaín. The Location of the Protonated and Unprotonated Forms of Arbidol in the Membrane: A Molecular Dynamics Study. The Journal of Membrane Biology 2016, 249 (3) , 381-391. https://doi.org/10.1007/s00232-016-9876-3
    94. Eva Vavříková, Fanny Langschwager, Lubica Jezova-Kalachova, Alena Křenková, Barbora Mikulová, Marek Kuzma, Vladimír Křen, Kateřina Valentová. Isoquercitrin Esters with Mono- or Dicarboxylic Acids: Enzymatic Preparation and Properties. International Journal of Molecular Sciences 2016, 17 (6) , 899. https://doi.org/10.3390/ijms17060899
    95. Jacqueline Naylor, Aisling Minard, Hannah J Gaunt, Mohamed S Amer, Lesley A Wilson, Marco Migliore, Sin Y Cheung, Hussein N Rubaiy, Nicola M Blythe, Katie E Musialowski, Melanie J Ludlow, William D Evans, Ben L Green, Hongjun Yang, Yun You, Jing Li, Colin W G Fishwick, Katsuhiko Muraki, David J Beech, Robin S Bon. Natural and synthetic flavonoid modulation of TRPC5 channels. British Journal of Pharmacology 2016, 173 (3) , 562-574. https://doi.org/10.1111/bph.13387
    96. Michaela Pyszková, Michal Biler, David Biedermann, Kateřina Valentová, Marek Kuzma, Jiří Vrba, Jitka Ulrichová, Romana Sokolová, Miloš Mojović, Ana Popović-Bijelić, Martin Kubala, Patrick Trouillas, Vladimír Křen, Jan Vacek. Flavonolignan 2,3-dehydroderivatives: Preparation, antiradical and cytoprotective activity. Free Radical Biology and Medicine 2016, 90 , 114-125. https://doi.org/10.1016/j.freeradbiomed.2015.11.014
    97. Vicente Galiano, José Villalaín. Oleuropein aglycone in lipid bilayer membranes. A molecular dynamics study. Biochimica et Biophysica Acta (BBA) - Biomembranes 2015, 1848 (11) , 2849-2858. https://doi.org/10.1016/j.bbamem.2015.08.007
    98. M. Frenzel, A. Steffen-Heins. Impact of quercetin and fish oil encapsulation on bilayer membrane and oxidation stability of liposomes. Food Chemistry 2015, 185 , 48-57. https://doi.org/10.1016/j.foodchem.2015.03.121
    99. Lenka Roubalová, Kateřina Purchartová, Barbora Papoušková, Jan Vacek, Vladimír Křen, Jitka Ulrichová, Jiří Vrba. Sulfation modulates the cell uptake, antiradical activity and biological effects of flavonoids in vitro: An examination of quercetin, isoquercitrin and taxifolin. Bioorganic & Medicinal Chemistry 2015, 23 (17) , 5402-5409. https://doi.org/10.1016/j.bmc.2015.07.055
    100. Gabin Fabre, Anne Hänchen, Claude-Alain Calliste, Karel Berka, Srinivas Banala, Michal Otyepka, Roderich D. Süssmuth, Patrick Trouillas. Lipocarbazole, an efficient lipid peroxidation inhibitor anchored in the membrane. Bioorganic & Medicinal Chemistry 2015, 23 (15) , 4866-4870. https://doi.org/10.1016/j.bmc.2015.05.031
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect