ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Role of Xanthophylls in Light Harvesting in Green Plants: A Spectroscopic Investigation of Mutant LHCII and Lhcb Pigment–Protein Complexes

View Author Information
Department of Chemistry, University of Connecticut, U-3060, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
Institute of Physical Biology, University of South Bohemia, Nove Hrady, Czech Republic
§ Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, I-37134 Verona, Italy
Cite this: J. Phys. Chem. B 2012, 116, 12, 3834–3849
Publication Date (Web):February 28, 2012
https://doi.org/10.1021/jp210042z
Copyright © 2012 American Chemical Society

    Article Views

    906

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The spectroscopic properties and energy transfer dynamics of the protein-bound chlorophylls and xanthophylls in monomeric, major LHCII complexes, and minor Lhcb complexes from genetically altered Arabidopsis thaliana plants have been investigated using both steady-state and time-resolved absorption and fluorescence spectroscopic methods. The pigment–protein complexes that were studied contain Chl a, Chl b, and variable amounts of the xanthophylls, zeaxanthin (Z), violaxanthin (V), neoxanthin (N), and lutein (L). The complexes were derived from mutants of plants denoted npq1 (NVL), npq2lut2 (Z), aba4npq1lut2 (V), aba4npq1 (VL), npq1lut2 (NV), and npq2 (LZ). The data reveal specific singlet energy transfer routes and excited state spectra and dynamics that depend on the xanthophyll present in the complex.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    SDS-PAGE analyses of the polypeptide composition of Lhcb and LHCII complexes, percentage of antenna proteins in the samples, transient absorption spectra of LHCII complexes from mutants containing V, N, NVL (wild type), NV, VL, and LZ in the visible and NIR spectral region after 676 or 490 nm excitation, and evolution associated differential spectra of Lhcb and LHCII complexes from mutants containing NVL, NV, VL, and LZ in the visible and NIR spectral region after 676 or 490 nm excitation. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 41 publications.

    1. Francesco Saccon, Milan Durchan, Radek Kaňa, Ondřej Prášil, Alexander V. Ruban, Tomáš Polívka. Spectroscopic Properties of Violaxanthin and Lutein Triplet States in LHCII are Independent of Carotenoid Composition. The Journal of Physical Chemistry B 2019, 123 (44) , 9312-9320. https://doi.org/10.1021/acs.jpcb.9b06293
    2. Soroush D. Khosravi, Michael M. Bishop, Amy M. LaFountain, Daniel B. Turner, George N. Gibson, Harry A. Frank, Nora Berrah. Addition of a Carbonyl End Group Increases the Rate of Excited-State Decay in a Carotenoid via Conjugation Extension and Symmetry Breaking. The Journal of Physical Chemistry B 2018, 122 (48) , 10872-10879. https://doi.org/10.1021/acs.jpcb.8b06732
    3. Bart van Oort, Laura M. Roy, Pengqi Xu, Yinghong Lu, Daniel Karcher, Ralph Bock, and Roberta Croce . Revisiting the Role of Xanthophylls in Nonphotochemical Quenching. The Journal of Physical Chemistry Letters 2018, 9 (2) , 346-352. https://doi.org/10.1021/acs.jpclett.7b03049
    4. Marijonas Tutkus, Jevgenij Chmeliov, Danielis Rutkauskas, Alexander V. Ruban, and Leonas Valkunas . Influence of the Carotenoid Composition on the Conformational Dynamics of Photosynthetic Light-Harvesting Complexes. The Journal of Physical Chemistry Letters 2017, 8 (23) , 5898-5906. https://doi.org/10.1021/acs.jpclett.7b02634
    5. Nicholas H. C. Lewis, Natalie L. Gruenke, Thomas A. A. Oliver, Matteo Ballottari, Roberto Bassi, and Graham R. Fleming . Observation of Electronic Excitation Transfer Through Light Harvesting Complex II Using Two-Dimensional Electronic–Vibrational Spectroscopy. The Journal of Physical Chemistry Letters 2016, 7 (20) , 4197-4206. https://doi.org/10.1021/acs.jpclett.6b02280
    6. Nikki M. Magdaong, Amy M. LaFountain, Jordan A. Greco, Alastair T. Gardiner, Anne-Marie Carey, Richard J. Cogdell, George N. Gibson, Robert R. Birge, and Harry A. Frank . High Efficiency Light Harvesting by Carotenoids in the LH2 Complex from Photosynthetic Bacteria: Unique Adaptation to Growth under Low-Light Conditions. The Journal of Physical Chemistry B 2014, 118 (38) , 11172-11189. https://doi.org/10.1021/jp5070984
    7. Maria Sulli, Luca Dall’Osto, Paola Ferrante, Zeno Guardini, Rodrigo Lionel Gomez, Paola Mini, Olivia Costantina Demurtas, Giuseppe Aprea, Alessandro Nicolia, Roberto Bassi, Giovanni Giuliano. Generation and physiological characterization of genome-edited Nicotiana benthamiana plants containing zeaxanthin as the only leaf xanthophyll. Planta 2023, 258 (5) https://doi.org/10.1007/s00425-023-04248-3
    8. Edoardo Andrea Cutolo, Zeno Guardini, Luca Dall'Osto, Roberto Bassi. A paler shade of green: engineering cellular chlorophyll content to enhance photosynthesis in crowded environments. New Phytologist 2023, 239 (5) , 1567-1583. https://doi.org/10.1111/nph.19064
    9. Xiu Li, Rui Yang, Liulong Li, Ke Liu, Matthew Tom Harrison, Shah Fahad, Mingmei Wei, Lijun Yin, Meixue Zhou, Xiaoyan Wang. Physiological and Molecular Responses of Wheat to Low Light Intensity. Agronomy 2023, 13 (1) , 272. https://doi.org/10.3390/agronomy13010272
    10. Roberto Caferri, Zeno Guardini, Roberto Bassi, Luca Dall’Osto. Assessing photoprotective functions of carotenoids in photosynthetic systems of plants and green algae. 2022, 53-84. https://doi.org/10.1016/bs.mie.2022.04.006
    11. Junxiang Liu, Chao Sun, Fei-Fei Zhai, Zhenjian Li, Yongqiang Qian, Lin Gu, Zhenyuan Sun, . Proteomic insights into the photosynthetic divergence between bark and leaf chloroplasts in Salix matsudana. Tree Physiology 2021, 41 (11) , 2142-2152. https://doi.org/10.1093/treephys/tpab055
    12. Ashley M. Hancock, Minjung Son, Muath Nairat, Tiejun Wei, Lars J. C. Jeuken, Christopher D. P. Duffy, Gabriela S. Schlau-Cohen, Peter G. Adams. Ultrafast energy transfer between lipid-linked chromophores and plant light-harvesting complex II. Physical Chemistry Chemical Physics 2021, 23 (35) , 19511-19524. https://doi.org/10.1039/D1CP01628H
    13. Zeno Guardini, Luca Dall’Osto, Simone Barera, Mehrdad Jaberi, Stefano Cazzaniga, Nicola Vitulo, Roberto Bassi. High Carotenoid Mutants of Chlorella vulgaris Show Enhanced Biomass Yield under High Irradiance. Plants 2021, 10 (5) , 911. https://doi.org/10.3390/plants10050911
    14. Thais Huarancca Reyes, Eliana Esparza, Gaia Crestani, Fabián Limonchi, Rudi Cruz, Norma Salinas, Andrea Scartazza, Lorenzo Guglielminetti, Eric Cosio. Physiological responses of maca (Lepidium meyenii Walp.) plants to UV radiation in its high-altitude mountain ecosystem. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-59638-4
    15. Francesco Saccon, Milan Durchan, Tomáš Polívka, Alexander V. Ruban. The robustness of the terminal emitter site in major LHCII complexes controls xanthophyll function during photoprotection. Photochemical & Photobiological Sciences 2020, 19 (10) , 1308-1318. https://doi.org/10.1039/d0pp00174k
    16. Luca Dall'Osto, Stefano Cazzaniga, Dario Zappone, Roberto Bassi. Monomeric light harvesting complexes enhance excitation energy transfer from LHCII to PSII and control their lateral spacing in thylakoids. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2020, 1861 (4) , 148035. https://doi.org/10.1016/j.bbabio.2019.06.007
    17. Valeria Vecchi, Simone Barera, Roberto Bassi, Luca Dall’Osto. Potential and Challenges of Improving Photosynthesis in Algae. Plants 2020, 9 (1) , 67. https://doi.org/10.3390/plants9010067
    18. Yuanfang Fan, Junxu Chen, Zhonglin Wang, Tingting Tan, Shenglan Li, Jiafeng Li, Beibei Wang, Jiawei Zhang, Yajiao Cheng, Xiaoling Wu, Wenyu Yang, Feng Yang. Soybean (Glycine max L. Merr.) seedlings response to shading: leaf structure, photosynthesis and proteomic analysis. BMC Plant Biology 2019, 19 (1) https://doi.org/10.1186/s12870-019-1633-1
    19. Dariusz M. Niedzwiedzki, Benjamin M. Wolf, Robert E. Blankenship. Excitation energy transfer in the far-red absorbing violaxanthin/vaucheriaxanthin chlorophyll a complex from the eustigmatophyte alga FP5. Photosynthesis Research 2019, 140 (3) , 337-354. https://doi.org/10.1007/s11120-019-00615-y
    20. Andrius Gelzinis, Yakov Braver, Jevgenij Chmeliov, Leonas Valkunas. Decay- and evolution-associated spectra of time-resolved fluorescence of LHCII aggregates. Lithuanian Journal of Physics 2019, 58 (4) https://doi.org/10.3952/physics.v58i4.3874
    21. Wei Chen, Ricardo Colon, J.William Louda, Freddy Rodriguez del Rey, Michaella Durham, Kathleen S. Rein. Brevetoxin (PbTx-2) influences the redox status and NPQ of Karenia brevis by way of thioredoxin reductase. Harmful Algae 2018, 71 , 29-39. https://doi.org/10.1016/j.hal.2017.11.004
    22. Alberta Pinnola, Matteo Ballottari, Ilaria Bargigia, Marcelo Alcocer, Cosimo D’Andrea, Giulio Cerullo, Roberto Bassi. Functional modulation of LHCSR1 protein from Physcomitrella patens by zeaxanthin binding and low pH. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-11101-7
    23. Pavel Malý, Janneke Ravensbergen, John T. M. Kennis, Rienk van Grondelle, Roberta Croce, Tomáš Mančal, Bart van Oort. Polarization-controlled optimal scatter suppression in transient absorption spectroscopy. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/srep43484
    24. Alberta Pinnola, Hristina Staleva-Musto, Stefano Capaldi, Matteo Ballottari, Roberto Bassi, Tomáš Polívka. Electron transfer between carotenoid and chlorophyll contributes to quenching in the LHCSR1 protein from Physcomitrella patens. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2016, 1857 (12) , 1870-1878. https://doi.org/10.1016/j.bbabio.2016.09.001
    25. Pavel Malý, J. Michael Gruber, Rienk van Grondelle, Tomáš Mančal. Single Molecule Spectroscopy of Monomeric LHCII: Experiment and Theory. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep26230
    26. Maxwell A. Ware, Luca Dall’Osto, Alexander V. Ruban. An In Vivo Quantitative Comparison of Photoprotection in Arabidopsis Xanthophyll Mutants. Frontiers in Plant Science 2016, 7 https://doi.org/10.3389/fpls.2016.00841
    27. Gürkan Keşan, Radek Litvín, David Bína, Milan Durchan, Václav Šlouf, Tomáš Polívka. Efficient light-harvesting using non-carbonyl carotenoids: Energy transfer dynamics in the VCP complex from Nannochloropsis oceanica. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2016, 1857 (4) , 370-379. https://doi.org/10.1016/j.bbabio.2015.12.011
    28. Nikki M. Magdaong, Amy M. LaFountain, Kirsty Hacking, Dariusz M. Niedzwiedzki, George N. Gibson, Richard J. Cogdell, Harry A. Frank. Spectral heterogeneity and carotenoid-to-bacteriochlorophyll energy transfer in LH2 light-harvesting complexes from Allochromatium vinosum. Photosynthesis Research 2016, 127 (2) , 171-187. https://doi.org/10.1007/s11120-015-0165-2
    29. Wieslaw I. Gruszecki. Carotenoids in Pigment–Protein Complexes. 2016, 147-158. https://doi.org/10.1002/9781118622223.ch9
    30. Pengqi Xu, Lijin Tian, Miroslav Kloz, Roberta Croce. Molecular insights into Zeaxanthin-dependent quenching in higher plants. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep13679
    31. Ryan T. Cassell, Wei Chen, Serge Thomas, Li Liu, Kathleen S. Rein. Brevetoxin, the Dinoflagellate Neurotoxin, Localizes to Thylakoid Membranes and Interacts with the Light‐Harvesting Complex II (LHCII) of Photosystem II. ChemBioChem 2015, 16 (7) , 1060-1067. https://doi.org/10.1002/cbic.201402669
    32. Hristina Staleva, Josef Komenda, Mahendra K Shukla, Václav Šlouf, Radek Kaňa, Tomáš Polívka, Roman Sobotka. Mechanism of photoprotection in the cyanobacterial ancestor of plant antenna proteins. Nature Chemical Biology 2015, 11 (4) , 287-291. https://doi.org/10.1038/nchembio.1755
    33. Charusheela Ramanan, J. Michael Gruber, Pavel Malý, Marco Negretti, Vladimir Novoderezhkin, Tjaart P.J. Krüger, Tomáš Mančal, Roberta Croce, Rienk van Grondelle. The Role of Exciton Delocalization in the Major Photosynthetic Light-Harvesting Antenna of Plants. Biophysical Journal 2015, 108 (5) , 1047-1056. https://doi.org/10.1016/j.bpj.2015.01.019
    34. Milan Durchan, Gürkan Keşan, Václav Šlouf, Marcel Fuciman, Hristina Staleva, Josef Tichý, Radek Litvín, David Bína, František Vácha, Tomáš Polívka. Highly efficient energy transfer from a carbonyl carotenoid to chlorophyll a in the main light harvesting complex of Chromera velia. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2014, 1837 (10) , 1748-1755. https://doi.org/10.1016/j.bbabio.2014.06.001
    35. Matteo Ballottari, Marcelo J. P. Alcocer, Cosimo D’Andrea, Daniele Viola, Tae Kyu Ahn, Annamaria Petrozza, Dario Polli, Graham R. Fleming, Giulio Cerullo, Roberto Bassi. Regulation of photosystem I light harvesting by zeaxanthin. Proceedings of the National Academy of Sciences 2014, 111 (23) https://doi.org/10.1073/pnas.1404377111
    36. Hadar Neuman, Navot Galpaz, Francis X. Cunningham, Dani Zamir, Joseph Hirschberg. The tomato mutation nxd1 reveals a gene necessary for neoxanthin biosynthesis and demonstrates that violaxanthin is a sufficient precursor for abscisic acid biosynthesis. The Plant Journal 2014, 78 (1) , 80-93. https://doi.org/10.1111/tpj.12451
    37. Agu Laisk, Vello Oja, Hillar Eichelmann, Luca Dall'Osto. Action spectra of photosystems II and I and quantum yield of photosynthesis in leaves in State 1. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2014, 1837 (2) , 315-325. https://doi.org/10.1016/j.bbabio.2013.12.001
    38. Alfred R. Holzwarth, Peter Jahns. Non-Photochemical Quenching Mechanisms in Intact Organisms as Derived from Ultrafast-Fluorescence Kinetic Studies. 2014, 129-156. https://doi.org/10.1007/978-94-017-9032-1_5
    39. Tomáš Polívka, Harry A. Frank. Spectroscopic Investigation of Carotenoids Involved in Non-Photochemical Fluorescence Quenching. 2014, 203-227. https://doi.org/10.1007/978-94-017-9032-1_8
    40. Nikki M. Magdaong, Miriam M. Enriquez, Amy M. LaFountain, Lauren Rafka, Harry A. Frank. Effect of protein aggregation on the spectroscopic properties and excited state kinetics of the LHCII pigment–protein complex from green plants. Photosynthesis Research 2013, 118 (3) , 259-276. https://doi.org/10.1007/s11120-013-9924-0
    41. Julia Zaks, Kapil Amarnath, Emily J. Sylak-Glassman, Graham R. Fleming. Models and measurements of energy-dependent quenching. Photosynthesis Research 2013, 116 (2-3) , 389-409. https://doi.org/10.1007/s11120-013-9857-7

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect