ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
ADDITION / CORRECTIONThis article has been corrected. View the notice.

Distinct Physicochemical Properties of the First Ceria Monolayer on Cu(111)

View Author Information
Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Praha 8, Czech Republic
Theory@Elettra group, Istituto Officina dei Materiali, CNR-IOM DEMOCRITOS, s.s. 14 km 163,5 in AREA Science Park, I-34149 Trieste, Italy
§ SISSA, Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, I-34136 Trieste, Italy
Cite this: J. Phys. Chem. C 2012, 116, 11, 6677–6684
Publication Date (Web):March 13, 2012
https://doi.org/10.1021/jp211955v
Copyright © 2012 American Chemical Society

    Article Views

    983

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (3 MB)

    Abstract

    Abstract Image

    Discontinuous ceria layers on Cu(111) represent heterogeneous catalysts with notable activities in water–gas shift and CO oxidation reactions. Ultrathin ceria islands in these catalysts are composed of monolayers of ceria exhibiting CeO2(111) surface ordering and bulklike vertical stacking (O–Ce–O) down to a single ceria monolayer representing the oxide-metal interface. Scanning tunneling microscopy (STM) reveals marked differences in strain buildup and the structure of oxygen vacancies in this first ceria monolayer compared to thicker ceria layers on Cu(111). Ab-initio calculations allow us to trace back the distinct properties of the first ceria monolayer to pronounced finite size effects when the limiting thickness of the oxide monolayer and the proximity of metal substrate cause significant rearrangement of charges and oxygen vacancies compared to thicker and/or bulk ceria.

    Cited By

    This article is cited by 38 publications.

    1. Stefania Benedetti, Giulia Righi, Paola Luches, Sergio D’Addato, Rita Magri, Annabella Selloni. Surface Reactivity of Ag-Modified Ceria to Hydrogen: A Combined Experimental and Theoretical Investigation. ACS Applied Materials & Interfaces 2020, 12 (24) , 27682-27690. https://doi.org/10.1021/acsami.0c03968
    2. Seyedeh Behnaz Varandili, Jianfeng Huang, Emad Oveisi, Gian Luca De Gregorio, Mounir Mensi, Michal Strach, Jan Vavra, Chethana Gadiyar, Arghya Bhowmik, Raffaella Buonsanti. Synthesis of Cu/CeO2-x Nanocrystalline Heterodimers with Interfacial Active Sites To Promote CO2 Electroreduction. ACS Catalysis 2019, 9 (6) , 5035-5046. https://doi.org/10.1021/acscatal.9b00010
    3. Filip Dvořák, Lucie Szabová, Viktor Johánek, Matteo Farnesi Camellone, Vitalii Stetsovych, Mykhailo Vorokhta, Andrii Tovt, Tomáš Skála, Iva Matolínová, Yoshitaka Tateyama, Josef Mysliveček, Stefano Fabris, Vladimír Matolín. Bulk Hydroxylation and Effective Water Splitting by Highly Reduced Cerium Oxide: The Role of O Vacancy Coordination. ACS Catalysis 2018, 8 (5) , 4354-4363. https://doi.org/10.1021/acscatal.7b04409
    4. Taehun Lee, Yonghyuk Lee, Simone Piccinin, and Aloysius Soon . Ab Initio Thermodynamics of Surface Oxide Structures under Controlled Growth Conditions. The Journal of Physical Chemistry C 2017, 121 (4) , 2228-2233. https://doi.org/10.1021/acs.jpcc.6b11445
    5. Liying Ma, Nassar Doudin, Svetlozar Surnev, Giovanni Barcaro, Luca Sementa, Alessandro Fortunelli, and Falko P. Netzer . Lattice Strain Defects in a Ceria Nanolayer. The Journal of Physical Chemistry Letters 2016, 7 (7) , 1303-1309. https://doi.org/10.1021/acs.jpclett.6b00253
    6. Fabio R. Negreiros, Matteo Farnesi Camellone, and Stefano Fabris . Effects of Thermal Fluctuations on the Hydroxylation and Reduction of Ceria Surfaces by Molecular H2. The Journal of Physical Chemistry C 2015, 119 (37) , 21567-21573. https://doi.org/10.1021/acs.jpcc.5b07030
    7. Lucie Szabová, Yoshitaka Tateyama, Vladimír Matolín, Stefano Fabris. Water Adsorption and Dissociation at Metal-Supported Ceria Thin Films: Thickness and Interface-Proximity Effects Studied with DFT+U Calculations. The Journal of Physical Chemistry C 2015, 119 (5) , 2537-2544. https://doi.org/10.1021/jp5109152
    8. Marie Aulická, Tomáš Duchoň, Filip Dvořák, Vitalii Stetsovych, Jan Beran, Kateřina Veltruská, Josef Mysliveček, Karel Mašek, and Vladimír Matolín . Faceting Transition at the Oxide–Metal Interface: (13 13 1) Facets on Cu(110) Induced by Carpet-Like Ceria Overlayer. The Journal of Physical Chemistry C 2015, 119 (4) , 1851-1858. https://doi.org/10.1021/jp5099359
    9. Fabio R. Negreiros and Stefano Fabris . Role of Cluster Morphology in the Dynamics and Reactivity of Subnanometer Pt Clusters Supported on Ceria Surfaces. The Journal of Physical Chemistry C 2014, 118 (36) , 21014-21020. https://doi.org/10.1021/jp506404z
    10. Tomáš Duchoň, Filip Dvořák, Marie Aulická, Vitalii Stetsovych, Mykhailo Vorokhta, Daniel Mazur, Kateřina Veltruská, Tomáš Skála, Josef Mysliveček, Iva Matolínová, and Vladimír Matolín . Ordered Phases of Reduced Ceria As Epitaxial Films on Cu(111). The Journal of Physical Chemistry C 2014, 118 (1) , 357-365. https://doi.org/10.1021/jp409220p
    11. P. Luches, F. Pagliuca, S. Valeri, and F. Boscherini . Structure of Ultrathin CeO2 Films on Pt(111) by Polarization-Dependent X-ray Absorption Fine Structure. The Journal of Physical Chemistry C 2013, 117 (2) , 1030-1036. https://doi.org/10.1021/jp310375t
    12. Qin Zhou, Humaira Akber, Aidi Zhao, Fan Yang, Zhi Liu. Interaction of Water with Ceria Thin Film. ChemCatChem 2023, 15 (15) https://doi.org/10.1002/cctc.202300318
    13. Jie Jiang, Saloni Pendse, Lifu Zhang, Jian Shi. Strain related new sciences and devices in low-dimensional binary oxides. Nano Energy 2022, 104 , 107917. https://doi.org/10.1016/j.nanoen.2022.107917
    14. Ling Zhang, Guo-Xiang Zhi, Qingling Meng, Wenzhen Dou, Chenqiang Hua, Lu Sun, Miao Zhou. Polaronic defects in monolayer CeO2: Quantum confinement effect and strain engineering. The Journal of Chemical Physics 2022, 157 (19) https://doi.org/10.1063/5.0122958
    15. Ali El Barraj, Baptiste Chatelain, Clemens Barth. High-temperature oxidation and reduction of the inverse ceria/Cu(111) catalyst characterized by LEED, STM, nc-AFM and KPFM. Journal of Physics: Condensed Matter 2022, 34 (1) , 014001. https://doi.org/10.1088/1361-648X/ac26f9
    16. Giulia Righi, Luca Anderlini, Rita Magri. Reduced cerium configurations in CeO2/Ag inverse catalysis. Materials Letters 2020, 261 , 126935. https://doi.org/10.1016/j.matlet.2019.126935
    17. Haoran Chen, Wenhui Rong, Zhichao Huang, Zhantao Peng, Zhen Xu, Junyi Zhou, Bin Di, Xiong Zhou, Kai Wu. Atomic structures and local electronic properties of K- and Rh-modified ceria/Pt(111) inverse model catalysts. The Journal of Chemical Physics 2019, 151 (18) https://doi.org/10.1063/1.5128960
    18. J. Beran, K. Mašek. RHEED and XPS study of palladium interaction with cerium oxide surface. Vacuum 2019, 167 , 438-444. https://doi.org/10.1016/j.vacuum.2019.06.023
    19. Matthew J. Wolf, Christopher W. M. Castleton, Kersti Hermansson, Jolla Kullgren. STM Images of Anionic Defects at CeO2(111)—A Theoretical Perspective. Frontiers in Chemistry 2019, 7 https://doi.org/10.3389/fchem.2019.00212
    20. Taehun Lee, Yun-Jae Lee, Krisztián Palotás, Giyeok Lee, Catherine Stampfl, Aloysius Soon. Polymorphic expressions of ultrathin oxidic layers of Mo on Au(111). Nanoscale 2019, 11 (13) , 6023-6035. https://doi.org/10.1039/C8NR10278C
    21. Andrii Tovt, Vitalii Stetsovych, Filip Dvořák, Viktor Johánek, Josef Mysliveček. Ordered phases of reduced ceria as inverse model catalysts. Applied Surface Science 2019, 465 , 557-563. https://doi.org/10.1016/j.apsusc.2018.09.068
    22. Jan Ingo Flege, Jan Höcker, Jerzy T. Sadowski, Sanjaya D. Senanayake, Jens Falta. Nucleation, morphology, and structure of sub‐nm thin ceria islands on Rh(111). Surface and Interface Analysis 2019, 51 (1) , 110-114. https://doi.org/10.1002/sia.6567
    23. Johanna Hackl, Tomáš Duchoň, Daniel M. Gottlob, Stefan Cramm, Kateřina Veltruská, Vladimír Matolín, Slavomír Nemšák, Claus M. Schneider. On the growth mechanisms of polar (100) surfaces of ceria on copper (100). Surface Science 2018, 671 , 1-5. https://doi.org/10.1016/j.susc.2018.01.008
    24. Takuya Masuda, Kohei Uosaki. In situ determination of electronic structure at solid/liquid interfaces. Journal of Electron Spectroscopy and Related Phenomena 2017, 221 , 88-98. https://doi.org/10.1016/j.elspec.2017.03.012
    25. Mykhailo Chundak, Michiko Yoshitake, Michal Vaclavu, Vladimir Matolin, Toyohiro Chikyow. Influence of chemical equilibrium in introduced oxygen vacancies on resistive switching in epitaxial Pt-CeO2 system. Journal of Solid State Electrochemistry 2017, 21 (3) , 657-664. https://doi.org/10.1007/s10008-016-3400-7
    26. Paola Luches, Sergio D’Addato. Reducible Oxides as Ultrathin Epitaxial Films. 2016, 119-148. https://doi.org/10.1007/978-3-319-28332-6_4
    27. Iva Matolínová, Josef Mysliveček, Vladimír Matolín. CeOx(111)/Cu(111) Thin Films as Model Catalyst Supports. 2016, 233-250. https://doi.org/10.1007/978-3-319-28332-6_8
    28. Yaroslava Lykhach, Alberto Figueroba, Matteo Farnesi Camellone, Armin Neitzel, Tomáš Skála, Fabio R. Negreiros, Mykhailo Vorokhta, Nataliya Tsud, Kevin C. Prince, Stefano Fabris, Konstantin M. Neyman, Vladimír Matolín, Jörg Libuda. Reactivity of atomically dispersed Pt 2+ species towards H 2 : model Pt–CeO 2 fuel cell catalyst. Physical Chemistry Chemical Physics 2016, 18 (11) , 7672-7679. https://doi.org/10.1039/C6CP00627B
    29. Gabriele Gasperi, Lucia Amidani, Francesco Benedetti, Federico Boscherini, Pieter Glatzel, Sergio Valeri, Paola Luches. Electronic properties of epitaxial cerium oxide films during controlled reduction and oxidation studied by resonant inelastic X-ray scattering. Physical Chemistry Chemical Physics 2016, 18 (30) , 20511-20517. https://doi.org/10.1039/C6CP04407G
    30. Paola Luches, Livia Giordano, Vincenzo Grillo, Gian Carlo Gazzadi, Stefano Prada, Marco Campanini, Giovanni Bertoni, Cesar Magen, Federico Pagliuca, Gianfranco Pacchioni, Sergio Valeri. Atomic Scale Structure and Reduction of Cerium Oxide at the Interface with Platinum. Advanced Materials Interfaces 2015, 2 (18) , 1500375. https://doi.org/10.1002/admi.201500375
    31. Paola Luches, Sergio Valeri. Structure, Morphology and Reducibility of Epitaxial Cerium Oxide Ultrathin Films and Nanostructures. Materials 2015, 8 (9) , 5818-5833. https://doi.org/10.3390/ma8095278
    32. Josef Mysliveček, Vladimir Matolín, Iva Matolínová. Heteroepitaxy of Cerium Oxide Thin Films on Cu(111). Materials 2015, 8 (9) , 6346-6359. https://doi.org/10.3390/ma8095307
    33. Gang Niu, Marvin Hartwig Zoellner, Thomas Schroeder, Andreas Schaefer, Jin-Hao Jhang, Volkmar Zielasek, Marcus Bäumer, Henrik Wilkens, Joachim Wollschläger, Reinhard Olbrich, Christian Lammers, Michael Reichling. Controlling the physics and chemistry of binary and ternary praseodymium and cerium oxide systems. Physical Chemistry Chemical Physics 2015, 17 (38) , 24513-24540. https://doi.org/10.1039/C5CP02283E
    34. David C. Grinter, Chi L. Pang, Christopher A. Muryn, Francesco Maccherozzi, Sarnjeet S. Dhesi, Geoff Thornton. Characterising ultrathin ceria films at the nanoscale: Combining spectroscopy and microscopy. Journal of Electron Spectroscopy and Related Phenomena 2014, 195 , 13-17. https://doi.org/10.1016/j.elspec.2014.03.014
    35. Stefano Agnoli, Askia E. Reeder, Sanjaya D. Senanayake, Jan Hrbek, José A. Rodriguez. Structure and special chemical reactivity of interface-stabilized cerium oxide nanolayers on TiO 2 (110). Nanoscale 2014, 6 (2) , 800-810. https://doi.org/10.1039/C3NR04623K
    36. Cristhiane Guimarães Maciel, Tatiana de Freitas Silva, Elisabete Moreira Assaf, José Mansur Assaf. Hydrogen production and purification from the water–gas shift reaction on CuO/CeO2–TiO2 catalysts. Applied Energy 2013, 112 , 52-59. https://doi.org/10.1016/j.apenergy.2013.06.003
    37. Lucie Szabová, Tomáš Skála, Iva Matolínová, Stefano Fabris, Matteo Farnesi Camellone, Vladimír Matolín. Copper-ceria interaction: A combined photoemission and DFT study. Applied Surface Science 2013, 267 , 12-16. https://doi.org/10.1016/j.apsusc.2012.04.098
    38. Oleksandr Stetsovych, Filip Dvořák, Lucie Szabová, Stefano Fabris, Josef Mysliveček, Vladimír Matolín. Nanometer-Range Strain Distribution in Layered Incommensurate Systems. Physical Review Letters 2012, 109 (26) https://doi.org/10.1103/PhysRevLett.109.266102

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect