ACS Publications. Most Trusted. Most Cited. Most Read
Spiky Gold Nanoshells: Synthesis and Enhanced Scattering Properties
My Activity

Figure 1Loading Img
    Article

    Spiky Gold Nanoshells: Synthesis and Enhanced Scattering Properties
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
    Department of Chemistry, Rice University, Houston, Texas 77251, United States
    *E-mail: [email protected] (S.-J.P.). Contact [email protected] (Z.F.) for FDTD simulations.
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2012, 116, 18, 10318–10324
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp300009b
    Published March 20, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Gold nanoshells covered with sharp rods called “spiky gold nanoshells” are synthesized by employing a silver-assisted seed-growth method for heterogeneous nanoparticle syntheses at polymer/water interfaces. It is found that silver ions in the growth solution play an important role in forming uniform gold shells as well as regulating the surface morphology. The optical properties of spiky gold nanoshells are investigated by single-particle scattering measurements, single-particle surface-enhanced Raman scattering measurements, and finite-difference time-domain modeling. The scattering intensities from isolated spiky nanoshells are significantly enhanced compared to those of conventional smooth shells. Moreover, due to the abundant hot spots on spiky nanoshells, the SERS signal is readily observed from single spiky shells with a very small intensity variation (35%), whereas there is no detectable signal from isolated smooth shells. These results demonstrate that our synthetic method provides a straightforward way to organize metal nanoparticles into well-defined assemblies with enhanced scattering properties.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Additional TEM images and extinction spectra of gold nanoshells grown in different conditions, EDX data of spiky nanoshells, and additional FDTD simulations. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 74 publications.

    1. Sungwoo Lee, Qiang Zhao, Soohyun Lee, MohammadNavid Haddadnezhad, Insub Jung, Sungho Park. Plasmonic Nanoantenna: Enhanced Near-Field Focusing with Branched Gold Dual-Rim Nanorings. The Journal of Physical Chemistry C 2024, 128 (17) , 7202-7210. https://doi.org/10.1021/acs.jpcc.4c01170
    2. Xiaoyu Zhang, Zhenzhen Huang, Zilong Guo, Yandong Han, Lijuan Zhang, Wensheng Yang. Fabrication of Bovine Serum Albumin@Au Particles for Colorimetric Detection of Glutathione. ACS Applied Bio Materials 2020, 3 (12) , 9109-9116. https://doi.org/10.1021/acsabm.0c01321
    3. Auston G. Butterfield, Benjamin C. Steimle, Raymond E. Schaak. Retrosynthetic Design of Morphologically Complex Metal Sulfide Nanoparticles Using Sequential Partial Cation Exchange and Chemical Etching. ACS Materials Letters 2020, 2 (9) , 1106-1114. https://doi.org/10.1021/acsmaterialslett.0c00287
    4. Jeongwon Kim, Sungjae Yoo, Jae-Myoung Kim, Sungwoo Choi, Juri Kim, So-Jung Park, Doojae Park, Jwa-Min Nam, Sungho Park. Synthesis and Single-Particle Surface-Enhanced Raman Scattering Study of Plasmonic Tripod Nanoframes with Y-Shaped Hot-Zones. Nano Letters 2020, 20 (6) , 4362-4369. https://doi.org/10.1021/acs.nanolett.0c01084
    5. Judith Langer, Dorleta Jimenez de Aberasturi, Javier Aizpurua, Ramon A. Alvarez-Puebla, Baptiste Auguié, Jeremy J. Baumberg, Guillermo C. Bazan, Steven E. J. Bell, Anja Boisen, Alexandre G. Brolo, Jaebum Choo, Dana Cialla-May, Volker Deckert, Laura Fabris, Karen Faulds, F. Javier García de Abajo, Royston Goodacre, Duncan Graham, Amanda J. Haes, Christy L. Haynes, Christian Huck, Tamitake Itoh, Mikael Käll, Janina Kneipp, Nicholas A. Kotov, Hua Kuang, Eric C. Le Ru, Hiang Kwee Lee, Jian-Feng Li, Xing Yi Ling, Stefan A. Maier, Thomas Mayerhöfer, Martin Moskovits, Kei Murakoshi, Jwa-Min Nam, Shuming Nie, Yukihiro Ozaki, Isabel Pastoriza-Santos, Jorge Perez-Juste, Juergen Popp, Annemarie Pucci, Stephanie Reich, Bin Ren, George C. Schatz, Timur Shegai, Sebastian Schlücker, Li-Lin Tay, K. George Thomas, Zhong-Qun Tian, Richard P. Van Duyne, Tuan Vo-Dinh, Yue Wang, Katherine A. Willets, Chuanlai Xu, Hongxing Xu, Yikai Xu, Yuko S. Yamamoto, Bing Zhao, Luis M. Liz-Marzán. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020, 14 (1) , 28-117. https://doi.org/10.1021/acsnano.9b04224
    6. Joshua D. Smith, Zachary J. Woessner, Sara E. Skrabalak. Branched Plasmonic Nanoparticles with High Symmetry. The Journal of Physical Chemistry C 2019, 123 (30) , 18113-18123. https://doi.org/10.1021/acs.jpcc.9b01703
    7. Myeong Geun Cha, Homan Kang, Yun-Sik Choi, Yoojin Cho, Minwoo Lee, Ho-Young Lee, Yoon-Sik Lee, Dae Hong Jeong. Effect of Alkylamines on Morphology Control of Silver Nanoshells for Highly Enhanced Raman Scattering. ACS Applied Materials & Interfaces 2019, 11 (8) , 8374-8381. https://doi.org/10.1021/acsami.8b15674
    8. Sarah A. Lindley, Jin Z. Zhang. Bumpy Hollow Gold Nanospheres for Theranostic Applications: Effect of Surface Morphology on Photothermal Conversion Efficiency. ACS Applied Nano Materials 2019, 2 (2) , 1072-1081. https://doi.org/10.1021/acsanm.8b02331
    9. Yang Zhang, Chen Li, Zahra Fakhraai, Basem Moosa, Peng Yang, Niveen M. Khashab. Synthesis of Spiked Plasmonic Nanorods with an Interior Nanogap for Quantitative Surface-Enhanced Raman Scattering Analysis. ACS Omega 2018, 3 (10) , 14399-14405. https://doi.org/10.1021/acsomega.8b01153
    10. Ioannis G. Theodorou, Zaynab A. R. Jawad, Qianfan Jiang, Eric O. Aboagye, Alexandra E. Porter, Mary P. Ryan, and Fang Xie . Gold Nanostar Substrates for Metal-Enhanced Fluorescence through the First and Second Near-Infrared Windows. Chemistry of Materials 2017, 29 (16) , 6916-6926. https://doi.org/10.1021/acs.chemmater.7b02313
    11. Akram Abbasi, Keunhan Park, Arijit Bose, and Geoffrey D. Bothun . Near-Infrared Responsive Gold–Layersome Nanoshells. Langmuir 2017, 33 (21) , 5321-5327. https://doi.org/10.1021/acs.langmuir.7b01273
    12. Elyahb Allie Kwizera, Elise Chaffin, Xiao Shen, Jingyi Chen, Qiang Zou, Zhiming Wu, Zheng Gai, Saheel Bhana, Ryan O’Connor, Lijia Wang, Hitesh Adhikari, Sanjay R. Mishra, Yongmei Wang, and Xiaohua Huang . Size- and Shape-Controlled Synthesis and Properties of Magnetic–Plasmonic Core–Shell Nanoparticles. The Journal of Physical Chemistry C 2016, 120 (19) , 10530-10546. https://doi.org/10.1021/acs.jpcc.6b00875
    13. Ahmad W. Amer, Mostafa A. El-Sayed, and Nageh K. Allam . Tuning The Photoactivity of Zirconia Nanotubes-Based Photoanodes via Ultrathin Layers of ZrN: An Effective Approach toward Visible-Light Water Splitting. The Journal of Physical Chemistry C 2016, 120 (13) , 7025-7032. https://doi.org/10.1021/acs.jpcc.6b01144
    14. Mandeep Singh Bakshi . How Surfactants Control Crystal Growth of Nanomaterials. Crystal Growth & Design 2016, 16 (2) , 1104-1133. https://doi.org/10.1021/acs.cgd.5b01465
    15. Zhaoxia Qian, Chen Li, Zahra Fakhraai, and So-Jung Park . Unusual Weak Interparticle Distance Dependence in Raman Enhancement from Nanoparticle Dimers. The Journal of Physical Chemistry C 2016, 120 (3) , 1824-1830. https://doi.org/10.1021/acs.jpcc.5b09396
    16. Jeung Hun Park, Nicholas M. Schneider, Joseph M. Grogan, Mark C. Reuter, Haim H. Bau, Suneel Kodambaka, and Frances M. Ross . Control of Electron Beam-Induced Au Nanocrystal Growth Kinetics through Solution Chemistry. Nano Letters 2015, 15 (8) , 5314-5320. https://doi.org/10.1021/acs.nanolett.5b01677
    17. Qun Fu, Zhibing Zhan, Jinxia Dou, Xianzheng Zheng, Rui Xu, Minghong Wu, and Yong Lei . Highly Reproducible and Sensitive SERS Substrates with Ag Inter-Nanoparticle Gaps of 5 nm Fabricated by Ultrathin Aluminum Mask Technique. ACS Applied Materials & Interfaces 2015, 7 (24) , 13322-13328. https://doi.org/10.1021/acsami.5b01524
    18. Qingfeng Zhang, Nicolas Large, and Hui Wang . Gold Nanoparticles with Tipped Surface Structures as Substrates for Single-Particle Surface-Enhanced Raman Spectroscopy: Concave Nanocubes, Nanotrisoctahedra, and Nanostars. ACS Applied Materials & Interfaces 2014, 6 (19) , 17255-17267. https://doi.org/10.1021/am505245z
    19. Simon P. Hastings, Pattanawit Swanglap, Zhaoxia Qian, Ying Fang, So-Jung Park, Stephan Link, Nader Engheta, and Zahra Fakhraai . Quadrupole-Enhanced Raman Scattering. ACS Nano 2014, 8 (9) , 9025-9034. https://doi.org/10.1021/nn5022346
    20. Antonio Topete, Manuel Alatorre-Meda, Eva M. Villar-Álvarez, Adriana Cambón, Silvia Barbosa, Pablo Taboada, and Víctor Mosquera . Simple Control of Surface Topography of Gold Nanoshells by a Surfactant-less Seeded-Growth Method. ACS Applied Materials & Interfaces 2014, 6 (14) , 11142-11157. https://doi.org/10.1021/am500989e
    21. Antonio Topete, Manuel Alatorre-Meda, Pablo Iglesias, Eva M. Villar-Alvarez, Silvia Barbosa, José A. Costoya, Pablo Taboada, and Víctor Mosquera . Fluorescent Drug-Loaded, Polymeric-Based, Branched Gold Nanoshells for Localized Multimodal Therapy and Imaging of Tumoral Cells. ACS Nano 2014, 8 (3) , 2725-2738. https://doi.org/10.1021/nn406425h
    22. Srikanth Pedireddy, Anran Li, Michel Bosman, In Yee Phang, Shuzhou Li, and Xing Yi Ling . Synthesis of Spiky Ag–Au Octahedral Nanoparticles and Their Tunable Optical Properties. The Journal of Physical Chemistry C 2013, 117 (32) , 16640-16649. https://doi.org/10.1021/jp4063077
    23. Wentao Wang, Yuchun Han, Maozhang Tian, Yaxun Fan, Yongqiang Tang, Mingyuan Gao, and Yilin Wang . Cationic Gemini Surfactant-Assisted Synthesis of Hollow Au Nanostructures by Stepwise Reductions. ACS Applied Materials & Interfaces 2013, 5 (12) , 5709-5716. https://doi.org/10.1021/am4011226
    24. Brenda L. Sanchez-Gaytan, Zhaoxia Qian, Simon P. Hastings, Michael L. Reca, Zahra Fakhraai, and So-Jung Park . Controlling the Topography and Surface Plasmon Resonance of Gold Nanoshells by a Templated Surfactant-Assisted Seed Growth Method. The Journal of Physical Chemistry C 2013, 117 (17) , 8916-8923. https://doi.org/10.1021/jp401189k
    25. Antonio Topete, Alejandro Varela, Mariana Navarro-Real, Ramón Rial, Alberto Pardo, Pablo Taboada. Revisiting gold nanoshells as multifunctional biomedical nanotools. Coordination Chemistry Reviews 2025, 523 , 216250. https://doi.org/10.1016/j.ccr.2024.216250
    26. Aidan J. Canning, Tuan Vo-Dinh. Caged gold nanostars: a novel plasmonic nanoplatform with potential theranostic applications. Nanoscale 2024, 16 (18) , 8828-8835. https://doi.org/10.1039/D3NR04130A
    27. Sunghee Lee, Soyun Lee, Soojin Hwang, So‐Jung Park. Gold nanoshells with varying morphologies through templated surfactant‐assisted seed‐growth method. Bulletin of the Korean Chemical Society 2024, 30 https://doi.org/10.1002/bkcs.12845
    28. Yong Zhou, Jiahui Zhu, Wuying Huang, Zhenwei Wang, Kuanguo Li, Wanxia Huang. Nanoprisms in plasmonic sensing: A comprehensive analysis of geometric effects. Results in Physics 2024, 56 , 107314. https://doi.org/10.1016/j.rinp.2023.107314
    29. Bhavya M.B., Novuhulu Rhakho, Satya Ranjan Jena, Sudesh Yadav, Ali Altaee, Manav Saxena, Akshaya K. Samal. Detection of PFAS via surface-enhanced Raman scattering: Challenges and future perspectives. Sustainable Chemistry for the Environment 2023, 3 , 100031. https://doi.org/10.1016/j.scenv.2023.100031
    30. Xingjuan Zhao, Yuechen Jia, Gregory Q. Wallace, C. Geraldine Bazuin, Jean‐Francois Masson. Interrelated Roles of Multiple Key Structure‐Directing Agents in Seed‐Mediated Growth of Monodisperse and Multibranched Au Nanoparticles. ChemPhysChem 2023, 24 (13) https://doi.org/10.1002/cphc.202200842
    31. Ioannis G. Theodorou, Fotios Mpekris, Paris Papagiorgis, Myrofora Panagi, Maria Kalli, Louiza Potamiti, Kyriacos Kyriacou, Grigorios Itskos, Triantafyllos Stylianopoulos. Gold Nanobipyramids for Near-Infrared Fluorescence-Enhanced Imaging and Treatment of Triple-Negative Breast Cancer. Cancers 2023, 15 (14) , 3693. https://doi.org/10.3390/cancers15143693
    32. Andi Haryanto, Chan Woo Lee. Shell isolated nanoparticle enhanced Raman spectroscopy for mechanistic investigation of electrochemical reactions. Nano Convergence 2022, 9 (1) https://doi.org/10.1186/s40580-022-00301-1
    33. Bingfang Zou, Yonghui Wang, Shaomin Zhou, Shikuan Yang, Yongqiang Wang. Seed/ligand-cooperative growth of dense Au nanospikes on magnetic microparticles for SERS applications. Journal of Materials Chemistry C 2022, 10 (9) , 3368-3374. https://doi.org/10.1039/D1TC05947E
    34. Junais Habeeb Mokkath. Mapping nanoscale electric field hotspots of a plasmon–molecule system: A theoretical study. Physica E: Low-dimensional Systems and Nanostructures 2022, 137 , 115055. https://doi.org/10.1016/j.physe.2021.115055
    35. Tânia Ferreira-Gonçalves, David Ferreira, Hugo A Ferreira, Catarina P Reis. Nanogold-Based Materials in Medicine: From Their Origins to Their Future. Nanomedicine 2021, 16 (30) , 2695-2723. https://doi.org/10.2217/nnm-2021-0265
    36. Sunghee Lee, Kyunjong Sim, So Yoon Moon, Jisu Choi, Yoojung Jeon, Jwa‐Min Nam, So‐Jung Park. Controlled Assembly of Plasmonic Nanoparticles: From Static to Dynamic Nanostructures. Advanced Materials 2021, 33 (46) https://doi.org/10.1002/adma.202007668
    37. Mufasila Mumthaz Muhammed, Junais Habeeb Mokkath. Plasmon–Molecule Coupling with Directional Absorption Features: A First-Principles Study. Plasmonics 2021, 16 (4) , 1287-1296. https://doi.org/10.1007/s11468-021-01402-z
    38. Jakob Hübner, Jean-Baptiste Coty, Yan Busby, Denis Spitzer. Formation mechanisms of sub-micron pharmaceutical composite particles derived from far- and near-field Raman microscopy. Journal of Pharmaceutical Analysis 2021, 11 (4) , 480-489. https://doi.org/10.1016/j.jpha.2020.12.002
    39. Melissa Guarino‐Hotz, Jin Z. Zhang. Structural control and biomedical applications of plasmonic hollow gold nanospheres: A mini review. WIREs Nanomedicine and Nanobiotechnology 2021, 13 (4) https://doi.org/10.1002/wnan.1694
    40. M. B. Bhavya, Ramya Prabhu B., Bhamy Maithry Shenoy, Prangya Bhol, Swarnalata Swain, Manav Saxena, Neena S. John, Gopalkrishna Hegde, Akshaya K. Samal. Femtomolar detection of thiram via SERS using silver nanocubes as an efficient substrate. Environmental Science: Nano 2020, 7 (12) , 3999-4009. https://doi.org/10.1039/D0EN01049A
    41. Joon Ki Kim, Tae-Hyeon Park, Du-Jeon Jang. Surface-enhanced Raman scattering and photothermal effect of hollow Au nanourchins with well-defined cavities. Journal of Nanoparticle Research 2020, 22 (10) https://doi.org/10.1007/s11051-020-05034-y
    42. Gongguo Zhang, Xiaowei Fu, Zhiang Liu, Xiaoqian Luan, Fengli Qu, Yiqun Zheng. Crystallinity Variation in Seeded Growth of Gold Nanocrystals: the Role of Additive Ag +. ChemistrySelect 2020, 5 (15) , 4447-4453. https://doi.org/10.1002/slct.202000863
    43. Joon Ki Kim, Du-Jeon Jang. Hollow and inward-bumpy gold nanoshells fabricated using expanded silica mesopores as templates. New Journal of Chemistry 2019, 43 (24) , 9732-9739. https://doi.org/10.1039/C9NJ01713E
    44. Zhulin Huang, Guowen Meng, Xiaoye Hu, Qijun Pan, Dexian Huo, Hongjian Zhou, Yan Ke, Nianqiang Wu. Plasmon-tunable Au@Ag core-shell spiky nanoparticles for surface-enhanced Raman scattering. Nano Research 2019, 12 (2) , 449-455. https://doi.org/10.1007/s12274-018-2238-y
    45. Kai Liu, Hongpo Liu, Qikui Fan, Shumeng Zhang, Zhaojun Liu, Lu Han, Houshen Li, Chuanbo Gao. Solid‐to‐Hollow Conversion of Silver Nanocrystals by Surface‐Protected Etching. Chemistry – A European Journal 2018, 24 (71) , 19038-19044. https://doi.org/10.1002/chem.201804282
    46. Yu-Chen Wang, Éric Rhéaume, Frédéric Lesage, Ashok Kakkar. Synthetic Methodologies to Gold Nanoshells: An Overview. Molecules 2018, 23 (11) , 2851. https://doi.org/10.3390/molecules23112851
    47. Erin E. Bedford, Souhir Boujday, Claire-Marie Pradier, Frank X. Gu. Spiky gold shells on magnetic particles for DNA biosensors. Talanta 2018, 182 , 259-266. https://doi.org/10.1016/j.talanta.2018.01.094
    48. Sasiwimon Kraithong, Jitnapa Sirirak, Kittibandid Soisuwan, Nantanit Wanichacheva, Pattanawit Swanglap. Enhancing Sensitivity of Novel Hg2+ Fluorescent Sensor via Plasmonic Enhancement of Silver Nanoparticles. Sensors and Actuators B: Chemical 2018, 258 , 694-703. https://doi.org/10.1016/j.snb.2017.11.049
    49. Mena Aioub, Lauren A. Austin, Mostafa A. El-Sayed. Gold nanoparticles for cancer diagnostics, spectroscopic imaging, drug delivery, and plasmonic photothermal therapy. 2018, 41-91. https://doi.org/10.1016/B978-0-12-813661-4.00002-X
    50. Ian Bruzas, William Lum, Zohre Gorunmez, Laura Sagle. Advances in surface-enhanced Raman spectroscopy (SERS) substrates for lipid and protein characterization: sensing and beyond. The Analyst 2018, 143 (17) , 3990-4008. https://doi.org/10.1039/C8AN00606G
    51. Ioannis G. Theodorou, Qianfan Jiang, Lukas Malms, Xiangyu Xie, R. Charles Coombes, Eric O. Aboagye, Alexandra E. Porter, Mary P. Ryan, Fang Xie. Fluorescence enhancement from single gold nanostars: towards ultra-bright emission in the first and second near-infrared biological windows. Nanoscale 2018, 10 (33) , 15854-15864. https://doi.org/10.1039/C8NR04567D
    52. Masaki Ujihara. Solution-Phase Synthesis of Branched Metallic Nanoparticles for Plasmonic Applications . Journal of Oleo Science 2018, 67 (6) , 689-696. https://doi.org/10.5650/jos.ess17262
    53. Xuemin Zhang, Tieqiang Wang, Yunong Li, Yu Fu, Lei Guo. Optimally designed gold nanorattles with strong built-in hotspots and weak polarization dependence. Nanotechnology 2017, 28 (49) , 495201. https://doi.org/10.1088/1361-6528/aa96ea
    54. Adianez Garcia-Leis, Irene Rivera-Arreba, Santiago Sanchez-Cortes. Morphological tuning of plasmonic silver nanostars by controlling the nanoparticle growth mechanism: Application in the SERS detection of the amyloid marker Congo Red. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2017, 535 , 49-60. https://doi.org/10.1016/j.colsurfa.2017.09.013
    55. Apichat Pangdam, Kanet Wongravee, Supeera Nootchanat, Sanong Ekgasit. Urchin-like gold microstructures with tunable length of nanothorns. Materials & Design 2017, 130 , 140-148. https://doi.org/10.1016/j.matdes.2017.05.008
    56. Yong-Tae Kim, Joerg Schilling, Stefan L. Schweizer, Guido Sauer, Ralf B. Wehrspohn. Au coated PS nanopillars as a highly ordered and reproducible SERS substrate. Photonics and Nanostructures - Fundamentals and Applications 2017, 25 , 65-71. https://doi.org/10.1016/j.photonics.2017.03.006
    57. Simona E. Hunyadi Murph, Kaitlin J. Coopersmith, George K. Larsen. Nanoscale Materials: Fundamentals and Emergent Properties. 2017, 7-28. https://doi.org/10.1007/978-3-319-59662-4_2
    58. Masaki Ujihara, Toyoko Imae. Surface-Enhanced Spectroscopy for Surface Characterization. 2017, 115-154. https://doi.org/10.1016/B978-0-444-63739-0.00004-9
    59. Elyahb Allie Kwizera, Elise Chaffin, Yongmei Wang, Xiaohua Huang. Synthesis and properties of magnetic-optical core–shell nanoparticles. RSC Advances 2017, 7 (28) , 17137-17153. https://doi.org/10.1039/C7RA01224A
    60. Ji‐eun Park, Danielle Reifsnyder Hickey, Sangmi Jun, Seulki Kang, Xiaole Hu, Xi‐Jun Chen, So‐Jung Park. Surfactant‐Assisted Emulsion Self‐Assembly of Nanoparticles into Hollow Vesicle‐Like Structures and 2D Plates. Advanced Functional Materials 2016, 26 (43) , 7791-7798. https://doi.org/10.1002/adfm.201603971
    61. Yuan-Fong Chou Chau, Chee Ming Lim, Chuanyo Lee, Hung Ji Huang, Chun-Ting Lin, N. T. R. N. Kumara, Voo Nyuk Yoong, Hai-Pang Chiang. Tailoring surface plasmon resonance and dipole cavity plasmon modes of scattering cross section spectra on the single solid-gold/gold-shell nanorod. Journal of Applied Physics 2016, 120 (9) https://doi.org/10.1063/1.4962175
    62. Sunjie Ye, Felix Benz, May C. Wheeler, Joseph Oram, Jeremy J. Baumberg, Oscar Cespedes, Hugo K. Christenson, Patricia Louise Coletta, Lars J. C. Jeuken, Alexander. F. Markham, Kevin Critchley, Stephen D. Evans. One-step fabrication of hollow-channel gold nanoflowers with excellent catalytic performance and large single-particle SERS activity. Nanoscale 2016, 8 (32) , 14932-14942. https://doi.org/10.1039/C6NR04045D
    63. Dong-Hyun Kim, Andrew C. Larson. Deoxycholate bile acid directed synthesis of branched Au nanostructures for near infrared photothermal ablation. Biomaterials 2015, 56 , 154-164. https://doi.org/10.1016/j.biomaterials.2015.03.048
    64. Simon P. Hastings, Zhaoxia Qian, Pattanawit Swanglap, Ying Fang, Nader Engheta, So-Jung Park, Stephan Link, Zahra Fakhraai. Modal interference in spiky nanoshells. Optics Express 2015, 23 (9) , 11290. https://doi.org/10.1364/OE.23.011290
    65. Jingshan Du, Junjie Yu, Yalin Xiong, Zhuoqing Lin, Hui Zhang, Deren Yang. Developing an aqueous approach for synthesizing Au and M@Au (M = Pd, CuPt) hybrid nanostars with plasmonic properties. Physical Chemistry Chemical Physics 2015, 17 (2) , 1265-1272. https://doi.org/10.1039/C4CP04757E
    66. Abhitosh Kedia, Harsh Kumar, Pandian Senthil Kumar. Tweaking anisotropic gold nanostars: covariant control of a polymer–solvent mixture complex. RSC Advances 2015, 5 (7) , 5205-5212. https://doi.org/10.1039/C4RA12846J
    67. E. E. Bedford, S. Boujday, C.-M. Pradier, F. X. Gu. Nanostructured and spiky gold in biomolecule detection: improving binding efficiencies and enhancing optical signals. RSC Advances 2015, 5 (21) , 16461-16475. https://doi.org/10.1039/C4RA13544J
    68. Xue Liu, Yang Shao, Yao Tang, Ke-Fu Yao. Highly Uniform and Reproducible Surface Enhanced Raman Scattering on Air-stable Metallic Glassy Nanowire Array. Scientific Reports 2014, 4 (1) https://doi.org/10.1038/srep05835
    69. Hai Xin Gu, Lin Xue, Ya Heng Zhang, Yong Feng Zhang, Li Ying Cao. Functionalized Gold Nanoparticles Coated Polymer Spheres as SERS Substrate for the Detection of TNT Explosives. Advanced Materials Research 2014, 924 , 366-370. https://doi.org/10.4028/www.scientific.net/AMR.924.366
    70. Wujin Cai, Wenqin Wang, Yanqiong Yang, Guohong Ren, Tao Chen. Sulfonated polystyrene spheres as template for fabricating hollow compact silver spheres via silver–mirror reaction at low temperature. RSC Adv. 2014, 4 (5) , 2295-2299. https://doi.org/10.1039/C3RA46210B
    71. Wenqin Wang, Wujin Cai, Yanqiong Yang, Haiqian Li, Min Cong, Tao Chen. Controlled growth of metal nanoparticles on amino-functionalized polystyrene microspheres and their application in surface-enhanced Raman spectroscopy. Materials Chemistry and Physics 2013, 142 (2-3) , 756-762. https://doi.org/10.1016/j.matchemphys.2013.08.040
    72. Wujin Cai, Wenqin Wang, Linchao Lu, Tao Chen. Coating sulfonated polystyrene microspheres with highly dense gold nanoparticle shell for SERS application. Colloid and Polymer Science 2013, 291 (8) , 2023-2029. https://doi.org/10.1007/s00396-013-2928-7
    73. Yanyan Liu, Yunxia Zhang, Hualin Ding, Sichao Xu, Ming Li, Fengyu Kong, Yuanyuan Luo, Guanghai Li. Self-assembly of noble metallic spherical aggregates from monodisperse nanoparticles: their synthesis and pronounced SERS and catalytic properties. Journal of Materials Chemistry A 2013, 1 (10) , 3362. https://doi.org/10.1039/c3ta00953j
    74. Xiansong Wang, Da-Peng Yang, Peng Huang, Min Li, Chao Li, Di Chen, Daxiang Cui. Hierarchically assembled Au microspheres and sea urchin-like architectures: formation mechanism and SERS study. Nanoscale 2012, 4 (24) , 7766. https://doi.org/10.1039/c2nr32405a

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2012, 116, 18, 10318–10324
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp300009b
    Published March 20, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    2994

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.