ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Quantum Wave-Packet Dynamics in Spin-Coupled Vibronic States

View Author Information
Institut für Physikalische und Theoretische Chemie and Röntgen Research Center for Complex Material Systems Campus Nord, Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany
Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany
§ Departamento de Quimica Fisica, Universidad Complutense, 28040 Madrid, Spain
School of Chemistry (BK21), Seoul National University, Seoul 151-747, Republic of Korea
Cite this: J. Phys. Chem. A 2012, 116, 46, 11427–11433
Publication Date (Web):September 4, 2012
https://doi.org/10.1021/jp306566x
Copyright © 2012 American Chemical Society

    Article Views

    504

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (1 MB)

    Abstract

    Abstract Image

    Extending the Shin–Metiu two-electron Hamiltonian, we construct a new Hamiltonian with effective singlet–triplet couplings. The Born–Oppenheimer electronic potentials and couplings are obtained for different parameters, and the laser-free dynamics is calculated with the full Hamiltonian and in the adiabatic limit. We compare the dynamics of the system using nuclear wave packets for different numbers of Born–Oppenheimer potentials and vibronic wave packets on a full 3-dimensional (two electron coordinates plus one nuclear coordinate) grid. Using strong fields, we show that it is possible to dynamically lock the spin state of the system by decoupling the singlet–triplet transition via a nonresonant dynamic Stark effect in the adiabatic limit. Although a similar spin-locking mechanism is observed in the dynamics of vibronic wave packets, multiphoton ionization cannot be neglected leading to the breakdown of the control scheme.

    Cited By

    This article is cited by 13 publications.

    1. Bo Y. Chang, Seokmin Shin, Vladimir S. Malinovsky, Ignacio R. Sola. Grid-Based Ehrenfest Model To Study Electron–Nuclear Processes. The Journal of Physical Chemistry A 2019, 123 (32) , 7171-7176. https://doi.org/10.1021/acs.jpca.9b05214
    2. Daniel Bultrini, Oriol Vendrell. Mixed quantum-classical dynamics for near term quantum computers. Communications Physics 2023, 6 (1) https://doi.org/10.1038/s42005-023-01451-2
    3. Karl Michael Ziems, Jakob Bruhnke, Volker Engel, Stefanie Gräfe. Nuclear–Electron Correlation Effects and Their Photoelectron Imprint in Molecular XUV Ionisation. Frontiers in Chemistry 2022, 10 https://doi.org/10.3389/fchem.2022.942633
    4. Thomas Schaupp, Volker Engel. Correlated three-dimensional electron-nuclear motion: Adiabatic dynamics vs passage of conical intersections. The Journal of Chemical Physics 2022, 156 (7) https://doi.org/10.1063/5.0082597
    5. F G Fröbel, K M Ziems, U Peschel, S Gräfe, A Schubert. The impact of electron–electron correlation in ultrafast attosecond single ionization dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics 2020, 53 (14) , 144005. https://doi.org/10.1088/1361-6455/ab8c21
    6. Thomas Schaupp, Volker Engel. On the calculation of time-dependent electron momenta within the Born-Oppenheimer approximation. The Journal of Chemical Physics 2019, 150 (16) https://doi.org/10.1063/1.5092562
    7. Ignacio R. Sola, Bo Y. Chang, Svetlana A. Malinovskaya, Vladimir S. Malinovsky. Quantum Control in Multilevel Systems. 2018, 151-256. https://doi.org/10.1016/bs.aamop.2018.02.003
    8. Bo Y. Chang, Ignacio R. Sola, Seokmin Shin. Molecular events in the light of strong fields: A light‐induced potential scenario. International Journal of Quantum Chemistry 2016, 116 (8) , 608-621. https://doi.org/10.1002/qua.25066
    9. Mirjam Falge, Patricia Vindel-Zandbergen, Volker Engel, Manfred Lein, Bo Y Chang, Ignacio R Sola. The time-scale of nonlinear events driven by strong fields: can one control the spin coupling before ionization runs over?. Journal of Physics B: Atomic, Molecular and Optical Physics 2014, 47 (12) , 124027. https://doi.org/10.1088/0953-4075/47/12/124027
    10. Michael Schüler, Jamal Berakdar. Generation and coherent control of pure spin currents via terahertz pulses. Applied Physics Letters 2014, 104 (16) https://doi.org/10.1063/1.4873615
    11. Patricia Vindel-Zandbergen, Mirjam Falge, Bo Y. Chang, Volker Engel, Ignacio R. Sola. Manipulating the singlet–triplet transition in ion strings by nonresonant dynamic Stark effect. 2014, 79-88. https://doi.org/10.1007/978-3-642-41272-1_10
    12. Patricia Vindel-Zandbergen, Mirjam Falge, Bo Y. Chang, Volker Engel, Ignacio R. Sola. Manipulating the singlet–triplet transition in ion strings by nonresonant dynamic Stark effect. Theoretical Chemistry Accounts 2013, 132 (6) https://doi.org/10.1007/s00214-013-1359-3
    13. Graham A. Worth, Gareth W. Richings. Optimal control by computer. Annual Reports Section "C" (Physical Chemistry) 2013, 109 , 113. https://doi.org/10.1039/c3pc90003g

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect