ACS Publications. Most Trusted. Most Cited. Most Read
Multinuclear Magnetic Resonance Crystallographic Structure Refinement and Cross-Validation Using Experimental and Computed Electric Field Gradients: Application to Na2Al2B2O7
My Activity

Figure 1Loading Img
    Article

    Multinuclear Magnetic Resonance Crystallographic Structure Refinement and Cross-Validation Using Experimental and Computed Electric Field Gradients: Application to Na2Al2B2O7
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry and Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario, K1N 6N5, Canada
    *E-mail: [email protected]; phone 1-613-562-5800 ext 2018; fax 1-613-562-5170.
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2012, 116, 36, 19472–19482
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp308273h
    Published August 22, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    An NMR crystallographic method is presented for the refinement of structures using electric field gradient (EFG) tensors measured using solid-state NMR spectroscopy and those calculated using the projector-augmented wave DFT method. As the calculated EFG data often overestimate the experimental data, the former are scaled to yield optimal agreement for a test set of compounds having highly accurate NMR data. A least-squares optimization procedure is then performed to minimize the difference between the experimental and the scaled calculated EFG tensors. This procedure yields high-quality crystal structures comparable to those obtained from pure DFT energy minimizations, as judged by their rmsd from single-crystal X-ray structures, and is based on experimental observables. Further improvement is obtained by simultaneously refining the structures against the experimental EFG tensor parameters and optimizing the lattice energy with DFT. We use this hybrid experimental–theoretical approach to refine the crystal structure of Na2Al2B2O7, a member of an important family of nonlinear optical materials, which has been the focus of study due to its tendency to form stacking faults. The resulting structures are subjected to a systematic cross-validation process using experimental 23Na, 11B, 17O, and 27Al EFG and chemical shift data, thereby demonstrating the validity of our strategy. This approach may be useful for the refinement of crystal structures of intrinsically polycrystalline materials for which typically only low quality structures are obtainable through traditional diffraction-based methods.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Comparison of the fractional coordinates for all the structures mentioned in the text, PXRD data, supplementary figures associated with the optimization of the structures of α-Al2O3 and NABO, and spectra acquired at multiple temperatures. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 56 publications.

    1. Brijith Thomas, Boyce S. Chang, Julia J. Chang, Martin Thuo, Aaron J. Rossini. Solid-State Nuclear Magnetic Resonance Spectroscopy-Assisted Structure Determination of Coordination Polymers. Chemistry of Materials 2022, 34 (17) , 7678-7691. https://doi.org/10.1021/acs.chemmater.2c00593
    2. Emily E. Morgan, Hayden A. Evans, Kartik Pilar, Craig M. Brown, Raphaële J. Clément, Ryo Maezono, Ram Seshadri, Bartomeu Monserrat, Anthony K. Cheetham. Lattice Dynamics in the NASICON NaZr2(PO4)3 Solid Electrolyte from Temperature-Dependent Neutron Diffraction, NMR, and Ab Initio Computational Studies. Chemistry of Materials 2022, 34 (9) , 4029-4038. https://doi.org/10.1021/acs.chemmater.2c00212
    3. Sean T. Holmes, Cameron S. Vojvodin, Robert W. Schurko. Dispersion-Corrected DFT Methods for Applications in Nuclear Magnetic Resonance Crystallography. The Journal of Physical Chemistry A 2020, 124 (49) , 10312-10323. https://doi.org/10.1021/acs.jpca.0c06372
    4. Frédéric A. Perras, Sooyeon Hwang, Yixian Wang, Ethan C. Self, Pengcheng Liu, Rana Biswas, Sudhan Nagarajan, Viet Hung Pham, Yixin Xu, J. Anibal Boscoboinik, Dong Su, Jagjit Nanda, Marek Pruski, David Mitlin. Site-Specific Sodiation Mechanisms of Selenium in Microporous Carbon Host. Nano Letters 2020, 20 (2) , 918-928. https://doi.org/10.1021/acs.nanolett.9b03797
    5. Laura Abella, Adam Philips, Jochen Autschbach. The Sodium Anion Is Strongly Perturbed in the Condensed Phase Even Though It Appears Like a Free Ion in Nuclear Magnetic Resonance Experiments. The Journal of Physical Chemistry Letters 2020, 11 (3) , 843-850. https://doi.org/10.1021/acs.jpclett.9b03432
    6. Andrew S. Tatton, Helen Blade, Steven P. Brown, Paul Hodgkinson, Leslie P. Hughes, Sten O. Nilsson Lill, Jonathan R. Yates. Improving Confidence in Crystal Structure Solutions Using NMR Crystallography: The Case of β-Piroxicam. Crystal Growth & Design 2018, 18 (6) , 3339-3351. https://doi.org/10.1021/acs.cgd.8b00022
    7. Andre Sutrisno, Bryan E. G. Lucier, Lu Zhang, Lihong Ding, Yueying Chu, Anmin Zheng, Yining Huang. Inspecting the Structure and Formation of Molecular Sieve SAPO-34 via 17O Solid-State NMR Spectroscopy. The Journal of Physical Chemistry C 2018, 122 (13) , 7260-7277. https://doi.org/10.1021/acs.jpcc.8b00746
    8. Carl P. Romao, Frédéric A. Perras, Ulrike Werner-Zwanziger, Joey A. Lussier, Kimberly J. Miller, Courtney M. Calahoo, Josef W. Zwanziger, Mario Bieringer, Bojan A. Marinkovic, David L. Bryce, and Mary Anne White . Zero Thermal Expansion in ZrMgMo3O12: NMR Crystallography Reveals Origins of Thermoelastic Properties. Chemistry of Materials 2015, 27 (7) , 2633-2646. https://doi.org/10.1021/acs.chemmater.5b00429
    9. Mingyue Li, Jenna Yehl, Guangjin Hou, Pabitra B. Chatterjee, Amir Goldbourt, Debbie C. Crans, and Tatyana Polenova . NMR Crystallography for Structural Characterization of Oxovanadium(V) Complexes: Deriving Coordination Geometry and Detecting Weakly Coordinated Ligands at Atomic Resolution in the Solid State. Inorganic Chemistry 2015, 54 (4) , 1363-1374. https://doi.org/10.1021/ic5022388
    10. Aaron J. Rossini, Cory M. Widdifield, Alexandre Zagdoun, Moreno Lelli, Martin Schwarzwälder, Christophe Copéret, Anne Lesage, and Lyndon Emsley . Dynamic Nuclear Polarization Enhanced NMR Spectroscopy for Pharmaceutical Formulations. Journal of the American Chemical Society 2014, 136 (6) , 2324-2334. https://doi.org/10.1021/ja4092038
    11. Kevin M. N. Burgess, Yang Xu, Matthew C. Leclerc, and David L. Bryce . Insight into Magnesium Coordination Environments in Benzoate and Salicylate Complexes through 25Mg Solid-State NMR Spectroscopy. The Journal of Physical Chemistry A 2013, 117 (30) , 6561-6570. https://doi.org/10.1021/jp405145b
    12. Javier Valenzuela Reina, Federico Civaia, Angela F. Harper, Christoph Scheurer, Simone S. Köcher. The EFG Rosetta Stone: translating between DFT calculations and solid state NMR experiments. Faraday Discussions 2025, 255 , 266-287. https://doi.org/10.1039/D4FD00075G
    13. Leonard J. Mueller. Uniform chi-squared model probabilities in NMR crystallography. Faraday Discussions 2025, 255 , 203-221. https://doi.org/10.1039/D4FD00114A
    14. Austin A. Peach, Carl H. Fleischer, Kirill Levin, Sean T. Holmes, Jazmine E. Sanchez, Robert W. Schurko. Quadrupolar NMR crystallography guided crystal structure prediction (QNMRX-CSP). CrystEngComm 2024, 26 (35) , 4782-4803. https://doi.org/10.1039/D3CE01306E
    15. Ryan Toomey, Luther Wang, Emily C. Heider, Joshua D. Hartman, Alexander J. Nichols, Dean A. A. Myles, Anna S. Gardberg, Garry J. McIntyre, Matthias Zeller, Manish A. Mehta, James K. Harper. NMR-guided refinement of crystal structures using 15 N chemical shift tensors. CrystEngComm 2024, 26 (25) , 3289-3302. https://doi.org/10.1039/D4CE00237G
    16. Wanli Zhang, Bryan E. G. Lucier, Victor V. Terskikh, Shoushun Chen, Yining Huang. Understanding Cu( i ) local environments in MOFs via 63/65 Cu NMR spectroscopy. Chemical Science 2024, 15 (18) , 6690-6706. https://doi.org/10.1039/D4SC00782D
    17. Bodo Zibrowius, Michael Fischer. On the Use of Solomon Echoes in 27 Al NMR Studies of Complex Aluminium Hydrides**. ChemistryOpen 2024, 13 (1) https://doi.org/10.1002/open.202300011
    18. David L. Bryce. Solid-state NMR of quadrupolar nuclei: Selected new methods and applications. 2022, 1-46. https://doi.org/10.1016/bs.arnmr.2022.06.001
    19. Luther Wang, James K. Harper. Refining crystal structures using 13 C NMR chemical shift tensors as a target function. CrystEngComm 2021, 23 (40) , 7061-7071. https://doi.org/10.1039/D1CE00960E
    20. Luther Wang, Alexander B. Elliott, Sean D. Moore, Gregory J. O. Beran, Joshua D. Hartman, James K. Harper. Modeling Small Structural and Environmental Differences in Solids with 15 N NMR Chemical Shift Tensors. ChemPhysChem 2021, 22 (10) , 1008-1017. https://doi.org/10.1002/cphc.202000985
    21. He Sun, Shyam Dwaraknath, Handong Ling, Xiaohui Qu, Patrick Huck, Kristin A. Persson, Sophia E. Hayes. Enabling materials informatics for 29Si solid-state NMR of crystalline materials. npj Computational Materials 2020, 6 (1) https://doi.org/10.1038/s41524-020-0328-3
    22. Patrick M. J. Szell, Lorraine Grébert, David L. Bryce. Rapid Identification of Halogen Bonds in Co‐Crystalline Powders via 127 I Nuclear Quadrupole Resonance Spectroscopy. Angewandte Chemie 2019, 131 (38) , 13613-13619. https://doi.org/10.1002/ange.201905788
    23. Patrick M. J. Szell, Lorraine Grébert, David L. Bryce. Rapid Identification of Halogen Bonds in Co‐Crystalline Powders via 127 I Nuclear Quadrupole Resonance Spectroscopy. Angewandte Chemie International Edition 2019, 58 (38) , 13479-13485. https://doi.org/10.1002/anie.201905788
    24. Bodo Zibrowius, Michael Felderhoff. On the preparation and NMR spectroscopic characterization of potassium aluminium tetrahydride KAlH 4. Physical Chemistry Chemical Physics 2019, 21 (23) , 12576-12584. https://doi.org/10.1039/C9CP01059A
    25. David L. Bryce. New frontiers for solid-state NMR across the periodic table: a snapshot of modern techniques and instrumentation. Dalton Transactions 2019, 48 (23) , 8014-8020. https://doi.org/10.1039/C9DT01801H
    26. César Leroy, Patrick M.J. Szell, David L. Bryce. On the importance of accurate nuclear quadrupole moments in NMR crystallography. Magnetic Resonance in Chemistry 2019, 57 (5) , 265-267. https://doi.org/10.1002/mrc.4787
    27. Sean T. Holmes, Wei D. Wang, Guangjin Hou, Cecil Dybowski, Wei Wang, Shi Bai. A new NMR crystallographic approach to reveal the calcium local structure of atorvastatin calcium. Physical Chemistry Chemical Physics 2019, 21 (12) , 6319-6326. https://doi.org/10.1039/C8CP07673A
    28. Yu.O. Zagorodniy, V. Chlan, H. Štěpánková, Y. Fomichov, J. Pejchal, V.V. Laguta, M. Nikl. Gallium preference for the occupation of tetrahedral sites in Lu3(Al5-xGax)O12 multicomponent garnet scintillators according to solid-state nuclear magnetic resonance and density functional theory calculations. Journal of Physics and Chemistry of Solids 2019, 126 , 93-104. https://doi.org/10.1016/j.jpcs.2018.10.027
    29. Stephen A. Utlak, Theodore M. Besmann. Thermodynamic assessment of the Na2O-Al2O3-SiO2-B2O3 pseudo-binary and -ternary systems. The Journal of Chemical Thermodynamics 2019, 130 , 251-268. https://doi.org/10.1016/j.jct.2018.09.001
    30. Elisa Carignani, Silvia Borsacchi, Maria Concistrè, Ole G. Johannessen, Marco Geppi. Direct observation of the effects of small-amplitude motions on 13C nuclear shielding tensors by means of low-temperature 2D MAS NMR spectroscopy. Chemical Physics Letters 2018, 706 , 107-112. https://doi.org/10.1016/j.cplett.2018.05.075
    31. Jiří Czernek, Jiří Brus. Describing the anisotropic 133Cs solid state NMR interactions in cesium chromate. Chemical Physics Letters 2017, 684 , 8-13. https://doi.org/10.1016/j.cplett.2017.06.026
    32. David L. Bryce. NMR crystallography: structure and properties of materials from solid-state nuclear magnetic resonance observables. IUCrJ 2017, 4 (4) , 350-359. https://doi.org/10.1107/S2052252517006042
    33. Patrick M. J. Szell, Shaina A. Gabriel, Russell D. D. Gill, Shirley Y. H. Wan, Bulat Gabidullin, David L. Bryce. 13 C and 19 F solid-state NMR and X-ray crystallographic study of halogen-bonded frameworks featuring nitrogen-containing heterocycles. Acta Crystallographica Section C Structural Chemistry 2017, 73 (3) , 157-167. https://doi.org/10.1107/S2053229616015023
    34. Cory M. Widdifield. Applications of Solid-State 43 Ca Nuclear Magnetic Resonance: Superconductors, Glasses, Biomaterials, and NMR Crystallography. 2017, 227-363. https://doi.org/10.1016/bs.arnmr.2017.04.006
    35. Cory M. Widdifield, Sten O. Nilsson Lill, Anders Broo, Maria Lindkvist, Anna Pettersen, Anna Svensk Ankarberg, Peter Aldred, Staffan Schantz, Lyndon Emsley. Does Z′ equal 1 or 2? Enhanced powder NMR crystallography verification of a disordered room temperature crystal structure of a p38 inhibitor for chronic obstructive pulmonary disease. Physical Chemistry Chemical Physics 2017, 19 (25) , 16650-16661. https://doi.org/10.1039/C7CP02349A
    36. Shunichi Kaneko, Yomei Tokuda, Hirokazu Masai. Additive Effects of Rare-Earth Ions in Sodium Aluminoborate Glasses Using 23Na and 27Al Magic Angle Spinning Nuclear Magnetic Resonance. New Journal of Glass and Ceramics 2017, 07 (03) , 58-76. https://doi.org/10.4236/njgc.2017.73006
    37. Jiří Czernek, Jiří Brus. The plane-wave DFT investigations into the structure and the 11B solid-state NMR parameters of lithium fluorooxoborates. Chemical Physics Letters 2016, 666 , 22-27. https://doi.org/10.1016/j.cplett.2016.10.071
    38. Jiří Czernek, Jiří Brus. On the predictions of the 11B solid state NMR parameters. Chemical Physics Letters 2016, 655-656 , 66-70. https://doi.org/10.1016/j.cplett.2016.05.027
    39. Frédéric A. Perras. Quantitative structure parameters from the NMR spectroscopy of quadrupolar nuclei. Pure and Applied Chemistry 2016, 88 (1-2) , 95-111. https://doi.org/10.1515/pac-2015-0801
    40. Sharon E. Ashbrook, David McKay. Combining solid-state NMR spectroscopy with first-principles calculations – a guide to NMR crystallography. Chemical Communications 2016, 52 (45) , 7186-7204. https://doi.org/10.1039/C6CC02542K
    41. Yijue Xu, Scott A. Southern, Patrick M. J. Szell, David L. Bryce. The role of solid-state nuclear magnetic resonance in crystal engineering. CrystEngComm 2016, 18 (28) , 5236-5252. https://doi.org/10.1039/C6CE01206J
    42. Aaron J. Rossini, Michael P. Hanrahan, Martin Thuo. Rapid acquisition of wideline MAS solid-state NMR spectra with fast MAS, proton detection, and dipolar HMQC pulse sequences. Physical Chemistry Chemical Physics 2016, 18 (36) , 25284-25295. https://doi.org/10.1039/C6CP04279A
    43. David L. Bryce. Solid-State NMR at the University of Ottawa. Canadian Journal of Chemistry 2015, 93 (5) , 485-491. https://doi.org/10.1139/cjc-2014-0559
    44. Elena Buixaderas, Elena Maria Anghel, Irina Atkinson, Patrick Simon, Veronica Bratan, Simona Petrescu. Combustion synthesis and structural characterization of the TiB2–(Na2O·2B2O3–Al2O3) composites. Ceramics International 2015, 41 (2) , 2680-2689. https://doi.org/10.1016/j.ceramint.2014.10.082
    45. Kevin M.N. Burgess, David L. Bryce. On the crystal structure of the vaterite polymorph of CaCO3: A calcium-43 solid-state NMR and computational assessment. Solid State Nuclear Magnetic Resonance 2015, 65 , 75-83. https://doi.org/10.1016/j.ssnmr.2014.08.003
    46. Cory M. Widdifield, Frédéric A. Perras, David L. Bryce. Solid-state 185/187 Re NMR and GIPAW DFT study of perrhenates and Re 2 (CO) 10 : chemical shift anisotropy, NMR crystallography, and a metal–metal bond. Physical Chemistry Chemical Physics 2015, 17 (15) , 10118-10134. https://doi.org/10.1039/C5CP00602C
    47. Charlotte Martineau. NMR crystallography: Applications to inorganic materials. Solid State Nuclear Magnetic Resonance 2014, 63-64 , 1-12. https://doi.org/10.1016/j.ssnmr.2014.07.001
    48. Charlotte Martineau, Jürgen Senker, Francis Taulelle. NMR Crystallography. 2014, 1-57. https://doi.org/10.1016/B978-0-12-800184-4.00001-1
    49. Martin Dračínský, Michal Šála, Paul Hodgkinson. Dynamics of water molecules and sodium ions in solid hydrates of nucleotides. CrystEngComm 2014, 16 (29) , 6756-6764. https://doi.org/10.1039/C4CE00727A
    50. Cory M. Widdifield, Igor Moudrakovski, David L. Bryce. Calcium-43 chemical shift and electric field gradient tensor interplay: a sensitive probe of structure, polymorphism, and hydration. Phys. Chem. Chem. Phys. 2014, 16 (26) , 13340-13359. https://doi.org/10.1039/C4CP01180E
    51. Frédéric A. Perras, David L. Bryce. Boron–boron J coupling constants are unique probes of electronic structure: a solid-state NMR and molecular orbital study. Chem. Sci. 2014, 5 (6) , 2428-2437. https://doi.org/10.1039/C4SC00603H
    52. Nuiok M. Dicaire, Frédéric A. Perras, David L. Bryce. 23 Na magic-angle spinning and double-rotation NMR study of solid forms of sodium valproate. Canadian Journal of Chemistry 2014, 92 (1) , 9-15. https://doi.org/10.1139/cjc-2013-0442
    53. Makoto Umino, Kenjirou Higashi, Hyuma Masu, Waree Limwikrant, Keiji Yamamoto, Kunikazu Moribe. Characterization of Cromolyn Sodium Hydrates and Its Formulation by 23Na-Multiquantum and Magic-Angle Spinning Nuclear Magnetic Resonance Spectroscopy. Journal of Pharmaceutical Sciences 2013, 102 (8) , 2738-2747. https://doi.org/10.1002/jps.23655
    54. Frédéric A. Perras, David L. Bryce. Measuring dipolar and J coupling between quadrupolar nuclei using double-rotation NMR. The Journal of Chemical Physics 2013, 138 (17) https://doi.org/10.1063/1.4802192
    55. Martin Dračínský, Paul Hodgkinson. A molecular dynamics study of the effects of fast molecular motions on solid-state NMR parameters. CrystEngComm 2013, 15 (43) , 8705. https://doi.org/10.1039/c3ce40612a
    56. Frédéric A. Perras, Ilia Korobkov, David L. Bryce. NMR crystallography of sodium diphosphates: combining dipolar, shielding, quadrupolar, diffraction, and computational information. CrystEngComm 2013, 15 (43) , 8727. https://doi.org/10.1039/c3ce40875b

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2012, 116, 36, 19472–19482
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp308273h
    Published August 22, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    663

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.