ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Water Oxidation at Hematite Photoelectrodes with an Iridium-Based Catalyst

View Author Information
Photovoltaics and Optoelectronic Devices Group, Departament de Física, and Departament de Química Inorgànica & Orgànica, Universitat Jaume I, 12071 Castelló, Spain
*(S.G.) +34964387554, [email protected]; (E.P.) +34964387518, [email protected]; (J.B.) +34964387541, [email protected]
Cite this: J. Phys. Chem. C 2013, 117, 8, 3826–3833
Publication Date (Web):January 31, 2013
https://doi.org/10.1021/jp311983n
Copyright © 2013 American Chemical Society

    Article Views

    2569

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The iridium complex [Cp*Ir(H2O)3](SO4) was used as an organometallic source for the electrodeposition of iridium oxide onto Fe2O3. The new iridium-containing electrode allowed us to study the coupling between the photocatalytic properties of hematite and the electrocatalytic properties of the iridium-based material. A cathodic shift of the photocurrent for water oxidation upon electrodeposition of the iridium complex was observed, which increased with increasing surface concentration of IrOx on Fe2O3. The shift for the highest surface concentration of iridium tested amounts to 300 mV at 200 μA·cm–2 current density. The catalytic mechanism of the IrOx layer was unveiled by impedance spectroscopy measurements fitted to a physical model and can be explained on the basis of a highly capacitive layer, which enhances charge separation and stores photogenerated holes at Fe2O3, subsequently oxidizing water. These findings improve our understanding of the mechanism of water oxidation by heterogeneous Ir-based catalysts coupled to semiconductor electrodes.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    XPS spectra, absorbance spectra of Fe2O3/IrOx films, comparison between cyclic voltammetry and steady-state jV curves for samples containing different concentrations of the iridium complex, consecutive cyclic voltammetry scans for Fe2O3/IrOx samples to rule out IrOx oxidation, physical model for water splitting with Fe2O3, examples of impedance spectra and fitting to the physical model, and relationship between photocurrent, charge transfer resistance, and capacitance. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 122 publications.

    1. Sarang Kim, Dongrak Oh, Ji-Wook Jang. Unassisted Photoelectrochemical H2O2 Production with In Situ Glycerol Valorization Using α-Fe2O3. Nano Letters 2024, Article ASAP.
    2. Sudipa Manna, Ashis Kumar Satpati, Chandra Nath Patra, Avesh Kumar Tyagi. Enhancing the PEC Efficiency in the Perspective of Crystal Facet Engineering and Modulation of Surfaces. ACS Omega 2024, 9 (6) , 6128-6146. https://doi.org/10.1021/acsomega.3c07867
    3. Yugao Hu, Tingting Bo, Ruixin Xu, Nan Mu, Yanyu Liu, Wei Zhou. Fe-Doped SnS2 Nanoflowers for Magnetically-Tunable Photoelectrocatalytic Hydrogen Evolution Reaction. ACS Applied Nano Materials 2023, 6 (21) , 19600-19610. https://doi.org/10.1021/acsanm.3c02897
    4. Carlota Bozal-Ginesta, Reshma R. Rao, Camilo A. Mesa, Yuanxing Wang, Yanyan Zhao, Gongfang Hu, Daniel Antón-García, Ifan E. L. Stephens, Erwin Reisner, Gary W. Brudvig, Dunwei Wang, James R. Durrant. Spectroelectrochemistry of Water Oxidation Kinetics in Molecular versus Heterogeneous Oxide Iridium Electrocatalysts. Journal of the American Chemical Society 2022, 144 (19) , 8454-8459. https://doi.org/10.1021/jacs.2c02006
    5. Parisa Shadabipour, Austin L. Raithel, Thomas W. Hamann. Charge-Carrier Dynamics at the CuWO4/Electrocatalyst Interface for Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces 2020, 12 (45) , 50592-50599. https://doi.org/10.1021/acsami.0c14705
    6. Junqing Yan, Jing Liu, Yujin Ji, Munkhbayar Batmunkh, Dan Li, Xiaoshuang Liu, Xingzhong Cao, Youyong Li, Shengzhong Liu, Tianyi Ma. Surface Engineering to Reduce the Interfacial Resistance for Enhanced Photocatalytic Water Oxidation. ACS Catalysis 2020, 10 (15) , 8742-8750. https://doi.org/10.1021/acscatal.0c02063
    7. Dominic Walsh, Jifang Zhang, Miriam Regue, Ruchi Dassanayake, Salvador Eslava. Simultaneous Formation of FeOx Electrocatalyst Coating within Hematite Photoanodes for Solar Water Splitting. ACS Applied Energy Materials 2019, 2 (3) , 2043-2052. https://doi.org/10.1021/acsaem.8b02113
    8. Benjamin Moss, Franziska Simone Hegner, Sacha Corby, Shababa Selim, Laia Francàs, Núria López, Sixto Giménez, José-Ramón Galán-Mascarós, James Robert Durrant. Unraveling Charge Transfer in CoFe Prussian Blue Modified BiVO4 Photoanodes. ACS Energy Letters 2019, 4 (1) , 337-342. https://doi.org/10.1021/acsenergylett.8b02225
    9. Anton Tsyganok, Dino Klotz, Kirtiman Deo Malviya, Avner Rothschild, Daniel A. Grave. Different Roles of Fe1–xNixOOH Cocatalyst on Hematite (α-Fe2O3) Photoanodes with Different Dopants. ACS Catalysis 2018, 8 (4) , 2754-2759. https://doi.org/10.1021/acscatal.7b04386
    10. Elana Borvick, Assaf Y. Anderson, Hannah-Noa Barad, Maayan Priel, David A. Keller, Adam Ginsburg, Kevin J. Rietwyk, Simcha Meir, and Arie Zaban . Process-Function Data Mining for the Discovery of Solid-State Iron-Oxide PV. ACS Combinatorial Science 2017, 19 (12) , 755-762. https://doi.org/10.1021/acscombsci.7b00121
    11. Dasom Jeon, Hyunwoo Kim, Cheolmin Lee, Yujin Han, Minsu Gu, Byeong-Su Kim, and Jungki Ryu . Layer-by-Layer Assembly of Polyoxometalates for Photoelectrochemical (PEC) Water Splitting: Toward Modular PEC Devices. ACS Applied Materials & Interfaces 2017, 9 (46) , 40151-40161. https://doi.org/10.1021/acsami.7b09416
    12. Franziska Simone Hegner, Isaac Herraiz-Cardona, Drialys Cardenas-Morcoso, Núria López, José-Ramón Galán-Mascarós, and Sixto Gimenez . Cobalt Hexacyanoferrate on BiVO4 Photoanodes for Robust Water Splitting. ACS Applied Materials & Interfaces 2017, 9 (43) , 37671-37681. https://doi.org/10.1021/acsami.7b09449
    13. Jingjing Qiu, Hamed Hajibabaei, Michael R. Nellist, Forrest A. L. Laskowski, Thomas W. Hamann, and Shannon W. Boettcher . Direct in Situ Measurement of Charge Transfer Processes During Photoelectrochemical Water Oxidation on Catalyzed Hematite. ACS Central Science 2017, 3 (9) , 1015-1025. https://doi.org/10.1021/acscentsci.7b00310
    14. Lasse Jürgensen, Michael Frank, Myeongwhun Pyeon, Lisa Czympiel, and Sanjay Mathur . Subvalent Iridium Precursors for Atom-Efficient Chemical Vapor Deposition of Ir and IrO2 Thin Films. Organometallics 2017, 36 (12) , 2331-2337. https://doi.org/10.1021/acs.organomet.7b00275
    15. Kanchan Ulman, Manh-Thuong Nguyen, Nicola Seriani, Simone Piccinin, and Ralph Gebauer . A Unified Picture of Water Oxidation on Bare and Gallium Oxide-Covered Hematite from Density Functional Theory. ACS Catalysis 2017, 7 (3) , 1793-1804. https://doi.org/10.1021/acscatal.6b03162
    16. Gong Zhang, Le Zhang, Yang Liu, Limin Liu, Chin-Pao Huang, Huijuan Liu, and Jinghong Li . Substitution Boosts Charge Separation for High Solar-Driven Photocatalytic Performance. ACS Applied Materials & Interfaces 2016, 8 (40) , 26783-26793. https://doi.org/10.1021/acsami.6b08676
    17. Jonathon W. Moir, Emma V. Sackville, Ulrich Hintermair, and Geoffrey A. Ozin . Kinetics versus Charge Separation: Improving the Activity of Stoichiometric and Non-Stoichiometric Hematite Photoanodes Using a Molecular Iridium Water Oxidation Catalyst. The Journal of Physical Chemistry C 2016, 120 (24) , 12999-13012. https://doi.org/10.1021/acs.jpcc.6b00735
    18. Jacobus M. Koelewijn, Martin Lutz, Wojciech I. Dzik, Remko J. Detz, and Joost N. H. Reek . Reaction Progress Kinetic Analysis as a Tool To Reveal Ligand Effects in Ce(IV)-Driven IrCp*-Catalyzed Water Oxidation. ACS Catalysis 2016, 6 (6) , 3418-3427. https://doi.org/10.1021/acscatal.6b00297
    19. Ke R. Yang, Adam J. Matula, Gihan Kwon, Jiyun Hong, Stafford W. Sheehan, Julianne M. Thomsen, Gary W. Brudvig, Robert H. Crabtree, David M. Tiede, Lin X. Chen, and Victor S. Batista . Solution Structures of Highly Active Molecular Ir Water-Oxidation Catalysts from Density Functional Theory Combined with High-Energy X-ray Scattering and EXAFS Spectroscopy. Journal of the American Chemical Society 2016, 138 (17) , 5511-5514. https://doi.org/10.1021/jacs.6b01750
    20. Maxime Rioult, Dana Stanescu, Emiliano Fonda, Antoine Barbier, and Hélène Magnan . Oxygen Vacancies Engineering of Iron Oxides Films for Solar Water Splitting. The Journal of Physical Chemistry C 2016, 120 (14) , 7482-7490. https://doi.org/10.1021/acs.jpcc.6b00552
    21. James D. Blakemore, Robert H. Crabtree, and Gary W. Brudvig . Molecular Catalysts for Water Oxidation. Chemical Reviews 2015, 115 (23) , 12974-13005. https://doi.org/10.1021/acs.chemrev.5b00122
    22. Francesco Malara, Alessandro Minguzzi, Marcello Marelli, Sara Morandi, Rinaldo Psaro, Vladimiro Dal Santo, and Alberto Naldoni . α-Fe2O3/NiOOH: An Effective Heterostructure for Photoelectrochemical Water Oxidation. ACS Catalysis 2015, 5 (9) , 5292-5300. https://doi.org/10.1021/acscatal.5b01045
    23. Zhiliang Wang, Guiji Liu, Chunmei Ding, Zheng Chen, Fuxiang Zhang, Jingying Shi, and Can Li . Synergetic Effect of Conjugated Ni(OH)2/IrO2 Cocatalyst on Titanium-Doped Hematite Photoanode for Solar Water Splitting. The Journal of Physical Chemistry C 2015, 119 (34) , 19607-19612. https://doi.org/10.1021/acs.jpcc.5b04892
    24. Yixin Zhao, Nella M. Vargas-Barbosa, Megan E. Strayer, Nicholas S. McCool, Maria-Erini Pandelia, Timothy P. Saunders, John R. Swierk, Juan F. Callejas, Lasse Jensen, and Thomas E. Mallouk . Understanding the Effect of Monomeric Iridium(III/IV) Aquo Complexes on the Photoelectrochemistry of IrOx·nH2O-Catalyzed Water-Splitting Systems. Journal of the American Chemical Society 2015, 137 (27) , 8749-8757. https://doi.org/10.1021/jacs.5b03470
    25. Fuding Lin, Benjamin F. Bachman, and Shannon W. Boettcher . Impact of Electrocatalyst Activity and Ion Permeability on Water-Splitting Photoanodes. The Journal of Physical Chemistry Letters 2015, 6 (13) , 2427-2433. https://doi.org/10.1021/acs.jpclett.5b00904
    26. Yuan Ping, William A. Goddard III, and Giulia A. Galli . Energetics and Solvation Effects at the Photoanode/Catalyst Interface: Ohmic Contact versus Schottky Barrier. Journal of the American Chemical Society 2015, 137 (16) , 5264-5267. https://doi.org/10.1021/jacs.5b00798
    27. David A. Keller, Adam Ginsburg, Hannah-Noa Barad, Klimentiy Shimanovich, Yaniv Bouhadana, Eli Rosh-Hodesh, Ichiro Takeuchi, Hagit Aviv, Yaakov R. Tischler, Assaf Y. Anderson, and Arie Zaban . Utilizing Pulsed Laser Deposition Lateral Inhomogeneity as a Tool in Combinatorial Material Science. ACS Combinatorial Science 2015, 17 (4) , 209-216. https://doi.org/10.1021/co500094h
    28. Maxime Rioult, Hélène Magnan, Dana Stanescu, and Antoine Barbier . Single Crystalline Hematite Films for Solar Water Splitting: Ti-Doping and Thickness Effects. The Journal of Physical Chemistry C 2014, 118 (6) , 3007-3014. https://doi.org/10.1021/jp500290j
    29. Kevin Sivula . Metal Oxide Photoelectrodes for Solar Fuel Production, Surface Traps, and Catalysis. The Journal of Physical Chemistry Letters 2013, 4 (10) , 1624-1633. https://doi.org/10.1021/jz4002983
    30. Luca Bertoluzzi, Laura Badia-Bou, Francisco Fabregat-Santiago, Sixto Gimenez, and Juan Bisquert . Interpretation of Cyclic Voltammetry Measurements of Thin Semiconductor Films for Solar Fuel Applications. The Journal of Physical Chemistry Letters 2013, 4 (8) , 1334-1339. https://doi.org/10.1021/jz400573t
    31. Joonhee Ma, Sang Hyun Ahn, Soo Young Kim. Integration of earth-abundant cocatalysts for high-performance photoelectrochemical energy conversion. Journal of Energy Chemistry 2024, 88 , 336-355. https://doi.org/10.1016/j.jechem.2023.09.021
    32. Quanyou Zhao, Yongjin Zou, Zhifeng Liu. The spontaneous polarization in CdS to enhance the piezo-PEC performance via phase transition stress engineering. Journal of Catalysis 2022, 416 , 398-409. https://doi.org/10.1016/j.jcat.2022.11.024
    33. Ali Raza, Xinyu Zhang, Sarfraz Ali, Changhai Cao, Arslan Ahmed Rafi, Gao Li. Photoelectrochemical Energy Conversion over 2D Materials. Photochem 2022, 2 (2) , 272-298. https://doi.org/10.3390/photochem2020020
    34. Parisa Shadabipour, Hamed Hajibabei Najafabadi, Thomas W. Hamann. Advanced Understanding of Kinetics and Reaction Mechanisms on Semiconductor Surfaces. 2022, 851-878. https://doi.org/10.1007/978-3-030-63713-2_29
    35. Jun Ke, Fan He, Hui Wu, Siliu Lyu, Jie Liu, Bin Yang, Zhongjian Li, Qinghua Zhang, Jian Chen, Lecheng Lei, Yang Hou, Kostya Ostrikov. Nanocarbon-Enhanced 2D Photoelectrodes: A New Paradigm in Photoelectrochemical Water Splitting. Nano-Micro Letters 2021, 13 (1) https://doi.org/10.1007/s40820-020-00545-8
    36. Shima Farhoosh, Behrooz Eftekharinia, Meysam Tayebi, Byeong-Kyu Lee, Naimeh Naseri. Newly designed ternary hematite-based heterojunction for PEC water splitting. Applied Surface Science 2021, 550 , 149374. https://doi.org/10.1016/j.apsusc.2021.149374
    37. Naghmehalsadat Mirbagheri, Rui Campos, Elena E. Ferapontova. Electrocatalytic Oxidation of Water by OH − ‐ and H 2 O‐Capped IrO x Nanoparticles Electrophoretically Deposited on Graphite and Basal Plane HOPG: Effect of the Substrate Electrode**. ChemElectroChem 2021, 8 (9) , 1632-1641. https://doi.org/10.1002/celc.202100317
    38. Aadesh P. Singh, Alexander Levinsson, Beniamino Iandolo, Jani Oksanen, Anders Hellman, Björn Wickman. Improved water oxidation performance of ultra-thin planar hematite photoanode: Synergistic effect of In/Sn doping and an overlayer of metal oxyhydroxides. Journal of Photochemistry and Photobiology A: Chemistry 2020, 401 , 112781. https://doi.org/10.1016/j.jphotochem.2020.112781
    39. Hongwei Liu, Haowei Yang, Jinlong Fan, Chengxin Zhou, Jin Zhang, Yingfei Wan, Zengjian Liu, Jinwei Chen, Gang Wang, Ruilin Wang. The novel p-Co3O4/n-I-Fe2O3 nano hollow spheres with the enhanced photocatalytic activity. Chemical Physics Letters 2020, 755 , 137702. https://doi.org/10.1016/j.cplett.2020.137702
    40. Drialys Cardenas-Morcoso, Miguel García-Tecedor, Tsvetelina Merdzhanova, Vladimir Smirnov, Friedhelm Finger, Bernhard Kaiser, Wolfram Jaegermann, Sixto Gimenez. An integrated photoanode based on non-critical raw materials for robust solar water splitting. Materials Advances 2020, 1 (5) , 1202-1211. https://doi.org/10.1039/D0MA00355G
    41. G. Heidari, A. Pordel, M. Roeinfard. Electrochemical Synthesis of Uniform Cu2O Film and Its Photoelectrochemical Properties. Russian Journal of Electrochemistry 2020, 56 (8) , 680-689. https://doi.org/10.1134/S1023193520030052
    42. Š. Kment, K. Sivula, A. Naldoni, S.P. Sarmah, H. Kmentová, M. Kulkarni, Y. Rambabu, P. Schmuki, R. Zbořil. FeO-based nanostructures and nanohybrids for photoelectrochemical water splitting. Progress in Materials Science 2020, 110 , 100632. https://doi.org/10.1016/j.pmatsci.2019.100632
    43. Dongni Zhao, Yuezhen Lu, Dongge Ma. Effects of Structure and Constituent of Prussian Blue Analogs on Their Application in Oxygen Evolution Reaction. Molecules 2020, 25 (10) , 2304. https://doi.org/10.3390/molecules25102304
    44. Seyedsina Hejazi, Marco Altomare, Patrik Schmuki. Photo-Electrochemical Solar-to-Fuel Energy Conversion by Hematite-Based Photo-Anodes – The Role of 1D Nanostructuring. Zeitschrift für Physikalische Chemie 2020, 234 (4) , 615-631. https://doi.org/10.1515/zpch-2019-1479
    45. Haiqing Ma, Mahadeo A. Mahadik, Sa Rang Kim, Miao Wang, Hyeon Ih Ryu, Hee Suk Chung, Weon Sik Chae, Hyunwoong Park, Jum Suk Jang. Surface passivation of zinc ferrite nanorod photoanodes by spray-deposited silicon oxide layer for enhanced solar water splitting. Journal of the Taiwan Institute of Chemical Engineers 2020, 107 , 89-97. https://doi.org/10.1016/j.jtice.2019.11.014
    46. Zhenzhu Xu, Shuguang Zhang, Fangliang Gao, Peng Gao, Yuefeng Yu, Jing Lin, Jinghan Liang, Guoqiang Li. Enhanced charge separation and interfacial charge transfer of InGaN nanorods/C3N4 heterojunction photoanode. Electrochimica Acta 2019, 324 , 134844. https://doi.org/10.1016/j.electacta.2019.134844
    47. Ch. Venkata Reddy, I. Neelakanta Reddy, Adem Sreedhar, Jaesool Shim. Investigation of dopant and Ag plasmonic effect on α-Fe2O3 photoelectrode for photoelectrochemical water splitting activity. Applied Surface Science 2019, 488 , 629-638. https://doi.org/10.1016/j.apsusc.2019.05.316
    48. Yongcai Qiu, Zhenghui Pan, Haining Chen, Daiqi Ye, Lin Guo, Zhiyong Fan, Shihe Yang. Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting. Science Bulletin 2019, 64 (18) , 1348-1380. https://doi.org/10.1016/j.scib.2019.07.017
    49. Han-Yi Wang, Yi-Chieh Hsieh, Kuang-Chih Tso, Chung-Kai Chang, Yu-Ting Cheng, Pu-Wei Wu, Jyh-Fu Lee. Combination of electrophoresis and electro-flocculation for the formation of adhering IrO2 pH sensing films. Electrochimica Acta 2019, 312 , 291-298. https://doi.org/10.1016/j.electacta.2019.05.006
    50. Biaobiao Zhang, Licheng Sun. Artificial photosynthesis: opportunities and challenges of molecular catalysts. Chemical Society Reviews 2019, 48 (7) , 2216-2264. https://doi.org/10.1039/C8CS00897C
    51. Hossein Bemana, Sahar Rashid-Nadimi. Incorporation of NiO electrocatalyst with α-Fe2O3 photocatalyst for enhanced and stable photoelectrochemical water splitting. Surfaces and Interfaces 2019, 14 , 184-191. https://doi.org/10.1016/j.surfin.2018.12.011
    52. Sandra Haschke, Ying Zhuo, Stefanie Schlicht, Maïssa K. S. Barr, Ricarda Kloth, Maxime E. Dufond, Lionel Santinacci, Julien Bachmann. Enhanced Oxygen Evolution Reaction Activity of Nanoporous SnO 2 /Fe 2 O 3 /IrO 2 Thin Film Composite Electrodes with Ultralow Noble Metal Loading. Advanced Materials Interfaces 2019, 6 (3) https://doi.org/10.1002/admi.201801432
    53. Pankaj Sharma, Ji‐Wook Jang, Jae Sung Lee. Key Strategies to Advance the Photoelectrochemical Water Splitting Performance of α‐Fe 2 O 3 Photoanode. ChemCatChem 2019, 11 (1) , 157-179. https://doi.org/10.1002/cctc.201801187
    54. Sinval F. Sousa, Breno L. Souza, Cristiane L. Barros, Antonio Otavio T. Patrocinio. Inorganic Photochemistry and Solar Energy Harvesting: Current Developments and Challenges to Solar Fuel Production. International Journal of Photoenergy 2019, 2019 , 1-23. https://doi.org/10.1155/2019/9624092
    55. Lifei Xi, Kathrin Lange. Surface Modification of Hematite Photoanodes for Improvement of Photoelectrochemical Performance. Catalysts 2018, 8 (11) , 497. https://doi.org/10.3390/catal8110497
    56. Jifang Zhang, Rodrigo García-Rodríguez, Petra Cameron, Salvador Eslava. Role of cobalt–iron (oxy)hydroxide (CoFeO x ) as oxygen evolution catalyst on hematite photoanodes. Energy & Environmental Science 2018, 11 (10) , 2972-2984. https://doi.org/10.1039/C8EE01346B
    57. Qiongke Wang, Yanfeng Chen, Jiajie Xu, Yue Situ, Hong Huang. Morphology-controlled synthesis of Ti-doped α-Fe2O3 nanorod arrays as an efficient photoanode for photoelectrochemical applications. Research on Chemical Intermediates 2018, 44 (4) , 2365-2378. https://doi.org/10.1007/s11164-017-3234-7
    58. Yanyan Zhao, Ke R. Yang, Zechao Wang, Xingxu Yan, Sufeng Cao, Yifan Ye, Qi Dong, Xizi Zhang, James E. Thorne, Lei Jin, Kelly L. Materna, Antonios Trimpalis, Hongye Bai, Sirine C. Fakra, Xiaoyan Zhong, Peng Wang, Xiaoqing Pan, Jinghua Guo, Maria Flytzani-Stephanopoulos, Gary W. Brudvig, Victor S. Batista, Dunwei Wang. Stable iridium dinuclear heterogeneous catalysts supported on metal-oxide substrate for solar water oxidation. Proceedings of the National Academy of Sciences 2018, 115 (12) , 2902-2907. https://doi.org/10.1073/pnas.1722137115
    59. Myeongwhun Pyeon, Tero-Petri Ruoko, Jennifer Leduc, Yakup Gönüllü, Meenal Deo, Nikolai V. Tkachenko, Sanjay Mathur. Critical role and modification of surface states in hematite films for enhancing oxygen evolution activity. Journal of Materials Research 2018, 33 (4) , 455-466. https://doi.org/10.1557/jmr.2017.465
    60. Francisco Fabregat-Santiago, Eva M. Barea, Sixto Giménez, Juan Bisquert. Impedance Spectroscopy in Molecular Devices. 2018, 353-384. https://doi.org/10.1007/978-981-10-5924-7_10
    61. Franziska Simone Hegner, Drialys Cardenas‐Morcoso, Sixto Giménez, Núria López, Jose Ramon Galan‐Mascaros. Level Alignment as Descriptor for Semiconductor/Catalyst Systems in Water Splitting: The Case of Hematite/Cobalt Hexacyanoferrate Photoanodes. ChemSusChem 2017, 10 (22) , 4552-4560. https://doi.org/10.1002/cssc.201701538
    62. Nicola Seriani. Ab initio simulations of water splitting on hematite. Journal of Physics: Condensed Matter 2017, 29 (46) , 463002. https://doi.org/10.1088/1361-648X/aa84d9
    63. Yi Yang, Shuwen Niu, Dongdong Han, Tianyu Liu, Gongming Wang, Yat Li. Progress in Developing Metal Oxide Nanomaterials for Photoelectrochemical Water Splitting. Advanced Energy Materials 2017, 7 (19) https://doi.org/10.1002/aenm.201700555
    64. Sandra Haschke, Dmitrii Pankin, Yuri Petrov, Sebastian Bochmann, Alina Manshina, Julien Bachmann. Design Rules for Oxygen Evolution Catalysis at Porous Iron Oxide Electrodes: A 1000‐Fold Current Density Increase. ChemSusChem 2017, 10 (18) , 3644-3651. https://doi.org/10.1002/cssc.201701068
    65. Haili Tong, Yi Jiang, Qian Zhang, Jialing Li, Wenchao Jiang, Donghui Zhang, Na Li, Lixin Xia. Enhanced Interfacial Charge Transfer on a Tungsten Trioxide Photoanode with Immobilized Molecular Iridium Catalyst. ChemSusChem 2017, 10 (16) , 3268-3275. https://doi.org/10.1002/cssc.201700721
    66. Qinglong Liu, Changlong Chen, Guangzheng Yuan, Xing Huang, Xiaoxiao Lü, Yi Cao, Yaping Li, Anjie Hu, Xiangrong Lu, Peihua Zhu. Morphology-controlled α-Fe2O3 nanostructures on FTO substrates for photoelectrochemical water oxidation. Journal of Alloys and Compounds 2017, 715 , 230-236. https://doi.org/10.1016/j.jallcom.2017.04.213
    67. Paula Dias, Luísa Andrade, Adélio Mendes. Hematite-based photoelectrode for solar water splitting with very high photovoltage. Nano Energy 2017, 38 , 218-231. https://doi.org/10.1016/j.nanoen.2017.05.051
    68. Y. Wang, Y. Song, R. Peng, A. Herklotz, M. F. Chisholm, Z. L. Wu, T. Z. Ward, H. H. Weitering, P. C. Snijders. Exposing high-energy surfaces by rapid-anneal solid phase epitaxy. APL Materials 2017, 5 (8) https://doi.org/10.1063/1.4992004
    69. Jiao Meng, Pengqing Bi, Jiong Jia, Xuan Sun, Ruiping Chen. Light-Assisted Catalytic Water Oxidation from Porphyrin J-Aggregate. ChemistrySelect 2017, 2 (17) , 4882-4888. https://doi.org/10.1002/slct.201700839
    70. Mohamed Mokhtar Mohamed, Salah Eid, A.Y. El-Etre. Methanol photo-oxidation at graphene and carbon nanotubes modified TiO 2 nanosheets electrocatalysts. Journal of Photochemistry and Photobiology A: Chemistry 2017, 338 , 37-48. https://doi.org/10.1016/j.jphotochem.2017.02.005
    71. Rami Reddy Devarapalli, Chaitanya Krishna Kamaja, Manjusha V. Shelke. Co–catalytic Metal Oxide Nanoparticles Decorated Silicon/ Hematite Core Shell Nanowire Arrays as Efficient Photo Electrodes for Water Splitting. ChemistrySelect 2017, 2 (8) , 2544-2551. https://doi.org/10.1002/slct.201700083
    72. Alessandro Minguzzi, Alberto Naldoni, Ottavio Lugaresi, Elisabetta Achilli, Francesco D'Acapito, Francesco Malara, Cristina Locatelli, Alberto Vertova, Sandra Rondinini, Paolo Ghigna. Observation of charge transfer cascades in α-Fe 2 O 3 /IrO x photoanodes by operando X-ray absorption spectroscopy. Phys. Chem. Chem. Phys. 2017, 19 (8) , 5715-5720. https://doi.org/10.1039/C6CP08053G
    73. Stepan Kment, Francesca Riboni, Sarka Pausova, Lei Wang, Lingyun Wang, Hyungkyu Han, Zdenek Hubicka, Josef Krysa, Patrik Schmuki, Radek Zboril. Photoanodes based on TiO 2 and α-Fe 2 O 3 for solar water splitting – superior role of 1D nanoarchitectures and of combined heterostructures. Chemical Society Reviews 2017, 46 (12) , 3716-3769. https://doi.org/10.1039/C6CS00015K
    74. Bartek J. Trześniewski, Ibadillah A. Digdaya, Tetsuro Nagaki, Sandheep Ravishankar, Isaac Herraiz-Cardona, David A. Vermaas, Alessandro Longo, Sixto Gimenez, Wilson A. Smith. Near-complete suppression of surface losses and total internal quantum efficiency in BiVO 4 photoanodes. Energy & Environmental Science 2017, 10 (6) , 1517-1529. https://doi.org/10.1039/C6EE03677E
    75. Andebet Gedamu Tamirat, Amare Aregahegn Dubale, Wei-Nien Su, Hung-Ming Chen, Bing-Joe Hwang. Sequentially surface modified hematite enables lower applied bias photoelectrochemical water splitting. Physical Chemistry Chemical Physics 2017, 19 (31) , 20881-20890. https://doi.org/10.1039/C7CP02890C
    76. Mei Wang, Yong Yang, Junyu Shen, Jian Jiang, Licheng Sun. Visible-light-absorbing semiconductor/molecular catalyst hybrid photoelectrodes for H 2 or O 2 evolution: recent advances and challenges. Sustainable Energy & Fuels 2017, 1 (8) , 1641-1663. https://doi.org/10.1039/C7SE00222J
    77. Simelys Hernández, Gianluca Gerardi, Katarzyna Bejtka, Alberto Fina, Nunzio Russo. Evaluation of the charge transfer kinetics of spin-coated BiVO 4 thin films for sun-driven water photoelectrolysis. Applied Catalysis B: Environmental 2016, 190 , 66-74. https://doi.org/10.1016/j.apcatb.2016.02.059
    78. Tomasz Baran, Martina Fracchia, Alberto Vertova, Elisabetta Achilli, Alberto Naldoni, Francesco Malara, Giacomo Rossi, Sandra Rondinini, Paolo Ghigna, Alessandro Minguzzi, Francesco D’Acapito. Operando and Time-Resolved X-Ray Absorption Spectroscopy for the Study of Photoelectrode Architectures. Electrochimica Acta 2016, 207 , 16-21. https://doi.org/10.1016/j.electacta.2016.04.153
    79. TsingHai Wang, Yi‐Nuo Chen, Chia‐Che Chiang, Yi‐Kong Hsieh, Po‐Chieh Li, Chu‐Fang Wang. Carbon‐Coated Hematite Electrodes with Enhanced Photoelectrochemical Performance Obtained through an Electrodeposition Method with a Citric Acid Additive. ChemElectroChem 2016, 3 (6) , 966-975. https://doi.org/10.1002/celc.201600060
    80. Lei Li, Haitao Dai, Dan Luo, Shuguo Wang, Xiaowei Sun. Nickel Oxide Nanosheets for Enhanced Photoelectrochemical Water Splitting by Hematite (α‐Fe 2 O 3 ) Nanowire Arrays. Energy Technology 2016, 4 (6) , 758-763. https://doi.org/10.1002/ente.201500496
    81. Kanchan Ulman, Manh-Thuong Nguyen, Nicola Seriani, Ralph Gebauer. Passivation of surface states of α -Fe2O3(0001) surface by deposition of Ga2O3 overlayers: A density functional theory study. The Journal of Chemical Physics 2016, 144 (9) https://doi.org/10.1063/1.4942655
    82. Juan Bisquert, Sixto Giménez, Luca Bertoluzzi, Isaac Herraiz-Cardona. Analysis of Photoelectrochemical Systems by Impedance Spectroscopy. 2016, 281-321. https://doi.org/10.1007/978-3-319-29641-8_6
    83. Fuding Lin, Shannon W. Boettcher. Advanced Photoelectrochemical Characterization: Principles and Applications of Dual-Working-Electrode Photoelectrochemistry. 2016, 323-351. https://doi.org/10.1007/978-3-319-29641-8_7
    84. Wei Li, Da He, Stafford W. Sheehan, Yumin He, James E. Thorne, Xiahui Yao, Gary W. Brudvig, Dunwei Wang. Comparison of heterogenized molecular and heterogeneous oxide catalysts for photoelectrochemical water oxidation. Energy & Environmental Science 2016, 9 (5) , 1794-1802. https://doi.org/10.1039/C5EE03871E
    85. Andebet Gedamu Tamirat, John Rick, Amare Aregahegn Dubale, Wei-Nien Su, Bing-Joe Hwang. Using hematite for photoelectrochemical water splitting: a review of current progress and challenges. Nanoscale Horizons 2016, 1 (4) , 243-267. https://doi.org/10.1039/C5NH00098J
    86. Luca Bertoluzzi, Pilar Lopez-Varo, Juan Antonio Jiménez Tejada, Juan Bisquert. Charge transfer processes at the semiconductor/electrolyte interface for solar fuel production: insight from impedance spectroscopy. Journal of Materials Chemistry A 2016, 4 (8) , 2873-2879. https://doi.org/10.1039/C5TA03210E
    87. Shaohua Shen, Sarah A. Lindley, Xiangyan Chen, Jin Z. Zhang. Hematite heterostructures for photoelectrochemical water splitting: rational materials design and charge carrier dynamics. Energy & Environmental Science 2016, 9 (9) , 2744-2775. https://doi.org/10.1039/C6EE01845A
    88. TsingHai Wang, Hsin-Ting Hung, Yu-Rong Cheng, Mao-Chia Huang, Yi-Kong Hsieh, Chu-Fang Wang. Understanding the role of phosphate in the photoelectrochemical performance of cobalt-phosphate/hematite electrode systems. RSC Advances 2016, 6 (34) , 28236-28247. https://doi.org/10.1039/C6RA00742B
    89. Debarati Roy Chowdhury, Leone Spiccia, S. S. Amritphale, Amit Paul, Archana Singh. A robust iron oxyhydroxide water oxidation catalyst operating under near neutral and alkaline conditions. Journal of Materials Chemistry A 2016, 4 (10) , 3655-3660. https://doi.org/10.1039/C6TA00313C
    90. Ki-Yong Yoon, Hyo-Jin Ahn, Myung-Jun Kwak, Sun-I. Kim, Juhyung Park, Ji-Hyun Jang. A selectively decorated Ti-FeOOH co-catalyst for a highly efficient porous hematite-based water splitting system. Journal of Materials Chemistry A 2016, 4 (48) , 18730-18736. https://doi.org/10.1039/C6TA08273D
    91. Maxime Rioult, Rachid Belkhou, Hélène Magnan, Dana Stanescu, Stefan Stanescu, Francesco Maccherozzi, Cindy Rountree, Antoine Barbier. Local electronic structure and photoelectrochemical activity of partial chemically etched Ti-doped hematite. Surface Science 2015, 641 , 310-313. https://doi.org/10.1016/j.susc.2015.01.002
    92. Wei Li, Stafford W. Sheehan, Da He, Yumin He, Xiahui Yao, Ronald L. Grimm, Gary W. Brudvig, Dunwei Wang. Hematite‐Based Solar Water Splitting in Acidic Solutions: Functionalization by Mono‐ and Multilayers of Iridium Oxygen‐Evolution Catalysts. Angewandte Chemie 2015, 127 (39) , 11590-11594. https://doi.org/10.1002/ange.201504427
    93. Wei Li, Stafford W. Sheehan, Da He, Yumin He, Xiahui Yao, Ronald L. Grimm, Gary W. Brudvig, Dunwei Wang. Hematite‐Based Solar Water Splitting in Acidic Solutions: Functionalization by Mono‐ and Multilayers of Iridium Oxygen‐Evolution Catalysts. Angewandte Chemie International Edition 2015, 54 (39) , 11428-11432. https://doi.org/10.1002/anie.201504427
    94. Simelys Hernández, Sitaramanjaneya Mouli Thalluri, Adriano Sacco, Samir Bensaid, Guido Saracco, Nunzio Russo. Photo-catalytic activity of BiVO4 thin-film electrodes for solar-driven water splitting. Applied Catalysis A: General 2015, 504 , 266-271. https://doi.org/10.1016/j.apcata.2015.01.019
    95. A.S. Hassanien, Alaa A. Akl. Crystal imperfections and Mott parameters of sprayed nanostructure IrO2 thin films. Physica B: Condensed Matter 2015, 473 , 11-19. https://doi.org/10.1016/j.physb.2015.05.023
    96. Andebet Gedamu Tamirat, Wei-Nien Su, Amare Aregahegn Dubale, Chun-Jern Pan, Hung-Ming Chen, Delele Worku Ayele, Jyh-Fu Lee, Bing-Joe Hwang. Efficient photoelectrochemical water splitting using three dimensional urchin-like hematite nanostructure modified with reduced graphene oxide. Journal of Power Sources 2015, 287 , 119-128. https://doi.org/10.1016/j.jpowsour.2015.04.042
    97. Quanping Wu, Jun Zhao, Kan Liu, Hongyan Wang, Zhe Sun, Ping Li, Song Xue. Ultrathin hematite film for photoelectrochemical water splitting enhanced with reducing graphene oxide. International Journal of Hydrogen Energy 2015, 40 (21) , 6763-6770. https://doi.org/10.1016/j.ijhydene.2015.03.160
    98. Kan Liu, Hongyan Wang, Quanping Wu, Jun Zhao, Zhe Sun, Song Xue. Nanocube-based hematite photoanode produced in the presence of Na 2 HPO 4 for efficient solar water splitting. Journal of Power Sources 2015, 283 , 381-388. https://doi.org/10.1016/j.jpowsour.2015.02.144
    99. Hong Nhan Nong, Hyung‐Suk Oh, Tobias Reier, Elena Willinger, Marc‐Georg Willinger, Valeri Petkov, Detre Teschner, Peter Strasser. Oxide‐Supported IrNiO x Core–Shell Particles as Efficient, Cost‐Effective, and Stable Catalysts for Electrochemical Water Splitting. Angewandte Chemie 2015, 127 (10) , 3018-3022. https://doi.org/10.1002/ange.201411072
    100. Hong Nhan Nong, Hyung‐Suk Oh, Tobias Reier, Elena Willinger, Marc‐Georg Willinger, Valeri Petkov, Detre Teschner, Peter Strasser. Oxide‐Supported IrNiO x Core–Shell Particles as Efficient, Cost‐Effective, and Stable Catalysts for Electrochemical Water Splitting. Angewandte Chemie International Edition 2015, 54 (10) , 2975-2979. https://doi.org/10.1002/anie.201411072
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect