ACS Publications. Most Trusted. Most Cited. Most Read
Size-Dependent Exciton Recombination Dynamics in Single CdS Nanowires beyond the Quantum Confinement Regime
My Activity

Figure 1Loading Img
    Article

    Size-Dependent Exciton Recombination Dynamics in Single CdS Nanowires beyond the Quantum Confinement Regime
    Click to copy article linkArticle link copied!

    View Author Information
    Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
    Division of Microelectronics, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
    § Energy Research Institute @ NTU (ERI@N), Nanyang Technological University, 50 Nanyang Drive, Singapore 637553
    Singapore-Berkeley Research Initiative for Sustainable Energy, 1 Create Way, 138602, Singapore
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2013, 117, 20, 10716–10722
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp312850w
    Published April 20, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A deep understanding of the size, surface trapping, and scattering effects on the recombination dynamics of CdS nanowires (NWs) is a key step for the design of on-demand CdS-based nanodevices. However, it is often very difficult to differentiate these intertwined effects in the NW system. In this article, we present a comprehensive study on the size-dependent exciton recombination dynamics of high-quality CdS NWs (with diameters from 80 to 315 nm) using temperature-dependent and time-resolved photoluminescence (TRPL) spectroscopy in a bid to distinguish the contributions of size and surface effects. TRPL measurements revealed two distinct processes that dominate the band edge recombination dynamics—a fast decay process (τ1) originating from the near-surface recombination and a slower decay process (τ2) arising from the intrinsic free exciton A decay. With increasing NW diameters, τ1 increases from ∼0.10 to ∼0.42 ns due to the decreasing surface-to-volume ratio of the NWs, whereas τ2 increases from ∼0.36 to ∼1.21 ns due to decreased surface scattering in the thicker NWs—as validated by the surface passivation and TRPL studies. Our findings have discerned the interplay between size and surface effects and advanced the understanding of size-dependent optoelectronic properties of one-dimensional semiconductor nanostructures for applications in surface- and size-related nanoscale devices.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    A schematic of the out-coupling efficiency and FTIR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 54 publications.

    1. Lulu Zhang, Jingxuan He, Na Li, Jie Yuan, Wenjuan Li, Ping Liu, Tingjiang Yan. Ternary CdS@MoS2–Co3O4 Multiheterojunction Photocatalyst for Boosting Photocatalytic H2 Evolution. ACS Applied Materials & Interfaces 2023, 15 (37) , 43790-43798. https://doi.org/10.1021/acsami.3c09073
    2. Liyuan Long, Gangyang Lv, Qiutong Han, Xianchen Wu, Yu Qian, Dunhui Wang, Yong Zhou, Zhigang Zou. Achieving Direct Z-Scheme Charge Transfer through Constructing 2D/2D α-Fe2O3/CdS Heterostructure for Efficient Photocatalytic CO2 Conversion. The Journal of Physical Chemistry C 2021, 125 (42) , 23142-23152. https://doi.org/10.1021/acs.jpcc.1c06259
    3. Zhaohui Huang, Hui Chen, Xuan He, Wei Fang, Weixin Li, Xing Du, Xianghui Zeng, Lei Zhao. Constructing a WC/NCN Schottky Junction for Rapid Electron Transfer and Enrichment for Highly Efficient Photocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces 2021, 13 (39) , 46598-46607. https://doi.org/10.1021/acsami.1c12063
    4. Wei Dai, Yujie Wang, Ruixue Li, Yubin Fan, Geyang Qu, Yunkai Wu, Qinghai Song, Jiecai Han, Shumin Xiao. Achieving Circularly Polarized Surface Emitting Perovskite Microlasers with All-Dielectric Metasurfaces. ACS Nano 2020, 14 (12) , 17063-17070. https://doi.org/10.1021/acsnano.0c06463
    5. Xiangyuan Xing, Kai Wang, Xiaobo Han, Shuhang Qian, Kun Wang, Hua Long, Bing Wang, Peixiang Lu. Giant Quantum Yield Enhancement in CdS/MgF2/Ag Hybrid Nanobelt under Two-Photon Excitation. ACS Photonics 2020, 7 (11) , 2987-2994. https://doi.org/10.1021/acsphotonics.0c00615
    6. Gururaj M. Neelgund, Aderemi Oki. Advancement in Photothermal Effect of Carbon Nanotubes by Grafting of Poly(amidoamine) and Deposition of CdS Nanocrystallites. Industrial & Engineering Chemistry Research 2018, 57 (23) , 7826-7833. https://doi.org/10.1021/acs.iecr.7b04732
    7. Qing Zhang, Qiuyu Shang, Jia Shi, Jie Chen, Rui Wang, Yang Mi, Wenna Du, Chao Shen, Renmin Ma, Xiaohui Qiu, Xinfeng Liu, and Tze Chien Sum . Wavelength Tunable Plasmonic Lasers Based on Intrinsic Self-Absorption of Gain Material. ACS Photonics 2017, 4 (11) , 2789-2796. https://doi.org/10.1021/acsphotonics.7b00757
    8. Xinfeng Liu, Qing Zhang, Wee Kiang Chong, Jing Ngei Yip, Xinglin Wen, Zhenpeng Li, Fengxia Wei, Guannan Yu, Qihua Xiong, and Tze Chien Sum . Cooperative Enhancement of Second-Harmonic Generation from a Single CdS Nanobelt-Hybrid Plasmonic Structure. ACS Nano 2015, 9 (5) , 5018-5026. https://doi.org/10.1021/nn5072045
    9. Xinfeng Liu, Son Tung Ha, Qing Zhang, Maria de la Mata, César Magen, Jordi Arbiol, Tze Chien Sum, and Qihua Xiong . Whispering Gallery Mode Lasing from Hexagonal Shaped Layered Lead Iodide Crystals. ACS Nano 2015, 9 (1) , 687-695. https://doi.org/10.1021/nn5061207
    10. Giwoong Nam, Youngbin Park, Iksoo Ji, Byunggu Kim, Sang-heon Lee, Do Yeob Kim, Soaram Kim, Sung-O Kim, and Jae-Young Leem . Facile Synthesis and Enhanced Ultraviolet Emission of ZnO Nanorods Prepared by Vapor-Confined Face-to-Face Annealing. ACS Applied Materials & Interfaces 2015, 7 (1) , 873-879. https://doi.org/10.1021/am507439e
    11. Xinfeng Liu, Bo Wu, Qing Zhang, Jing Ngei Yip, Guannan Yu, Qihua Xiong, Nripan Mathews, and Tze Chien Sum . Elucidating the Localized Plasmonic Enhancement Effects from a Single Ag Nanowire in Organic Solar Cells. ACS Nano 2014, 8 (10) , 10101-10110. https://doi.org/10.1021/nn505020e
    12. Xinfeng Liu, Qing Zhang, Jing Ngei Yip, Qihua Xiong, and Tze Chien Sum . Wavelength Tunable Single Nanowire Lasers Based on Surface Plasmon Polariton Enhanced Burstein–Moss Effect. Nano Letters 2013, 13 (11) , 5336-5343. https://doi.org/10.1021/nl402836x
    13. Amin Talebian‐Kiakalaieh, Haobo Li, Meijun Guo, Elhussein M. Hashem, Bingquan Xia, Jingrun Ran, Shi‐Zhang Qiao. Photocatalytic Reforming Raw Plastic in Seawater by Atomically‐Engineered GeS/ZnIn 2 S 4. Advanced Energy Materials 2025, 14 https://doi.org/10.1002/aenm.202404963
    14. Arfan Bukhtiar, Ke Bao, Muhammad Sheraz Khan, Weizheng Liang, Muhammad Sulaman, Ali Imran, Shangfei Yao, Bingsuo Zou. Photon–carrier–spin coupling in a one-dimensional Ni(II)-doped ZnTe nanostructure. Nanotechnology 2024, 35 (39) , 395710. https://doi.org/10.1088/1361-6528/ad544c
    15. Hua Xiao, Kuokuo Zhang, Bing Xu, Huaibin Shen, Lei Wang, Caiming Sun. High-brightness green CdSe/ZnS quantum dots stimulated by solar-blind deep-ultraviolet light in optical wireless communications. Optics Letters 2024, 49 (13) , 3596. https://doi.org/10.1364/OL.521760
    16. Hamidreza Esmaielpour, Nabi Isaev, Jonathan J. Finley, Gregor Koblmüller. Influence of Auger heating and Shockley-Read-Hall recombination on hot-carrier dynamics in InGaAs nanowires. Physical Review B 2024, 109 (23) https://doi.org/10.1103/PhysRevB.109.235303
    17. Nan Li, Yanyan Yu, Yuanyuan Zhou, Kexin Xu, Yunshan Zhou, Lijuan Zhang, Yuxu Zhong. Construction of a logic gate computation and visual test paper for methyl paraoxon assay based on a fluorescent europium–organic framework. Journal of Materials Chemistry C 2024, 12 (7) , 2493-2504. https://doi.org/10.1039/D3TC04128J
    18. Linyan Zhao, Yangsi Liu, Xiaoli Xi, Zuoren Nie, Fang yee Lim, Say Leong Ong, Jiangyong Hu. Design of dual-LSPR Bi/W18O49 composite and its red-light driven photocatalytic property in the photocatalytic degradation of PPCPs. Chemical Engineering Journal 2024, 481 , 148119. https://doi.org/10.1016/j.cej.2023.148119
    19. Jianlong Kang, Yiduo Wang, Li Zhou, Omar A. Al-Hartomy, S. Wageh, Yingwei Wang, Han Zhang, Si Xiao, Jun He. Excitons dynamic modulation by tailoring size of high-entropy Mo0.64W0.36S2 alloy. Applied Physics Letters 2023, 123 (6) https://doi.org/10.1063/5.0151716
    20. Ronghua Li, Zhengdi Zha, Yanning Zhang, Minji Yang, Lihua Lin, Qian Wang, Takashi Hisatomi, Mamiko Nakabayashi, Naoya Shibata, Kazunari Domen, Yanbo Li. Band-tail states meditated visible-light-driven overall water splitting in Y 2 Ti 2 O 5 S 2 photocatalyst. Journal of Materials Chemistry A 2022, 10 (45) , 24247-24257. https://doi.org/10.1039/D2TA06315H
    21. Linyan Zhao, Yangsi Liu, Xiaoli Xi, Yuegang Shen, Jianyu Wang, Yanan Liu, Zuoren Nie. Bi/Bi2O3/WO3 composite: A bifunctional plasmonic heterostructure for detection and degradation pollutions in wastewater. Journal of Environmental Chemical Engineering 2022, 10 (3) , 107643. https://doi.org/10.1016/j.jece.2022.107643
    22. Sakshi Kapoor, Hilal Ahmad, C.M. Julien, S.S. Islam. Dynamic synthesis of CdTe NRs: Diameter dependent tuning of PL quenching efficiency for sensitive organic vapor detection. Journal of Alloys and Compounds 2022, 901 , 163663. https://doi.org/10.1016/j.jallcom.2022.163663
    23. Qiuxiang Zhu, Weichu Xiao, Wenguo Li, Lincheng Zhang, Yaqi Deng, Xuejun Zhang, Zhengbo Jian, Xiuxiu Dong. Plasmon-mediated exciton-phonon coupling in CdS microbelts. Optik 2022, 251 , 168479. https://doi.org/10.1016/j.ijleo.2021.168479
    24. Ye Tian, Shangfei Yao, Wenchao Lin, Hui Peng, Yongyou Zhang, Bingsuo Zou. Effect of quantum confinement on polarization anisotropy emission in Sn-doped CdS microcones. Materials Advances 2022, 3 https://doi.org/10.1039/D2MA00883A
    25. Xiaoli Xi, Linyan Zhao, Yangsi Liu, Yuegang Shen, Jianyu Wang, Yanan Liu, Zuoren Nie. Bi/Bi 2O 3/WO 3 Composite: A Bifunctional Plasmonic Heterostructure for Detection and Degradation Pollutions in Wastewater. SSRN Electronic Journal 2022, 38 https://doi.org/10.2139/ssrn.4017560
    26. Abdus Salam Sarkar, Anita Kumari, Anchala, Nagaraju Nakka, Rajeev Ray, Emmanuel Stratakis, Suman Kalyan Pal. Excitation dependent photoluminescence from quantum confined ultrasmall SnS sheets. Applied Physics Letters 2021, 119 (24) https://doi.org/10.1063/5.0062372
    27. Haijie Ben, Yong Liu, Xiao Liu, Xiufan Liu, Cancan Ling, Chuan Liang, Lizhi Zhang. Diffusion‐Controlled Z‐Scheme‐Steered Charge Separation across PDI/BiOI Heterointerface for Ultraviolet, Visible, and Infrared Light‐Driven Photocatalysis. Advanced Functional Materials 2021, 31 (37) https://doi.org/10.1002/adfm.202102315
    28. Qianqian Chi, Genping Zhu, Dongmei Jia, Wei Ye, Yikang Wang, Jun Wang, Ting Tao, Fuchun Xu, Gan Jia, Wenhao Li, Peng Gao. Built-in electric field for photocatalytic overall water splitting through a TiO 2 /BiOBr P–N heterojunction. Nanoscale 2021, 13 (8) , 4496-4504. https://doi.org/10.1039/D0NR08928A
    29. Yong Li, Peng-Fei Ji, Ya-Juan Hao, Yue-Li Song, Feng-Qun Zhou, Shu-Qing Yuan. Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method. Chinese Physics B 2021, 30 (1) , 016104. https://doi.org/10.1088/1674-1056/abbbf1
    30. Yuehua Peng, Qi Zheng, Yanling Yin, Zhuang Zhao, Manyi Zhong, Weichang Zhou, Dongsheng Tang. Wide spectrum multi-sub-band modulation of excitons and defect state emission simultaneously in surface oxidized CdS micro/nano-wires. AIP Advances 2020, 10 (12) https://doi.org/10.1063/5.0032877
    31. Shaolong Huang, Huan Yi, Luhong Zhang, Zhengyuan Jin, Yaojia Long, Yiyue Zhang, Qiufan Liao, Jongbeom Na, Hongzhi Cui, Shuangchen Ruan, Yusuke Yamauchi, Toru Wakihara, Yusuf Valentino Kaneti, Yu-Jia Zeng. Non-precious molybdenum nanospheres as a novel cocatalyst for full-spectrum-driven photocatalytic CO2 reforming to CH4. Journal of Hazardous Materials 2020, 393 , 122324. https://doi.org/10.1016/j.jhazmat.2020.122324
    32. Weikang Wang, Haimin Zhang, Shengbo Zhang, Yanyan Liu, Guozhong Wang, Chenghua Sun, Huijun Zhao. Potassium‐Ion‐Assisted Regeneration of Active Cyano Groups in Carbon Nitride Nanoribbons: Visible‐Light‐Driven Photocatalytic Nitrogen Reduction. Angewandte Chemie International Edition 2019, 58 (46) , 16644-16650. https://doi.org/10.1002/anie.201908640
    33. Weikang Wang, Haimin Zhang, Shengbo Zhang, Yanyan Liu, Guozhong Wang, Chenghua Sun, Huijun Zhao. Potassium‐Ion‐Assisted Regeneration of Active Cyano Groups in Carbon Nitride Nanoribbons: Visible‐Light‐Driven Photocatalytic Nitrogen Reduction. Angewandte Chemie 2019, 131 (46) , 16797-16803. https://doi.org/10.1002/ange.201908640
    34. Liyun Zhao, Qiuyu Shang, Yan Gao, Bao Jin, Tianyou Zhai, Qing Zhang. High quality two-photon pumped whispering-gallery-mode lasing from ultrathin CdS microflakes. Journal of Materials Chemistry C 2019, 7 (41) , 12869-12875. https://doi.org/10.1039/C9TC02640A
    35. Zhaoyong Lin, Chun Du, Bo Yan, Guowei Yang. Amorphous Fe 2 O 3 for photocatalytic hydrogen evolution. Catalysis Science & Technology 2019, 9 (20) , 5582-5592. https://doi.org/10.1039/C9CY01621J
    36. Shiting Wu, Xiaowei Shi, Mingshan Zhu. N , N -Dimethylformamide assisted hydrothermal introduction of MoS 2 on ultrathin g-C 3 N 4 layers with enhanced visible light photocatalytic hydrogen evolution activity. Sustainable Energy & Fuels 2019, 3 (6) , 1461-1467. https://doi.org/10.1039/C9SE00173E
    37. Zhaoyong Lin, Chun Du, Bo Yan, Guowei Yang. Two-dimensional amorphous CoO photocatalyst for efficient overall water splitting with high stability. Journal of Catalysis 2019, 372 , 299-310. https://doi.org/10.1016/j.jcat.2019.03.025
    38. Qi Zheng, Weichang Zhou, Yuehua Peng, Yanling Yin, Manyi Zhong, Zhuang Zhao, Qinglin Zhang, Dongsheng Tang, Ruosheng Zeng, Bingsuo Zou. Surface polarons and optical micro-cavity modulated broad range multi-mode emission of Te-doped CdS nanowires. Nanotechnology 2018, 29 (46) , 465709. https://doi.org/10.1088/1361-6528/aadf64
    39. Yaocheng Deng, Lin Tang, Chengyang Feng, Guangming Zeng, Zhaoming Chen, Jiajia Wang, Haopeng Feng, Bo Peng, Yani Liu, Yaoyu Zhou. Insight into the dual-channel charge-charrier transfer path for nonmetal plasmonic tungsten oxide based composites with boosted photocatalytic activity under full-spectrum light. Applied Catalysis B: Environmental 2018, 235 , 225-237. https://doi.org/10.1016/j.apcatb.2018.04.075
    40. Xiaowei Shi, Mamoru Fujitsuka, Sooyeon Kim, Tetsuro Majima. Faster Electron Injection and More Active Sites for Efficient Photocatalytic H 2 Evolution in g‐C 3 N 4 /MoS 2 Hybrid. Small 2018, 14 (11) https://doi.org/10.1002/smll.201703277
    41. Liyun Zhao, Xuewen Wang, Zhepeng Zhang, Pengfei Yang, Jie Chen, Yanqi Chen, Hao Wang, Qiuyu Shang, Yuyang Zhang, Yanfeng Zhang, Xinfeng Liu, Jiancai Leng, Zheng Liu, Qing Zhang. Surface State Mediated Interlayer Excitons in a 2D Nonlayered–Layered Semiconductor Heterojunction. Advanced Electronic Materials 2017, 3 (12) https://doi.org/10.1002/aelm.201700373
    42. Chun-Yan Luan, Shuang Xie, Chunyan Ma, Shengping Wang, Yuhan Kong, Mingsheng Xu. Elucidation of luminescent mechanisms of size-controllable MoSe2 quantum dots. Applied Physics Letters 2017, 111 (7) https://doi.org/10.1063/1.4999444
    43. Petronela Pascariu-Dorneanu, Anton Airinei, Niculae Olaru, Nicusor Fifere, Corneliu Doroftei, Felicia Iacomi. Preparation and characterization of some electrospun polysulfone nanocomposites reinforced with Ni doped SnO 2 nanoparticles. European Polymer Journal 2017, 91 , 326-336. https://doi.org/10.1016/j.eurpolymj.2017.04.004
    44. Zhenyi Zhang, Jindou Huang, Yurui Fang, Mingyi Zhang, Kuichao Liu, Bin Dong. A Nonmetal Plasmonic Z‐Scheme Photocatalyst with UV‐ to NIR‐Driven Photocatalytic Protons Reduction. Advanced Materials 2017, 29 (18) https://doi.org/10.1002/adma.201606688
    45. Shital V. Kahane, V. Sudarsan, Shailaja Mahamuni. Anomalous photoluminescence enhancement due to hot electron transfer in core–shell Au–CdS nanocrystals. Journal of Luminescence 2017, 181 , 91-95. https://doi.org/10.1016/j.jlumin.2016.09.011
    46. S. Guo, F. Y. Zhao, Y. Li, G. L. Song, A. Li, K. Chai, L. Liang, Z. Ma, D. Weller, R. B. Liu. Individual dual-emitting CdS multi-branched nanowire arrays under various pumping powers. Applied Physics Letters 2016, 109 (16) https://doi.org/10.1063/1.4964879
    47. G L Song, S Guo, X X Wang, Z S Li, B S Zou, H M Fan, R B Liu. Temperature dependent raman and photoluminescence of an individual Sn-doped CdS branched nanostructure. New Journal of Physics 2015, 17 (6) , 063024. https://doi.org/10.1088/1367-2630/17/6/063024
    48. P. Pascariu Dorneanu, A. Airinei, M. Homocianu, N. Olaru. Photophysical and surface characteristics of electrospun polysulfone/nickel fibers. Materials Research Bulletin 2015, 64 , 306-311. https://doi.org/10.1016/j.materresbull.2015.01.012
    49. Xiaotian Wang, Chihao Liow, Ankit Bisht, Xinfeng Liu, Tze Chien Sum, Xiaodong Chen, Shuzhou Li. Engineering Interfacial Photo‐Induced Charge Transfer Based on Nanobamboo Array Architecture for Efficient Solar‐to‐Chemical Energy Conversion. Advanced Materials 2015, 27 (13) , 2207-2214. https://doi.org/10.1002/adma.201405674
    50. H. Yu, C. Xin, Q. Zhang, M.I.B. Utama, L. Tong, Q.H. Xiong. II–VI compound semiconductor nanowires. 2015, 29-69. https://doi.org/10.1016/B978-1-78242-253-2.00002-5
    51. Giwoong Nam, Jae-Young Leem. Synthesis and fast-response of a photodetector of hydrothermally grown ZnO nanorods through the use of a graphene oxide/ZnO seed layer. RSC Advances 2015, 5 (114) , 94222-94226. https://doi.org/10.1039/C5RA20634K
    52. Xinlong Xu, Qing Zhang, Jun Zhang, Yixuan Zhou, Qihua Xiong. Taming excitons in II–VI semiconductor nanowires and nanobelts. Journal of Physics D: Applied Physics 2014, 47 (39) , 394009. https://doi.org/10.1088/0022-3727/47/39/394009
    53. N. Bel Haj Mohamed, M. Haouari, Z. Zaaboub, M. Nafoutti, F. Hassen, H. Maaref, H. Ben Ouada. Time resolved and temperature dependence of the radiative properties of thiol-capped CdS nanoparticles films. Journal of Nanoparticle Research 2014, 16 (2) https://doi.org/10.1007/s11051-013-2242-9
    54. Giwoong Nam, Byunggu Kim, Youngbin Park, Seonhee Park, Jiyun Moon, Do Yeob Kim, Sung-O Kim, Jae-Young Leem. A novel regrowth mechanism and enhanced optical properties of Mg 0.25 Zn 0.75 O nanorods subjected to vapor-confined face-to-face annealing. J. Mater. Chem. C 2014, 2 (46) , 9918-9923. https://doi.org/10.1039/C4TC01407C

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2013, 117, 20, 10716–10722
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp312850w
    Published April 20, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    1234

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.