Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Understanding the Nucleation and Growth of Metals on TiO2: Co Compared to Au, Ni, and Pt
My Activity

Figure 1Loading Img
    Article

    Understanding the Nucleation and Growth of Metals on TiO2: Co Compared to Au, Ni, and Pt
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
    Department of Chemistry and Biochemistry, University of Texas, Austin, Texas 78712, United States
    § Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
    *Phone 803-777-1050; Fax 803-777-9521; e-mail [email protected]
    Other Access Options

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2013, 117, 14, 7191–7201
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp401283k
    Published March 19, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The nucleation and growth of Co clusters on vacuum-annealed (reduced) and oxidized TiO2(110) have been studied by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and density function theory (DFT) calculations. On vacuum-annealed TiO2(110), the Co clusters grow as three-dimensional islands at coverages between 0.02 and 0.25 ML, but the cluster heights range from ∼3 to 5 Å, indicating that the clusters are less than three layers high. In addition to the small cluster sizes, the high nucleation density of the Co clusters and lack of preferential nucleation at the step edges demonstrate that diffusion is slow for Co atoms on the TiO2 surface. In contrast, deposition of other metals such as Au, Ni, and Pt on TiO2 results in larger cluster sizes with a smaller number of nucleation sites and preferential nucleation at step edges. XPS experiments show that Co remains in the metallic state, and there is little reduction of the titania surface by Co. A comparison of the metal–titania binding energies calculated by DFT for Co, Au, Ni, and Pt indicates that stronger metal–titania interactions correspond to lower diffusion rates on the surface, as observed by STM. Furthermore, on oxidized TiO2 surfaces, the diffusion rates of all of the metals decrease, resulting in smaller cluster sizes and higher cluster densities compared to the growth on reduced TiO2. DFT calculations confirm that the metal–titania adsorption energies are higher on the oxidized surfaces, and this is consistent with the lower diffusion rates observed experimentally.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 86 publications.

    1. Nishan Paudyal, Tasnim Ara, Linze Du Hill, Sanjaya D. Senanayake, Jing Zhou. The Triple Component Interface of Ni–Co–Ce: Growth, Chemical State, and Stability of NiCo Bimetallic Particles on Reducible CeO2(111) Thin Films. The Journal of Physical Chemistry C 2024, 128 (39) , 16754-16765. https://doi.org/10.1021/acs.jpcc.4c04802
    2. Md. Saeedur Rahman, Nishan Paudyal, Linze Du Hill, Jing Zhou, Ye Xu. The Structure, Oxidation States, and Energetics of Co Nanoparticles on CeO2(111): An STM and DFT Study. The Journal of Physical Chemistry C 2024, Article ASAP.
    3. Florian Kraushofer, Gareth S. Parkinson. Single-Atom Catalysis: Insights from Model Systems. Chemical Reviews 2022, 122 (18) , 14911-14939. https://doi.org/10.1021/acs.chemrev.2c00259
    4. Guang-Jie Xia, Mal-Soon Lee, Vassiliki-Alexandra Glezakou, Roger Rousseau, Yang-Gang Wang. Diffusion and Surface Segregation of Interstitial Ti Defects Induced by Electronic Metal–Support Interactions on a Au/TiO2 Nanocatalyst. ACS Catalysis 2022, 12 (8) , 4455-4464. https://doi.org/10.1021/acscatal.2c00159
    5. Sumit Beniwal, Wenrui Chai, Kamolrat Metavarayuth, Thathsara D. Maddumapatabandi, Deependra M. Shakya, Graeme Henkelman, Donna A. Chen. Oxidation of Sn at the Cluster–Support Interface: Sn and Pt–Sn Clusters on TiO2(110). The Journal of Physical Chemistry C 2021, 125 (32) , 17671-17683. https://doi.org/10.1021/acs.jpcc.1c03338
    6. Fengyang Yu, Liyong Chen, Xuezhao Li, Xiaoshuang Shen, He Zhao, Chunying Duan, Qianwang Chen. Cu Nanocluster-Loaded TiO2 Nanosheets for Highly Efficient Generation of CO-Free Hydrogen by Selective Photocatalytic Dehydrogenation of Methanol to Formaldehyde. ACS Applied Materials & Interfaces 2021, 13 (16) , 18619-18626. https://doi.org/10.1021/acsami.0c20116
    7. Yuuki Adachi, Yasuhiro Sugawara, Yan Jun Li. Atomic Scale Three-Dimensional Au Nanocluster on a Rutile TiO2 (110) Surface Resolved by Atomic Force Microscopy. The Journal of Physical Chemistry Letters 2020, 11 (17) , 7153-7158. https://doi.org/10.1021/acs.jpclett.0c02042
    8. Randima P. Galhenage, Hui Yan, Takat B. Rawal, Duy Le, Amy J. Brandt, Thathsara D. Maddumapatabandi, Nhat Nguyen, Talat S. Rahman, Donna A. Chen. MoS2 Nanoclusters Grown on TiO2: Evidence for New Adsorption Sites at Edges and Sulfur Vacancies. The Journal of Physical Chemistry C 2019, 123 (12) , 7185-7201. https://doi.org/10.1021/acs.jpcc.9b00076
    9. Mohong Lu, Yu Sun, Peng Zhang, Jie Zhu, Mingshi Li, Yuhua Shan, Jianyi Shen, Chunshan Song. Hydrodeoxygenation of Guaiacol Catalyzed by High-Loading Ni Catalysts Supported on SiO2–TiO2 Binary Oxides. Industrial & Engineering Chemistry Research 2019, 58 (4) , 1513-1524. https://doi.org/10.1021/acs.iecr.8b04517
    10. Safi Jradi, Lama Zaarour, Zeinab Chehadi, Suzanna Akil, Jérôme Plain. Femtosecond Direct Laser-Induced Assembly of Monolayer of Gold Nanostructures with Tunable Surface Plasmon Resonance and High Performance Localized Surface Plasmon Resonance and Surface Enhanced Raman Scattering Sensing. Langmuir 2018, 34 (51) , 15763-15772. https://doi.org/10.1021/acs.langmuir.8b00413
    11. Elisabeth M. Dietze, Frank Abild-Pedersen, Philipp N. Plessow. Comparison of Sintering by Particle Migration and Ripening through First-Principles-Based Simulations. The Journal of Physical Chemistry C 2018, 122 (46) , 26563-26569. https://doi.org/10.1021/acs.jpcc.8b09303
    12. Satish Kumar Iyemperumal, Thang Duc Pham, Jack Bauer, N. Aaron Deskins. Quantifying Support Interactions and Reactivity Trends of Single Metal Atom Catalysts over TiO2. The Journal of Physical Chemistry C 2018, 122 (44) , 25274-25289. https://doi.org/10.1021/acs.jpcc.8b05611
    13. Mathilde Iachella, Tangui Le Bahers, and David Loffreda . Diffusion Kinetics of Gold and Copper Atoms on Pristine and Reduced Rutile TiO2 (110) Surfaces. The Journal of Physical Chemistry C 2018, 122 (7) , 3824-3837. https://doi.org/10.1021/acs.jpcc.7b08183
    14. Michael Wagstaffe, Hadeel Hussain, Matthew J. Acres, Rosemary Jones, Karen L. Syres, and Andrew G. Thomas . Structure and Reactivity of a Model Oxide Supported Silver Nanocluster Catalyst Studied by Near Ambient Pressure X-ray Photoelectron Spectroscopy. The Journal of Physical Chemistry C 2017, 121 (39) , 21383-21389. https://doi.org/10.1021/acs.jpcc.7b05818
    15. Kevin K. B. Duff, Leonardo Spanu, and Nicholas D. M. Hine . Impact of Carbonyl Formation on Cobalt Ripening over Titania Surface. The Journal of Physical Chemistry C 2017, 121 (29) , 15880-15887. https://doi.org/10.1021/acs.jpcc.7b05371
    16. Jiyeon Kim, Jeffrey E. Dick, and Allen J. Bard . Advanced Electrochemistry of Individual Metal Clusters Electrodeposited Atom by Atom to Nanometer by Nanometer. Accounts of Chemical Research 2016, 49 (11) , 2587-2595. https://doi.org/10.1021/acs.accounts.6b00340
    17. Rik V. Mom, Marcel J. Rost, Joost W. M. Frenken, and Irene M. N. Groot . Tuning the Properties of Molybdenum Oxide on Al2O3/NiAl(110): Metal versus Oxide Deposition. The Journal of Physical Chemistry C 2016, 120 (35) , 19737-19743. https://doi.org/10.1021/acs.jpcc.6b06040
    18. Randima P. Galhenage, Kangmin Xie, Hui Yan, Grant S. Seuser, and Donna A. Chen . Understanding the Growth, Chemical Activity, and Cluster–Support Interactions for Pt–Re Bimetallic Clusters on TiO2(110). The Journal of Physical Chemistry C 2016, 120 (20) , 10866-10878. https://doi.org/10.1021/acs.jpcc.6b01041
    19. Jiyeon Kim and Allen J. Bard . Electrodeposition of Single Nanometer-Size Pt Nanoparticles at a Tunneling Ultramicroelectrode and Determination of Fast Heterogeneous Kinetics for Ru(NH3)63+ Reduction. Journal of the American Chemical Society 2016, 138 (3) , 975-979. https://doi.org/10.1021/jacs.5b11655
    20. Deen Gu, Cheng Zhang, Yi-Kuei Wu, and L. Jay Guo . Ultrasmooth and Thermally Stable Silver-Based Thin Films with Subnanometer Roughness by Aluminum Doping. ACS Nano 2014, 8 (10) , 10343-10351. https://doi.org/10.1021/nn503577c
    21. Randima P. Galhenage, Hui Yan, Ali S. Ahsen, Osman Ozturk, and Donna A. Chen . Understanding the Growth and Chemical Activity of Co–Pt Bimetallic Clusters on TiO2(110): CO Adsorption and Methanol Reaction. The Journal of Physical Chemistry C 2014, 118 (31) , 17773-17786. https://doi.org/10.1021/jp505003s
    22. John R. Morris . Developing a Molecular-Level Understanding of Organic Chemistry and Physics at the Gas–Surface Interface. The Journal of Physical Chemistry Letters 2013, 4 (23) , 4055-4057. https://doi.org/10.1021/jz402404p
    23. Guang-Jie Xia, Yu Fu, Wei Cao, Jun Li, Yang-Gang Wang. How interfacial electron-donating defects influence the structure and charge of gold nanoparticles on TiO2 support. Nano Research 2024, 17 (7) , 5965-5974. https://doi.org/10.1007/s12274-024-6625-2
    24. Atul Tiwari, Matteo Monai, Ksenia Matveevskii, Sergey N. Yakunin, Laurens D. B. Mandemaker, Martina Tsvetanova, Melissa J. Goodwin, Marcelo D. Ackermann, Florian Meirer, Igor A. Makhotkin. X-ray standing wave characterization of the strong metal–support interaction in Co/TiO x model catalysts. Journal of Applied Crystallography 2024, 57 (2) , 481-491. https://doi.org/10.1107/S1600576724001730
    25. Muhammad Faizan, Afaq Ullah Khan, Kamran Tahir, Zainab M. Almarhoon, Zia Ul Haq Khan, Nora Awad Alkudaisi, Khulood Fahad Alabbosh, Abdulaziz A. Alanazi, Sameerah I. Al-Saeedi, Magdi E.A. Zaki. Platinum and gold activated ZnFe2O4 nanomaterials for boosting photocatalytic inhibition of bacteria under visible light. Materials Today Communications 2024, 38 , 108383. https://doi.org/10.1016/j.mtcomm.2024.108383
    26. M.K. Prabhu, I.M.N. Groot. Atomic-level insights into single-layer Co-promoted MoS2 clusters supported on a rutile TiO2(110) model oxide support. Surface Science 2024, 739 , 122385. https://doi.org/10.1016/j.susc.2023.122385
    27. Buqi Zhang, Ruixin Gong, Yuanbo Zhang, Yanan Li, Lianqing Zhu. Recent progress in dielectric/metal/dielectric electrodes for foldable light-emitting devices. Nanotechnology Reviews 2023, 12 (1) https://doi.org/10.1515/ntrev-2023-0578
    28. Eunwook Jeong, Sang-Geul Lee, Seung Min Yu, Jong-Seong Bae, Seung Zeon Han, Gun-Hwan Lee, Eun-Ae Choi, Jungheum Yun. Dependency of Ag wetting on the oxygen nonstoichiometry of oxide surfaces. Applied Surface Science 2023, 611 , 155699. https://doi.org/10.1016/j.apsusc.2022.155699
    29. Mateusz A. Baluk, Paweł Mazierski, Aleksandra Pieczyńska, Kostiantyn Nikiforow, Grzegorz Trykowski, Tomasz Klimczuk, Adriana Zaleska-Medynska. MOF/TiO 2 erythrocyte-like heterostructures decorated by noble metals for use in hydrogen photogeneration and pollutant photodegradation. Catalysis Science & Technology 2023, 16 https://doi.org/10.1039/D3CY00531C
    30. Eun-Suk Jeong, In-Hui Hwang, Sang-Wook Han. Dispersion and stability mechanism of Pt nanoparticles on transition-metal oxides. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-17638-6
    31. Sergio Tosoni, Gianfranco Pacchioni. Magnetic nature and hyperfine interactions of transition metal atoms adsorbed on ultrathin insulating films: a challenge for DFT. Physical Chemistry Chemical Physics 2022, 24 (26) , 15891-15903. https://doi.org/10.1039/D2CP01224C
    32. Foroozan S. Koushan, Nobuhiko P. Kobayashi. Impact of the nucleation of conducting clusters on the retention of memristors: A self-consistent phase-field computational study. Journal of Applied Physics 2021, 130 (5) https://doi.org/10.1063/5.0055083
    33. Jing Zhou, Linze Du, Daniel L. Braedt, Jintao Miao, Sanjaya D. Senanayake. Growth, sintering, and chemical states of Co supported on reducible CeO2(111) thin films: The effects of the metal coverage and the nature of the support. The Journal of Chemical Physics 2021, 154 (4) https://doi.org/10.1063/5.0036952
    34. Heiddy P. Quiroz, E. F. Galíndez, A. Dussan, A. Cardona-Rodriguez, Juan Gabriel Ramirez. Super-exchange interaction model in DMOs: Co doped TiO2 thin films. Journal of Materials Science 2021, 56 (1) , 581-591. https://doi.org/10.1007/s10853-020-05282-2
    35. Ingo Dierking. Carbon Allotropes as ITO Electrode Replacement Materials in Liquid Crystal Devices. C 2020, 6 (4) , 80. https://doi.org/10.3390/c6040080
    36. Xue Yang, Ye Song, Tiantian Cao, Lei Wang, Haitao Song, Wei Lin. The double tuning effect of TiO2 on Pt catalyzed dehydrogenation of methylcyclohexane. Molecular Catalysis 2020, 492 , 110971. https://doi.org/10.1016/j.mcat.2020.110971
    37. Ewa Madej, Józef Korecki, Nika Spiridis. Au nanoparticles on Fe-modified rutile TiO2(110): Dispersion, thermal stability, and CO adsorption. The Journal of Chemical Physics 2020, 152 (5) https://doi.org/10.1063/1.5140839
    38. Heiddy P. Quiroz, E.F. Galíndez, A. Dussan. Ferromagnetic-like behavior of Co doped TiO2 flexible thin films fabricated via co-sputtering for spintronic applications. Heliyon 2020, 6 (2) , e03338. https://doi.org/10.1016/j.heliyon.2020.e03338
    39. Lingyiqian Luo, Jed D. LaCoste, Nuriya G. Khamidullina, Elizabeth Fox, Daniel D. Gang, Rafael Hernandez, Hui Yan. Investigate interactions of water with mesoporous ceria using in situ VT-DRIFTS. Surface Science 2020, 691 , 121486. https://doi.org/10.1016/j.susc.2019.121486
    40. Amy J. Brandt, Thathsara D. Maddumapatabandi, Deependra M. Shakya, Kangmin Xie, Grant S. Seuser, Sharfa Farzandh, Donna A. Chen. Water-gas shift activity on Pt-Re surfaces and the role of the support. The Journal of Chemical Physics 2019, 151 (23) https://doi.org/10.1063/1.5128735
    41. Qian Yang, Lichun Dong, Ren Su, Baoshan Hu, Zegao Wang, Yan Jin, Yin Wang, Flemming Besenbacher, Mingdong Dong. Nanostructured heterogeneous photo-catalysts for hydrogen production and water splitting: A comprehensive insight. Applied Materials Today 2019, 17 , 159-182. https://doi.org/10.1016/j.apmt.2019.07.016
    42. Izabela Wysocka, Agata Markowska‐Szczupak, Piotr Szweda, Jacek Ryl, Maya Endo‐Kimura, Ewa Kowalska, Grzegorz Nowaczyk, Anna Zielińska‐Jurek. Gas‐phase removal of indoor volatile organic compounds and airborne microorganisms over mono‐ and bimetal‐modified (Pt, Cu, Ag) titanium(IV) oxide nanocomposites. Indoor Air 2019, 29 (6) , 979-992. https://doi.org/10.1111/ina.12595
    43. Anna Zielińska-Jurek, Zhishun Wei, Marcin Janczarek, Izabela Wysocka, Ewa Kowalska. Size-Controlled Synthesis of Pt Particles on TiO2 Surface: Physicochemical Characteristic and Photocatalytic Activity. Catalysts 2019, 9 (11) , 940. https://doi.org/10.3390/catal9110940
    44. H. Valdés, L.M. Molina, J.A. Alonso. Water adsorption and dissociation on gold catalysts supported on anatase-TiO2(101). Applied Surface Science 2019, 487 , 244-252. https://doi.org/10.1016/j.apsusc.2019.04.249
    45. Izabela Wysocka, Ewa Kowalska, Jacek Ryl, Grzegorz Nowaczyk, Anna Zielińska-Jurek. Morphology, Photocatalytic and Antimicrobial Properties of TiO2 Modified with Mono- and Bimetallic Copper, Platinum and Silver Nanoparticles. Nanomaterials 2019, 9 (8) , 1129. https://doi.org/10.3390/nano9081129
    46. Li Li, Liu Shi, Xiaohu Yu, Shaojun Qing, Zhixian Gao, Qiquan Luo, Gang Feng, Rongbin Zhang. Adsorption of Nin (n = 1‒4) clusters on perfect and O-defective CuAl2O4 surfaces: A DFT study. Chinese Chemical Letters 2019, 30 (6) , 1147-1152. https://doi.org/10.1016/j.cclet.2019.03.047
    47. Izabela Wysocka, Jan Hupka, Andrzej Rogala. Catalytic Activity of Nickel and Ruthenium–Nickel Catalysts Supported on SiO2, ZrO2, Al2O3, and MgAl2O4 in a Dry Reforming Process. Catalysts 2019, 9 (6) , 540. https://doi.org/10.3390/catal9060540
    48. Nandha Kumar, Debabrata Chattaraj, Indu Kaul, Chiranjib Majumder, Prasenjit Ghosh. First principles investigation of growth of small Pd-Ga bimetallic clusters on MgO(100) surface. Journal of Applied Physics 2019, 125 (18) https://doi.org/10.1063/1.5091993
    49. Jory A. Yarmoff, Christopher Salvo. Au nanocluster growth on Graphene supported on Ni(111). Surface Science 2019, 681 , 59-63. https://doi.org/10.1016/j.susc.2018.11.014
    50. Yan‐Gang Bi, Yue‐Feng Liu, Xu‐Lin Zhang, Da Yin, Wen‐Quan Wang, Jing Feng, Hong‐Bo Sun. Ultrathin Metal Films as the Transparent Electrode in ITO‐Free Organic Optoelectronic Devices. Advanced Optical Materials 2019, 7 (6) https://doi.org/10.1002/adom.201800778
    51. Sergio Tosoni, Gianfranco Pacchioni. Oxide‐Supported Gold Clusters and Nanoparticles in Catalysis: A Computational Chemistry Perspective. ChemCatChem 2019, 11 (1) , 73-89. https://doi.org/10.1002/cctc.201801082
    52. Christopher Salvo, Prasanta Karmakar, Jory Yarmoff. Inhomogeneous charge distribution across gold nanoclusters measured by scattered low energy alkali ions. Physical Review B 2018, 98 (3) https://doi.org/10.1103/PhysRevB.98.035437
    53. Linlin Shi, Yanxia Cui, Yupeng Gao, Wenyan Wang, Ye Zhang, Furong Zhu, Yuying Hao. High Performance Ultrathin MoO3/Ag Transparent Electrode and Its Application in Semitransparent Organic Solar Cells. Nanomaterials 2018, 8 (7) , 473. https://doi.org/10.3390/nano8070473
    54. José M. Castillo-Robles, Emilio Orgaz. Structural and optical properties of Ni atoms and $$\hbox {Ni}_{55}$$ Ni 55 cluster adsorbed on a rutile $$\hbox {TiO}_{2}$$ TiO 2 (110) surface. Theoretical Chemistry Accounts 2018, 137 (3) https://doi.org/10.1007/s00214-018-2211-6
    55. Ting-Wei Liao, Sammy Verbruggen, Nathalie Claes, Anupam Yadav, Didier Grandjean, Sara Bals, Peter Lievens. TiO2 Films Modified with Au Nanoclusters as Self-Cleaning Surfaces under Visible Light. Nanomaterials 2018, 8 (1) , 30. https://doi.org/10.3390/nano8010030
    56. Jean-Michel Guay, Antonino Calà Lesina, Guillaume Côté, Martin Charron, Daniel Poitras, Lora Ramunno, Pierre Berini, Arnaud Weck. Laser-induced plasmonic colours on metals. Nature Communications 2017, 8 (1) https://doi.org/10.1038/ncomms16095
    57. Anna Gołąbiewska, Wojciech Lisowski, Marcin Jarek, Grzegorz Nowaczyk, Monika Michalska, Stefan Jurga, Adriana Zaleska-Medynska. The effect of metals content on the photocatalytic activity of TiO2 modified by Pt/Au bimetallic nanoparticles prepared by sol-gel method. Molecular Catalysis 2017, 442 , 154-163. https://doi.org/10.1016/j.mcat.2017.09.004
    58. F. Ruffino, V. Torrisi. Ag films deposited on Si and Ti: How the film-substrate interaction influences the nanoscale film morphology. Superlattices and Microstructures 2017, 111 , 81-89. https://doi.org/10.1016/j.spmi.2017.06.021
    59. Gözde Alkan, Rebeka Rudolf, Jelena Bogovic, Darja Jenko, Bernd Friedrich. Structure and Formation Model of Ag/TiO2 and Au/TiO2 Nanoparticles Synthesized through Ultrasonic Spray Pyrolysis. Metals 2017, 7 (10) , 389. https://doi.org/10.3390/met7100389
    60. Ewa Madej, Nika Spiridis, Robert Piotr Socha, Barbara Wolanin, Józef Korecki. The nucleation, growth and thermal stability of iron clusters on a TiO 2 (110) surface. Applied Surface Science 2017, 416 , 144-151. https://doi.org/10.1016/j.apsusc.2017.04.114
    61. Hossein Farrokhpour, Mehdi Vazifeh, Alireza Najafi Chermahini. Adsorption modes of 1,3-thiazol-2-amine on the TiO2 (001) and (101) anatase surfaces. Structural Chemistry 2017, 28 (4) , 1151-1162. https://doi.org/10.1007/s11224-017-0920-4
    62. Da-wei Guan, Rui-min Wang, Xian-chi Jin, Dong-xu Dai, Zhi-bo Ma, Hong-jun Fan, Xue-ming Yang. Diffusion of Formaldehyde on Rutile TiO2(110) Assisted by Surface Hydroxyl Groups. Chinese Journal of Chemical Physics 2017, 30 (3) , 253-258. https://doi.org/10.1063/1674-0068/30/cjcp1703030
    63. Honghong Wang, Taicheng An, Annabella Selloni. Effect of reducible oxide–metal cluster charge transfer on the structure and reactivity of adsorbed Au and Pt atoms and clusters on anatase TiO2. The Journal of Chemical Physics 2017, 146 (18) https://doi.org/10.1063/1.4982933
    64. Jungheum Yun. Ultrathin Metal films for Transparent Electrodes of Flexible Optoelectronic Devices. Advanced Functional Materials 2017, 27 (18) https://doi.org/10.1002/adfm.201606641
    65. Guiying Xu, Liang Shen, Chaohua Cui, Shanpeng Wen, Rongming Xue, Weijie Chen, Haiyang Chen, Jingwen Zhang, Hongkun Li, Yaowen Li, Yongfang Li. High‐Performance Colorful Semitransparent Polymer Solar Cells with Ultrathin Hybrid‐Metal Electrodes and Fine‐Tuned Dielectric Mirrors. Advanced Functional Materials 2017, 27 (15) https://doi.org/10.1002/adfm.201605908
    66. Deen Gu, Xin Zhou, Rui Guo, Zhihui Wang, Yadong Jiang. The microstructures and electrical properties of Y-doped amorphous vanadium oxide thin films. Infrared Physics & Technology 2017, 81 , 64-68. https://doi.org/10.1016/j.infrared.2016.12.013
    67. Tao Yang, Masahiro Ehara. Probing the electronic structures of Co n (n = 1–5) clusters on γ-Al 2 O 3 surfaces using first-principles calculations. Physical Chemistry Chemical Physics 2017, 19 (5) , 3679-3687. https://doi.org/10.1039/C6CP06785A
    68. M. Anandkumar, G. Vinothkumar, K. Suresh Babu. Synergistic effect of gold supported on redox active cerium oxide nanoparticles for the catalytic hydrogenation of 4-nitrophenol. New Journal of Chemistry 2017, 41 (14) , 6720-6729. https://doi.org/10.1039/C7NJ01300K
    69. Anna Gołąbiewska, Anna Malankowska, Marcin Jarek, Wojciech Lisowski, Grzegorz Nowaczyk, Stefan Jurga, Adriana Zaleska-Medynska. The effect of gold shape and size on the properties and visible light-induced photoactivity of Au-TiO2. Applied Catalysis B: Environmental 2016, 196 , 27-40. https://doi.org/10.1016/j.apcatb.2016.05.013
    70. E. Grabowska, M. Marchelek, T. Klimczuk, G. Trykowski, A. Zaleska-Medynska. Noble metal modified TiO2 microspheres: Surface properties and photocatalytic activity under UV–vis and visible light. Journal of Molecular Catalysis A: Chemical 2016, 423 , 191-206. https://doi.org/10.1016/j.molcata.2016.06.021
    71. Ákos Kukovecz, Krisztián Kordás, János Kiss, Zoltán Kónya. Atomic scale characterization and surface chemistry of metal modified titanate nanotubes and nanowires. Surface Science Reports 2016, 71 (3) , 473-546. https://doi.org/10.1016/j.surfrep.2016.06.001
    72. Thuy-Duong Nguyen-Phan, Ashleigh E. Baber, José A. Rodriguez, Sanjaya D. Senanayake. Au and Pt nanoparticle supported catalysts tailored for H2 production: From models to powder catalysts. Applied Catalysis A: General 2016, 518 , 18-47. https://doi.org/10.1016/j.apcata.2015.12.012
    73. . Characterization Tools for Nanomaterials. 2016, 77-148. https://doi.org/10.1002/9781119096122.ch3
    74. Ghenadii Korotcenkov, Vladimir Brinzari, Beong K. Cho. Conductometric gas sensors based on metal oxides modified with gold nanoparticles: a review. Microchimica Acta 2016, 183 (3) , 1033-1054. https://doi.org/10.1007/s00604-015-1741-z
    75. Ahmed Naitabdi, Robert Fagiewicz, Anthony Boucly, Giorgia Olivieri, Fabrice Bournel, Héloïse Tissot, Yawei Xu, Rabah Benbalagh, Mathieu G. Silly, Fausto Sirotti, Jean-Jacques Gallet, François Rochet. Oxidation of Small Supported Platinum-based Nanoparticles Under Near-Ambient Pressure Exposure to Oxygen. Topics in Catalysis 2016, 59 (5-7) , 550-563. https://doi.org/10.1007/s11244-015-0529-z
    76. Jennifer J. Herbert, Pierre Senecal, David J. Martin, Wim Bras, Simon K. Beaumont, Andrew M. Beale. X-ray spectroscopic and scattering methods applied to the characterisation of cobalt-based Fischer–Tropsch synthesis catalysts. Catalysis Science & Technology 2016, 6 (15) , 5773-5791. https://doi.org/10.1039/C6CY00581K
    77. J. Borges, M.S. Rodrigues, T. Kubart, S. Kumar, K. Leifer, M. Evaristo, A. Cavaleiro, M. Apreutesei, R.M.S. Pereira, M.I. Vasilevskiy, T. Polcar, F. Vaz. Thin films composed of gold nanoparticles dispersed in a dielectric matrix: The influence of the host matrix on the optical and mechanical responses. Thin Solid Films 2015, 596 , 8-17. https://doi.org/10.1016/j.tsf.2015.08.058
    78. Yanxin Wang, Yan Su, Mingyuan Zhu, Lihua Kang. Ni cluster nucleation and growth on the anatase TiO 2 (101) surface: a density functional theory study. RSC Advances 2015, 5 (21) , 16582-16591. https://doi.org/10.1039/C4RA13975E
    79. Dipti Prava Sahoo, Dharitri Rath, Binita Nanda, K. M. Parida. Transition metal/metal oxide modified MCM-41 for pollutant degradation and hydrogen energy production: a review. RSC Advances 2015, 5 (102) , 83707-83724. https://doi.org/10.1039/C5RA14555D
    80. Yu-Ting Cheng, Tzu-Ray Shan, Tao Liang, Rakesh K Behera, Simon R Phillpot, Susan B. Sinnott. A charge optimized many-body (comb) potential for titanium and titania. Journal of Physics: Condensed Matter 2014, 26 (31) , 315007. https://doi.org/10.1088/0953-8984/26/31/315007
    81. Sang Hoon Kim, Young Eun Jeong, Heonphil Ha, Ji Young Byun, Young Dok Kim. Ultra-small platinum and gold nanoparticles by arc plasma deposition. Applied Surface Science 2014, 297 , 52-58. https://doi.org/10.1016/j.apsusc.2014.01.072
    82. Nilesh P. Tangale, Anuja A. Belhekar, Kishor B. Kale, Shobhana V. Awate. Enhanced Mineralization of Gaseous Organic Pollutant by Photo-Oxidation Using Au-Doped TiO2/MCM-41. Water, Air, & Soil Pollution 2014, 225 (2) https://doi.org/10.1007/s11270-013-1847-z
    83. Tomo Hasegawa, Syed Mohammad Fakruddin Shahed, Yasuyuki Sainoo, Atsushi Beniya, Noritake Isomura, Yoshihide Watanabe, Tadahiro Komeda. Epitaxial growth of CeO2(111) film on Ru(0001): Scanning tunneling microscopy (STM) and x-ray photoemission spectroscopy (XPS) study. The Journal of Chemical Physics 2014, 140 (4) https://doi.org/10.1063/1.4849595
    84. Xianlan Chen, Wei Liu, Lele Tang, Jian Wang, Haibo Pan, Min Du. Electrochemical sensor for detection of hydrazine based on Au@Pd core–shell nanoparticles supported on amino-functionalized TiO2 nanotubes. Materials Science and Engineering: C 2014, 34 , 304-310. https://doi.org/10.1016/j.msec.2013.09.016
    85. J. Kiss, P. Pusztai, L. ^|^Oacute;v^|^aacute;ri, K. Ba^|^aacute;n, G. Merza, A. Erd^|^ouml;helyi, A. Kukovecz, Z. K^|^oacute;nya. Decoration of Titanate Nanowires and Nanotubes by Gold Nanoparticles: XPS, HRTEM and XRD Characterization. e-Journal of Surface Science and Nanotechnology 2014, 12 (0) , 252-258. https://doi.org/10.1380/ejssnt.2014.252
    86. D. Madarász, G. Pótári, A. Sápi, B. László, C. Csudai, A. Oszkó, Á. Kukovecz, A. Erdőhelyi, Z. Kónya, J. Kiss. Metal loading determines the stabilization pathway for Co2+ in titanate nanowires: ion exchange vs. cluster formation. Physical Chemistry Chemical Physics 2013, 15 (38) , 15917. https://doi.org/10.1039/c3cp51502h

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2013, 117, 14, 7191–7201
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp401283k
    Published March 19, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    2640

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.