ACS Publications. Most Trusted. Most Cited. Most Read
Identification of Nonequivalent Framework Oxygen Species in Metal–Organic Frameworks by 17O Solid-State NMR
My Activity

Figure 1Loading Img
    Article

    Identification of Nonequivalent Framework Oxygen Species in Metal–Organic Frameworks by 17O Solid-State NMR
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
    National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6
    § Surface Science Western, The University of Western Ontario, London, Ontario, Canada N6G 0J3
    *Tel (519) 661-2111, ext. 86384; e-mail [email protected] (Y.H.).
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2013, 117, 33, 16953–16960
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp403512m
    Published June 19, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Metal–organic frameworks (MOFs) are a class of novel nanoporous materials with many potential applications. Structural characterization is important because understanding the relationship between the properties of these industrially relevant materials and their structures allows one to develop new applications and improve current performance. Oxygen is one of the most important elements in many MOFs and exists in various forms. Ideally, 17O solid-state NMR (SSNMR) should be an excellent tool for characterizing various oxygen species. However, the major obstacles that prevent applying 17O SSNMR to MOF characterization are the synthetic effort needed for 17O isotopic enrichment and the associated high cost. In this work, we successfully prepared several prototypical 17O-enriched MOFs, including Zr-UiO-66, MIL-53(Al), CPO-27-Mg (or Mg-MOF-74), and microporous α-Mg3(HCOO)6. Depending on the target MOF, different isotopic enrichment methods were used to effectively incorporate 17O from 17O-enriched H2O. Using these 17O-enriched MOFs, we were able to acquire 17O SSNMR spectra at a magnetic field of 21.1 T. They provide distinct spectral signatures of various key oxygen species commonly seen in representative MOFs. We demonstrate that 17O SSNMR can be used to differentiate chemically and, under favorite circumstances, crystallographically nonequivalent oxygens and to follow the phase transitions. The synthetic approaches for preparation of 17O-enriched sample described in this paper are fairly simple and cost-effective.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Calculated 17O NMR parameters, schematic description of the reaction vessel, powder XRD patterns, 17O MAS NMR spectra acquired at 9.4 T, 17O CP MAS spectra of MIL-53(Al)-lp at 21.1 T, detailed spectrometer conditions used, and the procedure for 17O enrichment analysis. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 61 publications.

    1. Vinicius Martins, Bryan E.G. Lucier, Kuizhi Chen, Ivan Hung, Zhehong Gan, Christel Gervais, Christian Bonhomme, Heng-Yong Nie, Wanli Zhang, Yining Huang. Molecular-Level Characterization of Oxygen Local Environments in a Pristine and Post-Synthetically Modified Metal–Organic Framework via 17O Nuclear Magnetic Resonance Spectroscopy. Chemistry of Materials 2023, 35 (9) , 3555-3569. https://doi.org/10.1021/acs.chemmater.3c00199
    2. Vinicius Martins, Jun Xu, Xiaoling Wang, Kuizhi Chen, Ivan Hung, Zhehong Gan, Christel Gervais, Christian Bonhomme, Shijia Jiang, Anmin Zheng, Bryan E. G. Lucier, Yining Huang. Higher Magnetic Fields, Finer MOF Structural Information: 17O Solid-State NMR at 35.2 T. Journal of the American Chemical Society 2020, 142 (35) , 14877-14889. https://doi.org/10.1021/jacs.0c02810
    3. Suzi M. Pugh, Paul A. Wright, David J. Law, Nicholas Thompson, Sharon E. Ashbrook. Facile, Room-Temperature 17O Enrichment of Zeolite Frameworks Revealed by Solid-State NMR Spectroscopy. Journal of the American Chemical Society 2020, 142 (2) , 900-906. https://doi.org/10.1021/jacs.9b10528
    4. Farahnaz Maleki, Gianfranco Pacchioni. DFT Study of 17O NMR Spectroscopy Applied to Zirconia Surfaces and Nanoparticles. The Journal of Physical Chemistry C 2019, 123 (35) , 21629-21638. https://doi.org/10.1021/acs.jpcc.9b06162
    5. Qianqian Song, Junqi Li, Lei Wang, Lingyan Pang, Hui Liu. Controlling the Chemical Bonding of Highly Dispersed Co Atoms Anchored on an Ultrathin g-C3N4@Carbon Sphere for Enhanced Electrocatalytic Activity of the Oxygen Evolution Reaction. Inorganic Chemistry 2019, 58 (16) , 10802-10811. https://doi.org/10.1021/acs.inorgchem.9b01089
    6. Andre Sutrisno, Bryan E. G. Lucier, Lu Zhang, Lihong Ding, Yueying Chu, Anmin Zheng, Yining Huang. Inspecting the Structure and Formation of Molecular Sieve SAPO-34 via 17O Solid-State NMR Spectroscopy. The Journal of Physical Chemistry C 2018, 122 (13) , 7260-7277. https://doi.org/10.1021/acs.jpcc.8b00746
    7. Bryan E. G. Lucier, Shoushun Chen, and Yining Huang . Characterization of Metal–Organic Frameworks: Unlocking the Potential of Solid-State NMR. Accounts of Chemical Research 2018, 51 (2) , 319-330. https://doi.org/10.1021/acs.accounts.7b00357
    8. Jing Li, Shenhui Li, Anmin Zheng, Xiaolong Liu, Ningya Yu, and Feng Deng . Solid-state NMR Studies of Host–Guest Interaction between UiO-67 and Light Alkane at Room Temperature. The Journal of Physical Chemistry C 2017, 121 (26) , 14261-14268. https://doi.org/10.1021/acs.jpcc.7b04611
    9. Frédéric A. Perras, Takeshi Kobayashi, and Marek Pruski . Natural Abundance 17O DNP Two-Dimensional and Surface-Enhanced NMR Spectroscopy. Journal of the American Chemical Society 2015, 137 (26) , 8336-8339. https://doi.org/10.1021/jacs.5b03905
    10. Jun Xu, Bryan E. G. Lucier, Zhi Lin, Andre Sutrisno, Victor V. Terskikh, and Yining Huang . New Insights into the Short-Range Structures of Microporous Titanosilicates As Revealed by 47/49Ti, 23Na, 39K, and 29Si Solid-State NMR Spectroscopy. The Journal of Physical Chemistry C 2014, 118 (47) , 27353-27365. https://doi.org/10.1021/jp5077966
    11. Sharon E. Ashbrook and Scott Sneddon . New Methods and Applications in Solid-State NMR Spectroscopy of Quadrupolar Nuclei. Journal of the American Chemical Society 2014, 136 (44) , 15440-15456. https://doi.org/10.1021/ja504734p
    12. Zhi-Peng Wang, Si-Min Yu, Bryan E. G. Lucier, Wei Wang. NMR of Organic Linkers in MOFs and COFs. 2024, 91-152. https://doi.org/10.1039/9781839167287-00091
    13. Florian Venel, Raynald Giovine, Danielle Laurencin, Jessica Špačková, Sébastien Mittelette, Thomas‐Xavier Métro, Christophe Volkringer, Olivier Lafon, Frédérique Pourpoint. Probing oxygen exchange between UiO‐66(Zr) MOF and water using 17 O solid‐state NMR. Chemistry – A European Journal 2024, 30 (12) https://doi.org/10.1002/chem.202302731
    14. Ashok Shrishail Maraddi, Glenita Bridget D'souza, S.K. Nataraj. MOF-Based-Membranes for Dyes Removal From Wastewater. 2024https://doi.org/10.1016/B978-0-323-95486-0.00014-4
    15. Michiko Atsumi, Jia-Jia Zheng, Erik Tellgren, Shigeyoshi Sakaki, Trygve Helgaker. Carbon dioxide adsorption to UiO-66: theoretical analysis of binding energy and NMR properties. Physical Chemistry Chemical Physics 2023, 25 (42) , 28770-28783. https://doi.org/10.1039/D3CP04033J
    16. Zachary H. Davis, Russell E. Morris, Sharon E. Ashbrook. Exploring cation distribution in ion-exchanged Al,Ga-containing metal–organic frameworks using 17 O NMR spectroscopy. Physical Chemistry Chemical Physics 2023, 25 (30) , 20267-20280. https://doi.org/10.1039/D3CP03071G
    17. Nicholas Jaegers, Nancy M. Washton, Yong Wang, Jian Zhi Hu. High-Field Nuclear Magnetic Resonance (NMR) Spectroscopy. 2023, 757-785. https://doi.org/10.1007/978-3-031-07125-6_34
    18. Olga Lapina, Ilya Yakovlev. Nuclear Magnetic Resonance (NMR): Modern Methods. 2023, 787-812. https://doi.org/10.1007/978-3-031-07125-6_35
    19. Frédéric A. Perras, Alexander L. Paterson. High field solid-state nmr of challenging nuclei in inorganic systems. 2023, 138-177. https://doi.org/10.1016/B978-0-12-823144-9.00015-7
    20. Jianqin Zhuang, Qian Wang, Rupal Gupta. Applications of 17O and 51V NMR in inorganic and bioinorganic chemistry. 2023, 35-61. https://doi.org/10.1016/B978-0-12-823144-9.00085-6
    21. Yuqing Xiao, Shenhui Li, Jun Xu, Feng Deng. Solid-state NMR studies of host–guest chemistry in metal-organic frameworks. Current Opinion in Colloid & Interface Science 2022, 61 , 101633. https://doi.org/10.1016/j.cocis.2022.101633
    22. Caiyan He, Shenhui Li, Yuqing Xiao, Jun Xu, Feng Deng. Application of solid-state NMR techniques for structural characterization of metal-organic frameworks. Solid State Nuclear Magnetic Resonance 2022, 117 , 101772. https://doi.org/10.1016/j.ssnmr.2022.101772
    23. Vinicius Martins, Jun Xu, Ivan Hung, Zhehong Gan, Christel Gervais, Christian Bonhomme, Yining Huang. 17 O solid‐state NMR at ultrahigh magnetic field of 35.2 T: Resolution of inequivalent oxygen sites in different phases of MOF MIL‐53(Al). Magnetic Resonance in Chemistry 2021, 59 (9-10) , 940-950. https://doi.org/10.1002/mrc.5122
    24. Arantxa Fernandes, Robert F. Moran, David McKay, Ben L. Griffiths, Anna Herlihy, Karl R. Whittle, Daniel M. Dawson, Sharon E. Ashbrook. Exploring cation disorder in mixed‐metal pyrochlore ceramics using 17 O NMR spectroscopy and first‐principles calculations. Magnetic Resonance in Chemistry 2021, 59 (9-10) , 961-974. https://doi.org/10.1002/mrc.5140
    25. Sharon E. Ashbrook, Zachary H. Davis, Russell E. Morris, Cameron M. Rice. 17 O NMR spectroscopy of crystalline microporous materials. Chemical Science 2021, 12 (14) , 5016-5036. https://doi.org/10.1039/D1SC00552A
    26. Diego Carnevale, Georges Mouchaham, Sujing Wang, Mathieu Baudin, Christian Serre, Geoffrey Bodenhausen, Daniel Abergel. Natural abundance oxygen-17 solid-state NMR of metal organic frameworks enhanced by dynamic nuclear polarization. Physical Chemistry Chemical Physics 2021, 23 (3) , 2245-2251. https://doi.org/10.1039/D0CP06064J
    27. James Palmer, Gang Wu. Recent developments in 17O NMR studies of organic and biological molecules in the solid state. 2021, 1-46. https://doi.org/10.1016/bs.arnmr.2021.03.001
    28. Shenhui Li, Olivier Lafon, Weiyu Wang, Qiang Wang, Xingxing Wang, Yi Li, Jun Xu, Feng Deng. Recent Advances of Solid‐State NMR Spectroscopy for Microporous Materials. Advanced Materials 2020, 32 (44) https://doi.org/10.1002/adma.202002879
    29. Jun Xu, Victor V. Terskikh, Yueying Chu, Anmin Zheng, Yining Huang. 13 C chemical shift tensors in MOF α ‐Mg 3 (HCOO) 6 : Which component is more sensitive to host‐guest interaction?. Magnetic Resonance in Chemistry 2020, 58 (11) , 1082-1090. https://doi.org/10.1002/mrc.4944
    30. Daniel N. Rainer, Cameron M. Rice, Stewart J. Warrender, Sharon E. Ashbrook, Russell E. Morris. Mechanochemically assisted hydrolysis in the ADOR process. Chemical Science 2020, 11 (27) , 7060-7069. https://doi.org/10.1039/D0SC02547J
    31. Cameron M. Rice, Zachary H. Davis, David McKay, Giulia P. M. Bignami, Ruxandra G. Chitac, Daniel M. Dawson, Russell E. Morris, Sharon E. Ashbrook. Following the unusual breathing behaviour of 17 O-enriched mixed-metal (Al,Ga)-MIL-53 using NMR crystallography. Physical Chemistry Chemical Physics 2020, 22 (26) , 14514-14526. https://doi.org/10.1039/D0CP02731F
    32. Gang Wu. 17O NMR studies of organic and biological molecules in aqueous solution and in the solid state. Progress in Nuclear Magnetic Resonance Spectroscopy 2019, 114-115 , 135-191. https://doi.org/10.1016/j.pnmrs.2019.06.002
    33. Mégane Muschi, Christian Serre. Progress and challenges of graphene oxide/metal-organic composites. Coordination Chemistry Reviews 2019, 387 , 262-272. https://doi.org/10.1016/j.ccr.2019.02.017
    34. Keng Xuan, Yanfeng Pu, Feng Li, Jing Luo, Ning Zhao, Fukui Xiao. Metal-organic frameworks MOF-808-X as highly efficient catalysts for direct synthesis of dimethyl carbonate from CO2 and methanol. Chinese Journal of Catalysis 2019, 40 (4) , 553-566. https://doi.org/10.1016/S1872-2067(19)63291-2
    35. Franck Millange, Richard I. Walton. MIL‐53 and its Isoreticular Analogues: a Review of the Chemistry and Structure of a Prototypical Flexible Metal‐Organic Framework. Israel Journal of Chemistry 2018, 58 (9-10) , 1019-1035. https://doi.org/10.1002/ijch.201800084
    36. Keng Xuan, Yanfeng Pu, Feng Li, Aixue Li, Jing Luo, Lei Li, Feng Wang, Ning Zhao, Fukui Xiao. Direct synthesis of dimethyl carbonate from CO2 and methanol over trifluoroacetic acid modulated UiO-66. Journal of CO2 Utilization 2018, 27 , 272-282. https://doi.org/10.1016/j.jcou.2018.08.002
    37. Sharon E. Ashbrook, Paul Hodgkinson. Perspective: Current advances in solid-state NMR spectroscopy. The Journal of Chemical Physics 2018, 149 (4) https://doi.org/10.1063/1.5038547
    38. Shenhui Li, Jing Li, Jing Tang, Feng Deng. Host-guest interaction of styrene and ethylbenzene in MIL-53 studied by solid-state NMR. Solid State Nuclear Magnetic Resonance 2018, 90 , 1-6. https://doi.org/10.1016/j.ssnmr.2017.12.004
    39. Olga B. Lapina, Aleksandr A. Shubin, Victor V. Terskikh. Solid-State NMR of Oxide-Based Materials. 2018, 1125-1160. https://doi.org/10.1007/978-3-319-28388-3_105
    40. Giulia P. M. Bignami, Zachary H. Davis, Daniel M. Dawson, Samuel A. Morris, Samantha E. Russell, David McKay, Richard E. Parke, Dinu Iuga, Russell E. Morris, Sharon E. Ashbrook. Cost-effective 17 O enrichment and NMR spectroscopy of mixed-metal terephthalate metal–organic frameworks. Chemical Science 2018, 9 (4) , 850-859. https://doi.org/10.1039/C7SC04649A
    41. Arantxa Fernandes, Robert F. Moran, Scott Sneddon, Daniel M. Dawson, David McKay, Giulia P. M. Bignami, Frédéric Blanc, Karl R. Whittle, Sharon E. Ashbrook. 17 O solid-state NMR spectroscopy of A 2 B 2 O 7 oxides: quantitative isotopic enrichment and spectral acquisition?. RSC Advances 2018, 8 (13) , 7089-7101. https://doi.org/10.1039/C8RA00596F
    42. Olga B. Lapina. Modern ssNMR for heterogeneous catalysis. Catalysis Today 2017, 285 , 179-193. https://doi.org/10.1016/j.cattod.2016.11.005
    43. Robert F. Moran, Daniel M. Dawson, Sharon E. Ashbrook. Exploiting NMR spectroscopy for the study of disorder in solids. International Reviews in Physical Chemistry 2017, 36 (1) , 39-115. https://doi.org/10.1080/0144235X.2017.1256604
    44. Yuanjun Lu, Bryan E. G. Lucier, Yue Zhang, Pengju Ren, Anmin Zheng, Yining Huang. Sizable dynamics in small pores: CO 2 location and motion in the α-Mg formate metal–organic framework. Phys. Chem. Chem. Phys. 2017, 19 (8) , 6130-6141. https://doi.org/10.1039/C7CP00199A
    45. Bryan E. G. Lucier, Yue Zhang, Yining Huang. Complete multinuclear solid‐state NMR of metal‐organic frameworks: The case of α‐Mg‐formate. Concepts in Magnetic Resonance Part A 2016, 45A (6) https://doi.org/10.1002/cmr.a.21410
    46. Stephan I. Brückner, Julia Pallmann, Eike Brunner. Nuclear Magnetic Resonance of Metal-Organic Frameworks (MOFs). 2016, 607-628. https://doi.org/10.1002/9783527693078.ch20
    47. Seung Bin Baek, Hee Cheon Lee. 13 C NMR Study of CO 2 Adsorbed in Highly Flexible Porous Metal‐Organic Frameworks. Bulletin of the Korean Chemical Society 2016, 37 (4) , 588-591. https://doi.org/10.1002/bkcs.10703
    48. Gang Wu. Solid-State 17O NMR studies of organic and biological molecules: Recent advances and future directions. Solid State Nuclear Magnetic Resonance 2016, 73 , 1-14. https://doi.org/10.1016/j.ssnmr.2015.11.001
    49. Olga B. Lapina, Aleksandr A. Shubin, Victor V. Terskikh. Solid-State NMR of Oxide-Based Materials. 2016, 1-37. https://doi.org/10.1007/978-3-319-28275-6_105-1
    50. Yue Zhang, Bryan E. G. Lucier, Yining Huang. Deducing CO 2 motion, adsorption locations and binding strengths in a flexible metal–organic framework without open metal sites. Physical Chemistry Chemical Physics 2016, 18 (12) , 8327-8341. https://doi.org/10.1039/C5CP04984A
    51. Thomas D. Bennett, Tanya K. Todorova, Emma F. Baxter, David G. Reid, Christel Gervais, Bart Bueken, B. Van de Voorde, Dirk De Vos, David A. Keen, Caroline Mellot-Draznieks. Connecting defects and amorphization in UiO-66 and MIL-140 metal–organic frameworks: a combined experimental and computational study. Physical Chemistry Chemical Physics 2016, 18 (3) , 2192-2201. https://doi.org/10.1039/C5CP06798G
    52. Wei Chen, Yi-nan Wu, Fengting Li. Hierarchical Structure and Molecular Dynamics of Metal-Organic Framework as Characterized by Solid State NMR. Journal of Chemistry 2016, 2016 , 1-11. https://doi.org/10.1155/2016/6510253
    53. Li Shen, Luming Peng. 17O solid-state NMR studies of oxygen-containing catalysts. Chinese Journal of Catalysis 2015, 36 (9) , 1494-1504. https://doi.org/10.1016/S1872-2067(15)60931-7
    54. Xianqi Kong, Victor Terskikh, Abouzar Toubaei, Gang Wu. A solid-state 17 O NMR study of platinum-carboxylate complexes: carboplatin and oxaliplatin. Canadian Journal of Chemistry 2015, 93 (9) , 945-953. https://doi.org/10.1139/cjc-2015-0019
    55. Anusree Viswanath Kuttatheyil, Marcel Handke, Jens Bergmann, Daniel Lässig, Jörg Lincke, Jürgen Haase, Marko Bertmer, Harald Krautscheid. 113 Cd Solid‐State NMR for Probing the Coordination Sphere in Metal–Organic Frameworks. Chemistry – A European Journal 2015, 21 (3) , 1118-1124. https://doi.org/10.1002/chem.201405395
    56. Yining Huang, Jun Xu, Farhana Gul‐E‐Noor, Peng He. Metal‐Organic Frameworks: NMR Studies of Quadrupolar Nuclei. 2014, 1-14. https://doi.org/10.1002/9781119951438.eibc2225
    57. Christian Bonhomme, Christel Gervais, Danielle Laurencin. Recent NMR developments applied to organic–inorganic materials. Progress in Nuclear Magnetic Resonance Spectroscopy 2014, 77 , 1-48. https://doi.org/10.1016/j.pnmrs.2013.10.001
    58. Charlotte Martineau, Jürgen Senker, Francis Taulelle. NMR Crystallography. 2014, 1-57. https://doi.org/10.1016/B978-0-12-800184-4.00001-1
    59. Bing Zhou, Vladimir K. Michaelis, Yefeng Yao, Barbara L. Sherriff, Scott Kroeker, Yuanming Pan. Density functional theory study of the magnetic shielding mechanism for 11 B in pentaborate minerals: ulexite and probertite. CrystEngComm 2014, 16 (45) , 10418-10427. https://doi.org/10.1039/C4CE01749H
    60. Sharon E. Ashbrook, Daniel M. Dawson, Valerie R. Seymour. Recent developments in solid-state NMR spectroscopy of crystalline microporous materials. Phys. Chem. Chem. Phys. 2014, 16 (18) , 8223-8242. https://doi.org/10.1039/C4CP00578C
    61. Francis Taulelle, Boris Bouchevreau, Charlotte Martineau. NMR crystallography driven structure determination: nanoporous materials. CrystEngComm 2013, 15 (43) , 8613. https://doi.org/10.1039/c3ce41178h

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2013, 117, 33, 16953–16960
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp403512m
    Published June 19, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    1815

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.