Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Hybrid Carbon Nanotubes–TiO2 Photoanodes for High Efficiency Dye-Sensitized Solar Cells
My Activity

Figure 1Loading Img
    Article

    Hybrid Carbon Nanotubes–TiO2 Photoanodes for High Efficiency Dye-Sensitized Solar Cells
    Click to copy article linkArticle link copied!

    View Author Information
    Institut National de la Recherche Scientifique, Énergie, Matériaux et Télécommunications, 1650 boul. Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
    Department of Chemical Sciences and Technology & NAST Center, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
    § CNR IDASC SENSOR Lab, Via Branze 45, 25123 Brescia, Italy
    Department of Information Engineering, Brescia University, Via Valotti 9, 25133 Brescia, Italy
    Solar Cells Laboratory, Institute of Materials Science and Technology (IMRE), University of Havana, Zapata y G, Vedado, 10400 La Habana, Cuba
    # Center for Self-Assembled Chemical Structures, McGill University, 801 Sherbrooke Street West, H3A 2K6 Montréal, Québec, Canada
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2013, 117, 28, 14510–14517
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp403553t
    Published June 13, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We describe a fast and effective procedure for the preparation of high efficiency hybrid photoanodes for dye-sensitized solar cells (DSCs), based on nanocrystalline TiO2 with limited addition of multiwall carbon nanotubes (CNTs). The mixing process between CNTs and TiO2 nanoparticles is almost instantaneous, which makes it feasible for large-scale fabrication. Enhanced electron lifetime and reduced charge recombination lead to highly increased short circuit current density and overall photoconversion efficiency (from 13.6 mA cm–2 to 16.0 mA cm–2 and from 7.0% to 9.0%, respectively, considering the bare TiO2 and the optimum CNTs concentration, which is 0.010 wt %), while the small reduction in open circuit photovoltage does not significantly affect cell performances. This result is remarkable since a standard dye molecule (N719) was used and no chemical treatments of the photoanodes prior to cell fabrication were applied (i.e., soaking in TiCl4 to boost open circuit photovoltage).

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Information about UV–vis absorbance, reproducibility in the fabrication and testing of DSSCs, dependence of functional properties of DSSCs on photoanode thickness, dye loading versus CNT content, current density versus voltage, and electron lifetime of solar cells fabricated with photoanodes annealed at 500 °C. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 120 publications.

    1. Hong-wei Zhao, Xiang Wang, Xun-rui Wang, Rui-zhen Yang, Jin-hong Li. Macroporous TiO2 and Graphite-like Carbon Hybrid Hierarchical Interfaces for Improved Photocatalytic Activity Derived from Particle-Stabilized Emulsions. ACS Applied Engineering Materials 2023, 1 (6) , 1593-1601. https://doi.org/10.1021/acsaenm.3c00132
    2. Amanda L. Chown, Byron H. Farnum. Defining the Role of Cr3+ as a Reductant in the Hydrothermal Synthesis of CuCrO2 Delafossite. Inorganic Chemistry 2022, 61 (21) , 8349-8355. https://doi.org/10.1021/acs.inorgchem.2c00943
    3. Mahyar Mohammadnezhad, Gurpreet Singh Selopal, Zhiming M. Wang, Barry Stansfield, Haiguang Zhao, Federico Rosei. Role of Carbon Nanotubes to Enhance the Long-Term Stability of Dye-Sensitized Solar Cells. ACS Photonics 2020, 7 (3) , 653-664. https://doi.org/10.1021/acsphotonics.9b01431
    4. Sunghun Eom, Sung Hun Cho, Tomoyo Goto, Myoung Pyo Chun, Tohru Sekino. Low-Dimensional Carbon and Titania Nanotube Composites via a Solution Chemical Process and Their Nanostructural and Electrical Properties for Electrochemical Devices. ACS Applied Nano Materials 2019, 2 (10) , 6230-6237. https://doi.org/10.1021/acsanm.9b01188
    5. Sagar D. Delekar, Ananta G. Dhodamani, Krantiveer V. More, Tukaram D. Dongale, Rajanish K. Kamat, Steve F. A. Acquah, Naresh S. Dalal, Dillip K. Panda. Structural and Optical Properties of Nanocrystalline TiO2 with Multiwalled Carbon Nanotubes and Its Photovoltaic Studies Using Ru(II) Sensitizers. ACS Omega 2018, 3 (3) , 2743-2756. https://doi.org/10.1021/acsomega.7b01316
    6. Chuan Yi Foo, Hong Ngee Lim, Mohd Adzir b. Mahdi, Kwok Feng Chong, and Nay Ming Huang . High-Performance Supercapacitor Based on Three-Dimensional Hierarchical rGO/Nickel Cobaltite Nanostructures as Electrode Materials. The Journal of Physical Chemistry C 2016, 120 (38) , 21202-21210. https://doi.org/10.1021/acs.jpcc.6b05930
    7. Sambhaji S. Bhande, Rohan B. Ambade, Dipak V. Shinde, Swapnil B. Ambade, Supriya A. Patil, Mu. Naushad, Rajaram S. Mane, Z. A. Alothman, Soo-Hyoung Lee, and Sung-Hwan Han . Improved Photoelectrochemical Cell Performance of Tin Oxide with Functionalized Multiwalled Carbon Nanotubes–Cadmium Selenide Sensitizer. ACS Applied Materials & Interfaces 2015, 7 (45) , 25094-25104. https://doi.org/10.1021/acsami.5b05385
    8. Dajiang Zheng, Xinchang Pang, Mengye Wang, Yanjie He, Changjian Lin, and Zhiqun Lin . Unconventional Route to Hairy Plasmonic/Semiconductor Core/Shell Nanoparticles with Precisely Controlled Dimensions and Their Use in Solar Energy Conversion. Chemistry of Materials 2015, 27 (15) , 5271-5278. https://doi.org/10.1021/acs.chemmater.5b01422
    9. Jin Wang, Yaochen Lin, Mathieu Pinault, Arianna Filoramo, Marc Fabert, Bernard Ratier, Johann Bouclé, and Nathalie Herlin-Boime . Single-Step Preparation of TiO2/MWCNT Nanohybrid Materials by Laser Pyrolysis and Application to Efficient Photovoltaic Energy Conversion. ACS Applied Materials & Interfaces 2015, 7 (1) , 51-56. https://doi.org/10.1021/am507179c
    10. Michael Dahl, Yiding Liu, and Yadong Yin . Composite Titanium Dioxide Nanomaterials. Chemical Reviews 2014, 114 (19) , 9853-9889. https://doi.org/10.1021/cr400634p
    11. Saranya Kumaresan, Ravi Subban, Janarthanan Balasundaram. Microwave intervened dye extracted from the fruits of Reutealis trisperma and its persuasive effect on the transport of charge carriers in DSSC. Ionics 2024, 10 https://doi.org/10.1007/s11581-024-05771-3
    12. Hind I. Abdulgafour, Saifaldeen M. Abdalhadi, Madeeha H. Mahmood. Synthesis and characterization of ZnO tetrapod-like nanorods without catalyst by wet thermal evaporation and applied on dye-sensitized solar cells. International Journal of Modern Physics B 2024, 21 https://doi.org/10.1142/S0217979225500602
    13. Yu-Hsun Nien, Shang-Wen Zhuang, Jung-Chuan Chou, Chih-Hsien Lai, Po-Hui Yang, Po-Yu Kuo, Po-Feng Chen, Yu-Han Huang. Preparation of Dye-Sensitized Solar Cell With Modification of Photoanode by g-C 3 N 4 /NiS/TiO 2 Nanofibers and Its Performance Under Outdoor and Indoor Illumination. IEEE Transactions on Nanotechnology 2024, 23 , 427-434. https://doi.org/10.1109/TNANO.2024.3407375
    14. Nalandhiran Pugazhenthiran, Muthusamy Kandasamy, Panneerselvam Sathishkumar, Santhanakrishnan Suresh, Senthuran Karthick Kumar, Sepperumal Murugesan. Developments in Dye-Sensitized Solar Cells - An Overview. 2024, 843-860. https://doi.org/10.1016/B978-0-323-93940-9.00168-7
    15. Gurpreet Singh Selopal, Omar Abdelkarim, Jasneet Kaur, Jiabin Liu, Lei Jin, Zhangsen Chen, Fabiola Navarro-Pardo, Sergei Manzhos, Shuhui Sun, Aycan Yurtsever, Hadis Zarrin, Zhiming M. Wang, Federico Rosei. Surface engineering of two-dimensional hexagonal boron-nitride for optoelectronic devices. Nanoscale 2023, 15 (38) , 15810-15830. https://doi.org/10.1039/D3NR03864E
    16. Yogesh Kumar, Tushar Chhalodia, Paramjeet Kaur Gumber Bedi, P. L. Meena. Photoanode modified with nanostructures for efficiency enhancement in DSSC: a review. Carbon Letters 2023, 33 (1) , 35-58. https://doi.org/10.1007/s42823-022-00422-x
    17. Omar Abdelkarim, Amir Mirzaei, Gurpreet S. Selopal, Aycan Yurtsever, Ghada Bassioni, Zhiming M. Wang, Mohamed Chaker, Federico Rosei. Constructing quantum dots sensitized TiO2 nanotube p-n heterojunction for photoelectrochemical hydrogen generation. Chemical Engineering Journal 2022, 446 , 137312. https://doi.org/10.1016/j.cej.2022.137312
    18. Omar Abdelkarim, Gurpreet S. Selopal, Karthik Suresh, Fabiola Navarro-Pardo, Pawan Kumar, Kulbir K. Ghuman, Aycan Yurtsever, Ghada Bassioni, Zhiming M. Wang, Federico Rosei. Role of surface engineering of hybrid structure for high performance quantum dots based photoelectrochemical hydrogen generation. Chemical Engineering Journal 2022, 429 , 132425. https://doi.org/10.1016/j.cej.2021.132425
    19. Kadhim Al-Attafi, Andrew Nattestad, Hamzeh Qutaish, Min-Sik Park, Lok Kumar Shrestha, Katsuhiko Ariga, Shi Xue Dou, Jung Ho Kim. Solvothermally synthesized anatase TiO2 nanoparticles for photoanodes in dye-sensitized solar cells. Science and Technology of Advanced Materials 2021, 22 (1) , 100-112. https://doi.org/10.1080/14686996.2021.1873059
    20. Yutaka Suwazono, Takuro Murayoshi, Hiroki Nagai, Mitsunobu Sato. Facile Fabrication of Single-Walled Carbon Nanotube/Anatase Composite Thin Film on Quartz Glass Substrate for Translucent Conductive Photoelectrode. Nanomaterials 2021, 11 (12) , 3352. https://doi.org/10.3390/nano11123352
    21. Mahyar Mohammadnezhad, Gurpreet Singh Selopal, Ozge Cavuslar, David Barba, Emek G. Durmusoglu, Havva Yagci Acar, Zhming M. Wang, Gregory P. Lopinski, Barry Stansfield, Haiguang Zhao, Federico Rosei. Gold nanoparticle decorated carbon nanotube nanocomposite for dye-sensitized solar cell performance and stability enhancement. Chemical Engineering Journal 2021, 421 , 127756. https://doi.org/10.1016/j.cej.2020.127756
    22. Boyang Mao, Benjamin Hodges, Craig Franklin, David G. Calatayud, Sofia I. Pascu. Self-Assembled Materials Incorporating Functional Porphyrins and Carbon Nanoplatforms as Building Blocks for Photovoltaic Energy Applications. Frontiers in Chemistry 2021, 9 https://doi.org/10.3389/fchem.2021.727574
    23. Md. Mosharraf Hossain Bhuiyan, Fahmid Kabir, Md. Serajum Manir, Md. Saifur Rahaman, Prosenjit Barua, Bikrom Ghosh, Fumiaki Mitsugi, Tomoaki Ikegami. Improvement of Efficiency of Dye Sensitized Solar Cells by Incorporating Carbon Nanotubes. 2021https://doi.org/10.5772/intechopen.96630
    24. Jin-Myung Choi, Hiroki Suko, Kyusun Kim, Jiye Han, Sangsu Lee, Yutaka Matsuo, Shigeo Maruyama, Il Jeon, Hirofumi Daiguji. Multi-Walled Carbon Nanotube-Assisted Encapsulation Approach for Stable Perovskite Solar Cells. Molecules 2021, 26 (16) , 5060. https://doi.org/10.3390/molecules26165060
    25. Paweł Gnida, Paweł Jarka, Pavel Chulkin, Aleksandra Drygała, Marcin Libera, Tomasz Tański, Ewa Schab-Balcerzak. Impact of TiO2 Nanostructures on Dye-Sensitized Solar Cells Performance. Materials 2021, 14 (7) , 1633. https://doi.org/10.3390/ma14071633
    26. Ahmad Zatirostami. Fabrication of dye-sensitized solar cells based on the composite TiO2 nanoparticles/ZnO nanorods: Investigating the role of photoanode porosity. Materials Today Communications 2021, 26 , 102033. https://doi.org/10.1016/j.mtcomm.2021.102033
    27. Lei Jin, Haiguang Zhao, Zhiming M. Wang, Federico Rosei. Quantum Dots‐Based Photoelectrochemical Hydrogen Evolution from Water Splitting. Advanced Energy Materials 2021, 11 (12) https://doi.org/10.1002/aenm.202003233
    28. Abdellah Henni, Nesrine Harfouche, Amina Karar, Djamal Zerrouki. Solar cell based on carbon and graphene nanomaterials. 2021, 537-556. https://doi.org/10.1016/B978-0-12-821592-0.00012-1
    29. G. Solomon, M. G. Kohan, A. Landström, A. Vomiero, I. Concina. Semiconducting metal oxides empowered by graphene and its derivatives: Progresses and critical perspective on selected functional applications. Journal of Applied Physics 2020, 128 (18) https://doi.org/10.1063/5.0021826
    30. Fang-Sian Lin, Pragya Priyanka, Miao-Syuan Fan, Sureshraju Vegiraju, Jen-Shyang Ni, Yi-Ching Wu, Yi-Hsien Li, Gene-Hsiang Lee, Yamuna Ezhumalai, Ru-Jong Jeng, Ming-Chou Chen, Kuo-Chuan Ho. Metal-free efficient dye-sensitized solar cells based on thioalkylated bithiophenyl organic dyes. Journal of Materials Chemistry C 2020, 8 (43) , 15322-15330. https://doi.org/10.1039/D0TC02310H
    31. Omar Abdelkarim, Jasneet Kaur, Jiabin Liu, Fabiola Navarro-Pardo, Hadis Zarrin, Aycan Yurtsever, Ghada Bassioni, Zhiming M. Wang, Gurpreet Singh Selopal, Federico Rosei. Two-dimensional functionalized hexagonal boron nitride for quantum dot photoelectrochemical hydrogen generation. Journal of Materials Chemistry A 2020, 8 (39) , 20698-20713. https://doi.org/10.1039/D0TA05260D
    32. Gurpreet Singh Selopal, Mahyar Mohammadnezhad, Lucas V. Besteiro, Ozge Cavuslar, Jiabin Liu, Hui Zhang, Fabiola Navarro‐Pardo, Guiju Liu, Maorong Wang, Emek G. Durmusoglu, Havva Yagci Acar, Shuhui Sun, Haiguang Zhao, Zhiming M. Wang, Federico Rosei. Synergistic Effect of Plasmonic Gold Nanoparticles Decorated Carbon Nanotubes in Quantum Dots/TiO 2 for Optoelectronic Devices. Advanced Science 2020, 7 (20) https://doi.org/10.1002/advs.202001864
    33. Shahzadi Tayyaba, Muhammad Waseem Ashraf, Muhammad Imran Tariq, Maham Akhlaq, Valentina Emilia Balas, Ning Wang, Marius M. Balas. Simulation, Analysis, and Characterization of Calcium-Doped ZnO Nanostructures for Dye-Sensitized Solar Cells. Energies 2020, 13 (18) , 4863. https://doi.org/10.3390/en13184863
    34. Alicia Moya, Mariam Barawi, Belén Alemán, Patrick Zeller, Matteo Amati, Alfonso Monreal-Bernal, Luca Gregoratti, Víctor A. de la Peña O’Shea, Juan J. Vilatela. Interfacial studies in CNT fibre/TiO2 photoelectrodes for efficient H2 production. Applied Catalysis B: Environmental 2020, 268 , 118613. https://doi.org/10.1016/j.apcatb.2020.118613
    35. Kaustubh Basu, Gurpreet Singh Selopal, Mahyar Mohammadnezad, Rusoma Akilimali, Zhiming M. Wang, Haiguang Zhao, Fiorenzo Vetrone, Federico Rosei. Hybrid graphene/metal oxide anodes for efficient and stable dye sensitized solar cell. Electrochimica Acta 2020, 349 , 136409. https://doi.org/10.1016/j.electacta.2020.136409
    36. Mahyar Mohammadnezhad, Mimi Liu, Gurpreet Singh Selopal, Fabiola Navarro-Pardo, Zhming M. Wang, Barry Stansfield, Haiguang Zhao, Cheng-Yu Lai, Daniela R. Radu, Federico Rosei. Synthesis of highly efficient Cu2ZnSnSxSe4−x (CZTSSe) nanosheet electrocatalyst for dye-sensitized solar cells. Electrochimica Acta 2020, 340 , 135954. https://doi.org/10.1016/j.electacta.2020.135954
    37. K.B. Bhojanaa, M. Ramesh, A. Pandikumar. Complementary properties of silver nanoparticles on the photovoltaic performance of titania nanospheres based photoanode in dye-sensitized solar cells. Materials Research Bulletin 2020, 122 , 110672. https://doi.org/10.1016/j.materresbull.2019.110672
    38. Yi Di, Suping Jia, Ning Li, Caihong Hao, Huinian Zhang, Shengliang Hu. Ni-incorporated carbon materials derived from humic acid as efficient low-cost electrocatalysts for dye-sensitized solar cells. Organic Electronics 2020, 76 , 105395. https://doi.org/10.1016/j.orgel.2019.105395
    39. Velayutham Ramasubbu, Poomani Ram Kumar, Ebrahim M. Mothi, K. Karuppasamy, Hyun-Seok Kim, T. Maiyalagan, Xavier Sahaya Shajan. Highly interconnected porous TiO2-Ni-MOF composite aerogel photoanodes for high power conversion efficiency in quasi-solid dye-sensitized solar cells. Applied Surface Science 2019, 496 , 143646. https://doi.org/10.1016/j.apsusc.2019.143646
    40. Vediappan Sudhakar, Kothandam Krishnamoorthy. Enhancing the device efficiency by filling the traps in photoanodes. Journal of Materials Chemistry C 2019, 7 (46) , 14632-14638. https://doi.org/10.1039/C9TC04740A
    41. Han Song, Zhenxiao Pan, Huashang Rao, Xinhua Zhong. TiO2 hierarchical nanowire-P25 particulate composite photoanodes in combination with N-doped mesoporous carbon/Ti counter electrodes for high performance quantum dot-sensitized solar cells. Solar Energy 2019, 191 , 459-467. https://doi.org/10.1016/j.solener.2019.09.014
    42. Tao Hua, Keyi Zhang, Zu-Sheng Huang, Lingyun Wang, Hao Tang, Herbert Meier, Derong Cao. Effect of structural engineering of π-spacers on anti-aggregation of D–A–π–A dyes. Journal of Materials Chemistry C 2019, 7 (33) , 10379-10388. https://doi.org/10.1039/C9TC03066B
    43. Nayab Abdul Karim, Umer Mehmood, Hafiza Fizza Zahid, Tahira Asif. Nanostructured photoanode and counter electrode materials for efficient Dye-Sensitized Solar Cells (DSSCs). Solar Energy 2019, 185 , 165-188. https://doi.org/10.1016/j.solener.2019.04.057
    44. Fabiola Navarro-Pardo, Xin Tong, Xin Tong, Gurpreet S. Selopal, Sylvain G. Cloutier, Shuhui Sun, Ana C. Tavares, Haiguang Zhao, Zhiming M. Wang, Federico Rosei. Graphene oxide/cobalt-based nanohybrid electrodes for robust hydrogen generation. Applied Catalysis B: Environmental 2019, 245 , 167-176. https://doi.org/10.1016/j.apcatb.2018.12.041
    45. Teresa Gatti, Enzo Menna. Use of Carbon Nanostructures in Hybrid Photovoltaic Devices. 2019, 1-47. https://doi.org/10.1002/9781119580546.ch1
    46. Joaquín Calbo. Dye‐Sensitized Solar Cells: Past, Present and Future. 2019, 49-119. https://doi.org/10.1002/9781119580546.ch2
    47. Fahmid Kabir, Syed Nazmus Sakib, Sheikh Shehab Uddin. Effect of MWCNT's concentration in TiO2 based DSSC and degradation study of the cell. Journal of Renewable and Sustainable Energy 2019, 11 (2) https://doi.org/10.1063/1.5055725
    48. Gurpreet Singh Selopal, Mahyar Mohammadnezhad, Fabiola Navarro-Pardo, François Vidal, Haiguang Zhao, Zhiming M. Wang, Federico Rosei. A colloidal heterostructured quantum dot sensitized carbon nanotube–TiO 2 hybrid photoanode for high efficiency hydrogen generation. Nanoscale Horizons 2019, 4 (2) , 404-414. https://doi.org/10.1039/C8NH00227D
    49. P. Thangadurai, S. Joicy, Rosalin Beura, J. Santhosh Kumar, K. Chitrarasu. Emerging Nanomaterials in Energy and Environmental Science: An Overview. 2019, 1-49. https://doi.org/10.1007/978-3-030-04474-9_1
    50. Joyita Banerjee, Kingshuk Dutta, Dipak Rana. Carbon Nanomaterials in Renewable Energy Production and Storage Applications. 2019, 51-104. https://doi.org/10.1007/978-3-030-04474-9_2
    51. M. Y. A. Rahman, S. A. M. Samsuri, A. A. Umar. TiO2–SrTiO3 composite photoanode: effect of strontium precursor concentration on the performance of dye-sensitized solar cells. Applied Physics A 2019, 125 (1) https://doi.org/10.1007/s00339-018-2344-4
    52. Y. Akila, N. Muthukumarasamy, Dhayalan Velauthapillai. TiO2-based dye-sensitized solar cells. 2019, 127-144. https://doi.org/10.1016/B978-0-12-813337-8.00005-9
    53. Alfonso Monreal-Bernal, Maria Bidikoudi, Rubén D. Costa. Carbon nanotubes in hybrid photovoltaics: dye sensitized and perovskites solar cells. 2019, 201-248. https://doi.org/10.1016/B978-0-12-814083-3.00009-3
    54. Gurpreet S. Selopal, Haiguang Zhao, Guiju Liu, Hui Zhang, Xin Tong, Kanghong Wang, Jie Tang, Xuhui Sun, Shuhui Sun, François Vidal, Yiqian Wang, Zhiming M. Wang, Federico Rosei. Interfacial engineering in colloidal “giant” quantum dots for high-performance photovoltaics. Nano Energy 2019, 55 , 377-388. https://doi.org/10.1016/j.nanoen.2018.11.001
    55. Mahyar Mohammadnezhad, Gurpreet Singh Selopal, Nasser Alsayyari, Rusoma Akilimali, Fabiola Navarro-Pardo, Zhiming M. Wang, Barry Stansfield, Haiguang Zhao, Federico Rosei. CuS/Graphene Nanocomposite as a Transparent Conducting Oxide and Pt-Free Counter Electrode for Dye-Sensitized Solar Cells. Journal of The Electrochemical Society 2019, 166 (5) , H3065-H3073. https://doi.org/10.1149/2.0121905jes
    56. LePing Yu, Munkhbayar Batmunkh, Cameron Shearer, Joseph G. Shapter, Joseph G. Shapter. Use of Carbon Nanotubes (CNTs) in Third‐Generation Solar Cells. 2018, 551-609. https://doi.org/10.1002/9781119407690.ch15
    57. Umer Mehmood, Anwar Ul Haq Khan, Asif Ali Qaiser, Sheraz Bashir, Muhammad Younas. Nanocomposites of carbon allotropes with TiO2 as effective photoanodes for efficient dye-sensitized solar cells. Materials Letters 2018, 228 , 125-128. https://doi.org/10.1016/j.matlet.2018.05.127
    58. Maryline Nasr, Cynthia Eid, Roland Habchi, Philippe Miele, Mikhael Bechelany. Recent Progress on Titanium Dioxide Nanomaterials for Photocatalytic Applications. ChemSusChem 2018, 11 (18) , 3023-3047. https://doi.org/10.1002/cssc.201800874
    59. Glenn Grissom, Jared Jaksik, Monica McEntee, Erin M. Durke, Sayeeda T.J. Aishee, Margaret Cua, Okenwa Okoli, Ahmed Touhami, H. Justin Moore, M. Jasim Uddin. Three-dimensional carbon nanotube yarn based solid state solar cells with multiple sensitizers exhibit high energy conversion efficiency. Solar Energy 2018, 171 , 16-22. https://doi.org/10.1016/j.solener.2018.06.053
    60. Madina Obaidullah, Volkan Esat, Cumali Sabah. Single- and multi-walled carbon nanotubes for solar cell applications. International Journal of Modern Physics B 2018, 32 (21) , 1830007. https://doi.org/10.1142/S0217979218300074
    61. Emmanuel Topoglidis, Penthensileia-Amalia Kolozoff, Christina Tiflidis, Joan Papavasiliou, Elias Sakellis. Adsorption and electrochemical behavior of Cyt-c on carbon nanotubes/TiO2 nanocomposite films fabricated at various annealing temperatures. Colloid and Polymer Science 2018, 296 (8) , 1353-1364. https://doi.org/10.1007/s00396-018-4358-z
    62. Rusoma Akilimali, Gurpreet Singh Selopal, Daniele Benetti, Inés Serrano-Esparza, Pedro A. Algarabel, José María De Teresa, Zhiming M. Wang, Barry Stansfield, Haiguang Zhao, Federico Rosei. Hybrid TiO2-Graphene nanoribbon photoanodes to improve the photoconversion efficiency of dye sensitized solar cells. Journal of Power Sources 2018, 396 , 566-573. https://doi.org/10.1016/j.jpowsour.2018.06.044
    63. Mahyar Mohammadnezhad, Gurpreet Singh Selopal, Zhiming M. Wang, Barry Stansfield, Haiguang Zhao, Federico Rosei. Towards Long-Term Thermal Stability of Dye-Sensitized Solar Cells Using Multiwalled Carbon Nanotubes. ChemPlusChem 2018, 83 (7) , 682-690. https://doi.org/10.1002/cplu.201800046
    64. K. Rakesh Tej Kumar, M. Ramakrishna, G. Durga Sukumar. A review on PV cells and nanocomposite-coated PV systems. International Journal of Energy Research 2018, 42 (7) , 2305-2319. https://doi.org/10.1002/er.4002
    65. K. Balashangar, S. Paranthaman, M. Thanihaichelvan, P.A. Amalraj, D. Velauthapillai, P. Ravirajan. Multi-walled carbon nanotube incorporated nanoporous titanium dioxide electrodes for hybrid polymer solar cells. Materials Letters 2018, 219 , 265-268. https://doi.org/10.1016/j.matlet.2018.02.088
    66. Suhui Zhang, Hui Gao, Jinyuan Zhou. Reduced graphene oxide-modified Ni-Co phosphate nanosheet self-assembled microplates as high-performance electrode materials for supercapacitors. Journal of Alloys and Compounds 2018, 746 , 549-556. https://doi.org/10.1016/j.jallcom.2018.02.008
    67. Rui Liu, Yingjie Qiao, Yingjin Song, Kehan Song, Chuan Liu. Enhanced Efficiency of Dye-sensitized Solar Cells Using rGO@TiO2 Nanotube Hybrids. Chemical Research in Chinese Universities 2018, 34 (2) , 269-273. https://doi.org/10.1007/s40242-018-7287-y
    68. Sandeep Kumar, Monika Nehra, Deepak Kedia, Neeraj Dilbaghi, K Tankeshwar, Ki-Hyun Kim. Carbon nanotubes: A potential material for energy conversion and storage. Progress in Energy and Combustion Science 2018, 64 , 219-253. https://doi.org/10.1016/j.pecs.2017.10.005
    69. Federico Rosei. Multifunctional Materials For Emerging Solar Technologies. 2018, PF2B.2. https://doi.org/10.1364/PFE.2018.PF2B.2
    70. Riccardo Milan, Gurpreet Singh Selopal, Marco Cavazzini, Simonetta Orlandi, Rita Boaretto, Stefano Caramori, Isabella Concina, Gianluca Pozzi. Dye-sensitized solar cells based on a push-pull zinc phthalocyanine bearing diphenylamine donor groups: computational predictions face experimental reality. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-15745-3
    71. T. Thivakarasarma, P. Sumanthiran, K. Prashanthan, P. Ravirajan. Optimizing multiwall carbon nanotube weight ratio for efficient charge transport in hybrid TiO<inf>2</inf>/polymer solar cells. 2017, 200-201. https://doi.org/10.1109/NMDC.2017.8350556
    72. H. Mokarami Ghartavol, A. Afshar, M. R. Mohammadi, F. Chau‐Nan Hong, Yeau‐Ren Jeng. Titania Nanotubes Decorated with Zn‐Doped Titania Nanoparticles as the Photoanode Electrode of Dye‐Sensitized Solar Cells. Energy Technology 2017, 5 (9) , 1571-1578. https://doi.org/10.1002/ente.201600786
    73. Gurpreet S. Selopal, Haiguang Zhao, Xin Tong, Daniele Benetti, Fabiola Navarro‐Pardo, Yufeng Zhou, David Barba, François Vidal, Zhiming M. Wang, Federico Rosei. Highly Stable Colloidal “Giant” Quantum Dots Sensitized Solar Cells. Advanced Functional Materials 2017, 27 (30) https://doi.org/10.1002/adfm.201701468
    74. Carlos Guerra‐Nuñez, Hyung Gyu Park, Ivo Utke. Atomic Layer Deposition for Surface and Interface Engineering in Nanostructured Photovoltaic Devices. 2017, 119-148. https://doi.org/10.1002/9783527694822.ch4
    75. Fabian Lodermeyer, Rubén D. Costa, Dirk M. Guldi. Implementation of Single‐Walled Carbon Nanohorns into Solar Cell Schemes. Advanced Energy Materials 2017, 7 (10) https://doi.org/10.1002/aenm.201601883
    76. Muthukumaraswamy Ranagraj Vengatesan, Anish Mathai Varghese, Vikas Mittal. Nanotubes. 2017, 1-24. https://doi.org/10.1002/0471238961.koe00026
    77. Umer Mehmood. Efficient and economical dye-sensitized solar cells based on graphene/TiO2 nanocomposite as a photoanode and graphene as a Pt-free catalyst for counter electrode. Organic Electronics 2017, 42 , 187-193. https://doi.org/10.1016/j.orgel.2016.12.039
    78. T. Grace, C. Shearer, D. Tune, L. Yu, M. Batmunkh, M.J. Biggs, Z.A. ALOthman, J.G. Shapter. Use of Carbon Nanotubes in Third-Generation Solar Cells. 2017, 201-249. https://doi.org/10.1016/B978-0-323-41481-4.00008-3
    79. Ke Fan, Jiaguo Yu, Wingkei Ho. Improving photoanodes to obtain highly efficient dye-sensitized solar cells: a brief review. Materials Horizons 2017, 4 (3) , 319-344. https://doi.org/10.1039/C6MH00511J
    80. A. Moya, N. Kemnade, M. R. Osorio, A. Cherevan, D. Granados, D. Eder, J. J. Vilatela. Large area photoelectrodes based on hybrids of CNT fibres and ALD-grown TiO 2. Journal of Materials Chemistry A 2017, 5 (47) , 24695-24706. https://doi.org/10.1039/C7TA08074C
    81. F. Navarro-Pardo, D. Benetti, J. Benavides, H. G. Zhao, S. G. Cloutier, V. M. Castano, A. Vomiero, F. Rosei. Nanofiber-Structured TiO 2 Nanocrystals as a Scattering Layer in Dye-Sensitized Solar Cells. ECS Journal of Solid State Science and Technology 2017, 6 (4) , N32-N37. https://doi.org/10.1149/2.0181704jss
    82. Munkhbayar Batmunkh, Mahnaz Dadkhah, Cameron J. Shearer, Mark J. Biggs, Joseph G. Shapter. Incorporation of graphene into SnO2 photoanodes for dye-sensitized solar cells. Applied Surface Science 2016, 387 , 690-697. https://doi.org/10.1016/j.apsusc.2016.06.146
    83. Zhangfeng Shen, Guiqiang Wang, Hao Tian, Jaka Sunarso, Lihong Liu, Jian Liu, Shaomin Liu. Bi-layer photoanode films of hierarchical carbon-doped brookite-rutile TiO 2 composite and anatase TiO 2 beads for efficient dye-sensitized solar cells. Electrochimica Acta 2016, 216 , 429-437. https://doi.org/10.1016/j.electacta.2016.09.047
    84. Umer Mehmood, M. Zaheer Aslam, R. A. Shawabkeh, Ibnelwaleed A. Hussein, Waqar Ahmad, Adeem Ghaffar Rana. Improvement in Photovoltaic Performance of Dye Sensitized Solar Cell Using Activated Carbon-TiO 2 Composites-Based Photoanode. IEEE Journal of Photovoltaics 2016, 6 (5) , 1191-1195. https://doi.org/10.1109/JPHOTOV.2016.2574127
    85. M.H. Buraidah, S.N.F. Yusuf, I.M. Noor, A.K. Arof. Optical Properties of Semiconductor Nanoparticles in Photoelectrochemical Cells. 2016, 283-306. https://doi.org/10.1201/9781315374628-9
    86. Umer Mehmood, Zuhair Malaibari, Fahad Ali Rabani, Ateeq Ur Rehman, S.H.A. Ahmad, Muataz Ali Atieh, Muhammad Shahzad Kamal. Photovoltaic improvement and charge recombination reduction by aluminum oxide impregnated MWCNTs/TiO2 based photoanode for dye-sensitized solar cells. Electrochimica Acta 2016, 203 , 162-170. https://doi.org/10.1016/j.electacta.2016.04.027
    87. Sowbaranigha Chinnusamy Jayanthi, Ravneet Kaur, Folarin Erogbogbo. Graphene Quantum Dot - Titania Nanoparticle Composite for Photocatalytic Water Splitting. MRS Advances 2016, 1 (28) , 2071-2077. https://doi.org/10.1557/adv.2016.470
    88. Toshihiko Matsuura, Sakura Nagai, Kou Ogasawara, Ken-ichi Minato, Mitsuo Sakai, Takashi Ueno. Improvement in performance of dye-sensitized solar cells with porous TiO 2 electrodes using squid ink particles. Japanese Journal of Applied Physics 2016, 55 (6S1) , 06GK01. https://doi.org/10.7567/JJAP.55.06GK01
    89. Gurpreet Singh Selopal, Hui-Ping Wu, Jianfeng Lu, Yu-Cheng Chang, Mingkui Wang, Alberto Vomiero, Isabella Concina, Eric Wei-Guang Diau. Metal-free organic dyes for TiO2 and ZnO dye-sensitized solar cells. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep18756
    90. Yana Yang, Jiahuan Zhao, Can Cui, Yichao Zhang, Haihua Hu, Lingbo Xu, Jiaqi Pan, Chaorong Li, Weihua Tang. Hydrothermal growth of ZnO nanowires scaffolds within mesoporous TiO2 photoanodes for dye-sensitized solar cells with enhanced efficiency. Electrochimica Acta 2016, 196 , 348-356. https://doi.org/10.1016/j.electacta.2016.03.022
    91. Yen-Chen Shih, Chia-Wen Yeh, King-Fu Lin. Photovoltaic performance enhancement of dye-sensitized solar cells by incorporating poly(sodium-4-styrenesulfonate)-physisorbed MWCNTs into photoelectrode. Materials Chemistry and Physics 2016, 171 , 352-358. https://doi.org/10.1016/j.matchemphys.2016.01.028
    92. Umer Mehmood, Ibnelwaleed A. Hussein, Amir Al-Ahmed, Shakeel Ahmed. Enhancing Power Conversion Efficiency of Dye-Sensitized Solar Cell Using TiO 2 -MWCNT Composite Photoanodes. IEEE Journal of Photovoltaics 2016, 6 (2) , 486-490. https://doi.org/10.1109/JPHOTOV.2016.2514703
    93. Mohammad Hadi Karimi Tafti, Seyed Mohammad Sadeghzadeh. Dye sensitized solar cell efficiency improvement using nanodiamond anti-reflect layer. Optical and Quantum Electronics 2016, 48 (2) https://doi.org/10.1007/s11082-016-0420-6
    94. Daniele Benetti, Kadiatou Therese Dembele, Jaime Benavides, Haiguang Zhao, Sylvain Cloutier, Isabella Concina, Alberto Vomiero, Federico Rosei. Functionalized multi-wall carbon nanotubes/TiO 2 composites as efficient photoanodes for dye sensitized solar cells. Journal of Materials Chemistry C 2016, 4 (16) , 3555-3562. https://doi.org/10.1039/C6TC00800C
    95. Umer Mehmood, Khalil Harrabi, Ibnelwaleed A. Hussein, Shakeel Ahmed. Enhanced Photovoltaic Performance of Dye-Sensitized Solar Cells Using TiO2-Graphene Microplatelets Hybrid Photoanode. IEEE Journal of Photovoltaics 2016, 6 (1) , 196-201. https://doi.org/10.1109/JPHOTOV.2015.2479468
    96. H. Karaağaç, E. Peksu, E. U. Arici, M. Saif Islam. One-Dimensional Nano-structured Solar Cells. 2016, 351-400. https://doi.org/10.1007/978-3-319-25340-4_15
    97. Zaahir Salam, E. Vijayakumar, A. Subramania, N. Sivasankar, Sudhanshu Mallick. Graphene quantum dots decorated electrospun TiO2 nanofibers as an effective photoanode for dye sensitized solar cells. Solar Energy Materials and Solar Cells 2015, 143 , 250-259. https://doi.org/10.1016/j.solmat.2015.07.001
    98. Ya‐nan Zhang, Hongyi Tian, Guohua Zhao. Enhanced Visible‐Light Photoelectrocatalytic Activity of {001}TiO 2 Electrodes Assisted with Carbon Quantum Dots. ChemElectroChem 2015, 2 (11) , 1728-1734. https://doi.org/10.1002/celc.201500246
    99. Umer Mehmood, Ibnelwaleed A. Hussein, Khalil Harrabi, M.B. Mekki, Shakeel Ahmed, Nouar Tabet. Hybrid TiO2–multiwall carbon nanotube (MWCNTs) photoanodes for efficient dye sensitized solar cells (DSSCs). Solar Energy Materials and Solar Cells 2015, 140 , 174-179. https://doi.org/10.1016/j.solmat.2015.04.004
    100. Kun-Mu Lee, Sheng Hsiung Chang, Ming-Chung Wu, Chun-Guey Wu. Raman and photoluminescence investigation of CdS/CdSe quantum dots on TiO2 nanoparticles with multi-walled carbon nanotubes and their application in solar cells. Vibrational Spectroscopy 2015, 80 , 66-69. https://doi.org/10.1016/j.vibspec.2015.08.001
    Load all citations

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2013, 117, 28, 14510–14517
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp403553t
    Published June 13, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    2129

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.