ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Behavior of Human Cytochromes P450 on Lipid Membranes

View Author Information
Department of Physical Chemistry, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University Olomouc, tř. 17. listopadu 12, 771 46, Olomouc, Czech Republic
Department of Pharmacology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic
Cite this: J. Phys. Chem. B 2013, 117, 39, 11556–11564
Publication Date (Web):August 29, 2013
https://doi.org/10.1021/jp4059559
Copyright © 2013 American Chemical Society

    Article Views

    1408

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Human cytochromes P450 (CYPs) are membrane-anchored enzymes involved in biotransformation of many marketed drugs. We constructed atomic models of six human CYPs (CYP1A2, 2A6, 2C9, 2D6, 2E1, and 3A4) anchored to a lipid bilayer to investigate the positions and orientations of CYPs on a membrane. We equilibrated the models by molecular dynamics simulations on a 100+ ns time scale. Catalytic domains of all studied CYPs were found to be partially immersed in the lipid bilayer, whereas the N-terminal part and F′/G′ loop are deeply immersed. The proximal side of the enzyme faces the cytosol, whereas the distal side, where openings of substrate access and product release channels to the active site are primarily located, points toward the lipid bilayer. Access channels with openings in the vicinity of the B/C and F/G loops are typically positioned below the lipid head groups, whereas the solvent channel points toward the membrane–water interface. We found that the access channel opening positions match the preferred substrate positions, whereas the product release channel exit positions correspond closely with the positions of the products. This may indicate that membrane-anchored CYPs have evolutionarily adapted to facilitate uptake of nonpolar substrates from the membrane and uptake/release of polar substrates or products from/to the membrane–water interface.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Details about setup and RMSD of catalytic domains, amino acids composition of CYPs surface parts in contact with membrane, headgroup, and cytosol and access channels openings, and supporting figures showing bilayer density profile and prototypical free energy profiles along membrane normal. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 90 publications.

    1. Lenin González-Paz, Carla Lossada, Maria Laura Hurtado-León, Francelys V. Fernández-Materán, José Luis Paz, Shayan Parvizi, Rafael Eduardo Cardenas Castillo, Freddy Romero, Ysaias J. Alvarado. Intrinsic Dynamics of the ClpXP Proteolytic Machine Using Elastic Network Models. ACS Omega 2023, 8 (8) , 7302-7318. https://doi.org/10.1021/acsomega.2c04347
    2. Daniel Becker, Prasad V. Bharatam, Holger Gohlke. F/G Region Rigidity is Inversely Correlated to Substrate Promiscuity of Human CYP Isoforms Involved in Metabolism. Journal of Chemical Information and Modeling 2021, 61 (8) , 4023-4030. https://doi.org/10.1021/acs.jcim.1c00558
    3. Junhao Li, Yang Zhou, Yun Tang, Weihua Li, Yaoquan Tu. Dissecting the Structural Plasticity and Dynamics of Cytochrome P450 2B4 by Molecular Dynamics Simulations. Journal of Chemical Information and Modeling 2020, 60 (10) , 5026-5035. https://doi.org/10.1021/acs.jcim.0c00482
    4. Melanie P. Muller, Tao Jiang, Chang Sun, Muyun Lihan, Shashank Pant, Paween Mahinthichaichan, Anda Trifan, Emad Tajkhorshid. Characterization of Lipid–Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chemical Reviews 2019, 119 (9) , 6086-6161. https://doi.org/10.1021/acs.chemrev.8b00608
    5. André Fischer, Charleen G. Don, Martin Smieško. Molecular Dynamics Simulations Reveal Structural Differences among Allelic Variants of Membrane-Anchored Cytochrome P450 2D6. Journal of Chemical Information and Modeling 2018, 58 (9) , 1962-1975. https://doi.org/10.1021/acs.jcim.8b00080
    6. Ilia G. Denisov and Stephen G. Sligar . Nanodiscs in Membrane Biochemistry and Biophysics. Chemical Reviews 2017, 117 (6) , 4669-4713. https://doi.org/10.1021/acs.chemrev.6b00690
    7. Wynton D. McClary, John P. Sumida, Michele Scian, Lorela Paço, and William M. Atkins . Membrane Fluidity Modulates Thermal Stability and Ligand Binding of Cytochrome P4503A4 in Lipid Nanodiscs. Biochemistry 2016, 55 (45) , 6258-6268. https://doi.org/10.1021/acs.biochem.6b00715
    8. Veronika Navrátilová, Markéta Paloncýová, Karel Berka, and Michal Otyepka . Effect of Lipid Charge on Membrane Immersion of Cytochrome P450 3A4. The Journal of Physical Chemistry B 2016, 120 (43) , 11205-11213. https://doi.org/10.1021/acs.jpcb.6b10108
    9. Ayumi Yamada, Nobutaka Shimizu, Takaaki Hikima, Masaki Takata, Toshihide Kobayashi, and Hiroshi Takahashi . Effect of Cholesterol on the Interaction of Cytochrome P450 Substrate Drug Chlorzoxazone with the Phosphatidylcholine Bilayer. Biochemistry 2016, 55 (28) , 3888-3898. https://doi.org/10.1021/acs.biochem.6b00286
    10. Markéta Paloncýová, Veronika Navrátilová, Karel Berka, Alessandro Laio, and Michal Otyepka . Role of Enzyme Flexibility in Ligand Access and Egress to Active Site: Bias-Exchange Metadynamics Study of 1,3,7-Trimethyluric Acid in Cytochrome P450 3A4. Journal of Chemical Theory and Computation 2016, 12 (4) , 2101-2109. https://doi.org/10.1021/acs.jctc.6b00075
    11. Nicholas A. Treuheit, Michelle Redhair, Hyewon Kwon, Wynton D. McClary, Miklos Guttman, John P. Sumida, and William M. Atkins . Membrane Interactions, Ligand-Dependent Dynamics, and Stability of Cytochrome P4503A4 in Lipid Nanodiscs. Biochemistry 2016, 55 (7) , 1058-1069. https://doi.org/10.1021/acs.biochem.5b01313
    12. Irina F. Sevrioukova and Thomas L. Poulos . Anion-Dependent Stimulation of CYP3A4 Monooxygenase. Biochemistry 2015, 54 (26) , 4083-4096. https://doi.org/10.1021/acs.biochem.5b00510
    13. Ilia G. Denisov, Yelena V. Grinkova, Javier L. Baylon, Emad Tajkhorshid, and Stephen G. Sligar . Mechanism of Drug–Drug Interactions Mediated by Human Cytochrome P450 CYP3A4 Monomer. Biochemistry 2015, 54 (13) , 2227-2239. https://doi.org/10.1021/acs.biochem.5b00079
    14. Jean-François Rhéault, Ève Gagné, Michel Guertin, Guillaume Lamoureux, Michèle Auger, and Patrick Lagüe . Molecular Model of Hemoglobin N from Mycobacterium tuberculosis Bound to Lipid Bilayers: A Combined Spectroscopic and Computational Study. Biochemistry 2015, 54 (11) , 2073-2084. https://doi.org/10.1021/bi5010624
    15. Veronika Navrátilová, Markéta Paloncýová, Michaela Kajšová, Karel Berka, and Michal Otyepka . Effect of Cholesterol on the Structure of Membrane-Attached Cytochrome P450 3A4. Journal of Chemical Information and Modeling 2015, 55 (3) , 628-635. https://doi.org/10.1021/ci500645k
    16. Jacopo Sgrignani, Marta Bon, Giorgio Colombo, and Alessandra Magistrato . Computational Approaches Elucidate the Allosteric Mechanism of Human Aromatase Inhibition: A Novel Possible Route to Small-Molecule Regulation of CYP450s Activities?. Journal of Chemical Information and Modeling 2014, 54 (10) , 2856-2868. https://doi.org/10.1021/ci500425y
    17. Markéta Paloncýová, Gabin Fabre, Russell H. DeVane, Patrick Trouillas, Karel Berka, and Michal Otyepka . Benchmarking of Force Fields for Molecule–Membrane Interactions. Journal of Chemical Theory and Computation 2014, 10 (9) , 4143-4151. https://doi.org/10.1021/ct500419b
    18. Markéta Paloncýová, Russell DeVane, Bruce Murch, Karel Berka, and Michal Otyepka . Amphiphilic Drug-Like Molecules Accumulate in a Membrane below the Head Group Region. The Journal of Physical Chemistry B 2014, 118 (4) , 1030-1039. https://doi.org/10.1021/jp4112052
    19. Edward Michael Ackad, Laurence Biggers, Mary Meister, Maria Kontoyianni, . Equilibrium landscape of ingress/egress channels and gating residues of the Cytochrome P450 3A4. PLOS ONE 2024, 19 (3) , e0298424. https://doi.org/10.1371/journal.pone.0298424
    20. Leonid Kaluzhskiy, Evgeniy Yablokov, Oksana Gnedenko, Dmitrii Burkatovskii, Ivan Maslov, Andrey Bogorodskiy, Pavel Ershov, Tatsiana Tsybruk, Elena Zelepuga, Tatyana Rutckova, Emma Kozlovskaya, Pavel Dmitrenok, Andrei Gilep, Valentin Borshchevskiy, Natallia Strushkevich, Alexis Ivanov. The effect of membrane composition on the interaction between human CYP51 and its flavonoid inhibitor - luteolin 7,3′-disulfate. Biochimica et Biophysica Acta (BBA) - Biomembranes 2024, 1866 (3) , 184286. https://doi.org/10.1016/j.bbamem.2024.184286
    21. Sidra Islam, Dhanya Thamaraparambil Jayaram, Pranjal Biswas, Dennis J. Stuehr. Functional maturation of cytochromes P450 3A4 and 2D6 relies on GAPDH- and Hsp90-Dependent heme allocation. Journal of Biological Chemistry 2024, 300 (2) , 105633. https://doi.org/10.1016/j.jbc.2024.105633
    22. Anna Špačková, Ondřej Vávra, Tomáš Raček, Václav Bazgier, David Sehnal, Jiří Damborský, Radka Svobodová, David Bednář, Karel Berka. ChannelsDB 2.0: a comprehensive database of protein tunnels and pores in AlphaFold era. Nucleic Acids Research 2024, 52 (D1) , D413-D418. https://doi.org/10.1093/nar/gkad1012
    23. Irina F. Sevrioukova. Interaction of CYP3A4 with caffeine: First insights into multiple substrate binding. Journal of Biological Chemistry 2023, 299 (9) , 105117. https://doi.org/10.1016/j.jbc.2023.105117
    24. Lorela Paço, John C. Hackett, William M. Atkins. Nanodisc-embedded cytochrome P450 P3A4 binds diverse ligands by distributing conformational dynamics to its flexible elements. Journal of Inorganic Biochemistry 2023, 244 , 112211. https://doi.org/10.1016/j.jinorgbio.2023.112211
    25. Kevin F. dos Santos, Elsa M. Materón, Osvaldo N. Oliveira. Influence of cytochrome P450 3A4 and membrane lipid composition on doxorubicin activity. Colloids and Surfaces B: Biointerfaces 2022, 220 , 112886. https://doi.org/10.1016/j.colsurfb.2022.112886
    26. Shosei Kano, Hiroshi Takahashi. Cholesterol's inhibition effect on entering of chlorzoxazone into phosphatidylethanolamine bilayer: Relevance to cytochrome P450 drug metabolism at endoplasmic reticulum membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes 2022, 1864 (9) , 183954. https://doi.org/10.1016/j.bbamem.2022.183954
    27. Tingting Fu, Qingchuan Zheng, Hongxing Zhang. Investigation of the molecular and mechanistic basis for the regioselective metabolism of midazolam by cytochrome P450 3A4. Physical Chemistry Chemical Physics 2022, 24 (14) , 8104-8112. https://doi.org/10.1039/D2CP00232A
    28. Pradeepraj Durairaj, Shengying Li. Functional expression and regulation of eukaryotic cytochrome P450 enzymes in surrogate microbial cell factories. Engineering Microbiology 2022, 2 (1) , 100011. https://doi.org/10.1016/j.engmic.2022.100011
    29. Amelia Nathania Dong, Nafees Ahemad, Yan Pan, Uma Devi Palanisamy, Beow Chin Yiap, Chin Eng Ong. Role of P34S, G169R, R296C, and S486T Substitutions in Ligand Access and Catalysis for Cytochrome P450 2D6 Allelic Variants CYP2D6*14A and CYP2D6*14B. Drug Metabolism and Bioanalysis Letters 2022, 15 (1) , 51-63. https://doi.org/10.2174/1872312815666220113125232
    30. Dmitri R. Davydov, Bikash Dangi, Guihua Yue, Deepak S. Ahire, Bhagwat Prasad, Victor G. Zgoda. Exploring the Interactome of Cytochrome P450 2E1 in Human Liver Microsomes with Chemical Crosslinking Mass Spectrometry. Biomolecules 2022, 12 (2) , 185. https://doi.org/10.3390/biom12020185
    31. Min-Zhang Sun, Qing-Chuan Zheng. The regioselectivity of the interaction between dextromethorphan and CYP2D6. Physical Chemistry Chemical Physics 2022, 24 (4) , 2234-2242. https://doi.org/10.1039/D1CP03933D
    32. Adam Midlik, Veronika Navrátilová, Taraka Ramji Moturu, Jaroslav Koča, Radka Svobodová, Karel Berka. Uncovering of cytochrome P450 anatomy by SecStrAnnotator. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-91494-8
    33. Goutam Mukherjee, Prajwal P. Nandekar, Rebecca C. Wade. An electron transfer competent structural ensemble of membrane-bound cytochrome P450 1A1 and cytochrome P450 oxidoreductase. Communications Biology 2021, 4 (1) https://doi.org/10.1038/s42003-020-01568-y
    34. Laura Gutiérrez-García, Montserrat Arró, Teresa Altabella, Albert Ferrer, Albert Boronat. Structural and functional analysis of tomato sterol C22 desaturase. BMC Plant Biology 2021, 21 (1) https://doi.org/10.1186/s12870-021-02898-7
    35. André Fischer, Martin Smieško. A Conserved Allosteric Site on Drug-Metabolizing CYPs: A Systematic Computational Assessment. International Journal of Molecular Sciences 2021, 22 (24) , 13215. https://doi.org/10.3390/ijms222413215
    36. Yuu Miyauchi, Shinji Takechi, Yuji Ishii. Functional Interaction between Cytochrome P450 and UDP-Glucuronosyltransferase on the Endoplasmic Reticulum Membrane: One of Post-translational Factors Which Possibly Contributes to Their Inter-Individual Differences. Biological and Pharmaceutical Bulletin 2021, 44 (11) , 1635-1644. https://doi.org/10.1248/bpb.b21-00286
    37. Tomasz Róg, Mykhailo Girych, Alex Bunker. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals 2021, 14 (10) , 1062. https://doi.org/10.3390/ph14101062
    38. Aratrika Saha, J. Patrick Connick, James R. Reed, Charles S. Lott, Wayne L. Backes. Identification of the contact region responsible for the formation of the homomeric CYP1A2•CYP1A2 complex. Biochemical Journal 2021, 478 (11) , 2163-2178. https://doi.org/10.1042/BCJ20210269
    39. Jing Yuan, Fancui Meng. Effects of cholesterol on chlorzoxazone translocation across POPC bilayer. Journal of Molecular Modeling 2021, 27 (5) https://doi.org/10.1007/s00894-021-04777-2
    40. Chun‐Chi Chen, Jian Min, Lilan Zhang, Yu Yang, Xuejing Yu, Rey‐Ting Guo. Advanced Understanding of the Electron Transfer Pathway of Cytochrome P450s. ChemBioChem 2021, 22 (8) , 1317-1328. https://doi.org/10.1002/cbic.202000705
    41. Silvio Osella, Stefan Knippenberg. The influence of lipid membranes on fluorescent probes' optical properties. Biochimica et Biophysica Acta (BBA) - Biomembranes 2021, 1863 (2) , 183494. https://doi.org/10.1016/j.bbamem.2020.183494
    42. Manuel Sellner, André Fischer, Charleen G. Don, Martin Smieško. Conformational Landscape of Cytochrome P450 Reductase Interactions. International Journal of Molecular Sciences 2021, 22 (3) , 1023. https://doi.org/10.3390/ijms22031023
    43. Ghulam Mustafa, Prajwal P. Nandekar, Goutam Mukherjee, Neil J. Bruce, Rebecca C. Wade. The Effect of Force-Field Parameters on Cytochrome P450-Membrane Interactions: Structure and Dynamics. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-64129-7
    44. Aditi Das, Austin T. Weigle, William R. Arnold, Justin S. Kim, Lauren N. Carnevale, Hannah C. Huff. CYP2J2 Molecular Recognition: A New Axis for Therapeutic Design. Pharmacology & Therapeutics 2020, 215 , 107601. https://doi.org/10.1016/j.pharmthera.2020.107601
    45. Beili Ying, Yang Zhong, Jingfang Wang. Impact of peripheral mutations on the access channels of human cytochrome P450 1A2. Journal of Biomolecular Structure and Dynamics 2020, 38 (16) , 4906-4913. https://doi.org/10.1080/07391102.2019.1686425
    46. Federica Saponaro, Alessandro Saba, Riccardo Zucchi. An Update on Vitamin D Metabolism. International Journal of Molecular Sciences 2020, 21 (18) , 6573. https://doi.org/10.3390/ijms21186573
    47. Alexander M. Horspool, Ting Wang, Young-Sun Scaringella, Mitchell E. Taub, Tom S. Chan. Human Liver Microsomes Immobilized on Magnetizable Beads: A Novel Approach to Study In Vitro Drug Metabolism. Drug Metabolism and Disposition 2020, 48 (8) , 645-654. https://doi.org/10.1124/dmd.120.090696
    48. Yuu Miyauchi, Yoshitaka Tanaka, Kiyoshi Nagata, Yasushi Yamazoe, Peter I. Mackenzie, Hideyuki Yamada, Yuji Ishii. UDP‐Glucuronosyltransferase (UGT)‐mediated attenuations of cytochrome P450 3A4 activity: UGT isoform‐dependent mechanism of suppression. British Journal of Pharmacology 2020, 177 (5) , 1077-1089. https://doi.org/10.1111/bph.14900
    49. A. Tolios, J. De Las Rivas, E. Hovig, P. Trouillas, A. Scorilas, T. Mohr. Computational approaches in cancer multidrug resistance research: Identification of potential biomarkers, drug targets and drug-target interactions. Drug Resistance Updates 2020, 48 , 100662. https://doi.org/10.1016/j.drup.2019.100662
    50. André Fischer, Martin Smieško. Spontaneous Ligand Access Events to Membrane-Bound Cytochrome P450 2D6 Sampled at Atomic Resolution. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-52681-w
    51. A. ŠPIČÁKOVÁ, V. BAZGIER, L. SKÁLOVÁ, M. OTYEPKA, P. ANZENBACHER. β‐caryophyllene Oxide and Trans-nerolidol Affect Enzyme Activity of CYP3A4 – In Vitro and In Silico Studies. Physiological Research 2019, , S51-S58. https://doi.org/10.33549/physiolres.934323
    52. Ghulam Mustafa, Prajwal P. Nandekar, Neil J. Bruce, Rebecca C. Wade. Differing Membrane Interactions of Two Highly Similar Drug-Metabolizing Cytochrome P450 Isoforms: CYP 2C9 and CYP 2C19. International Journal of Molecular Sciences 2019, 20 (18) , 4328. https://doi.org/10.3390/ijms20184328
    53. Kiani, Ranaghan, Jabeen, Mulholland. Molecular Dynamics Simulation Framework to Probe the Binding Hypothesis of CYP3A4 Inhibitors. International Journal of Molecular Sciences 2019, 20 (18) , 4468. https://doi.org/10.3390/ijms20184468
    54. Amelia Nathania Dong, Nafees Ahemad, Yan Pan, Uma Devi Palanisamy, Beow Chin Yiap, Chin Eng Ong. Functional and structural characterisation of common cytochrome P450 2D6 allelic variants—roles of Pro34 and Thr107 in catalysis and inhibition. Naunyn-Schmiedeberg's Archives of Pharmacology 2019, 392 (8) , 1015-1029. https://doi.org/10.1007/s00210-019-01651-0
    55. Jacopo Sgrignani, Lorenzo Casalino, Fabio Doro, Angelo Spinello, Alessandra Magistrato. Can multiscale simulations unravel the function of metallo-enzymes to improve knowledge-based drug discovery?. Future Medicinal Chemistry 2019, 11 (7) , 771-791. https://doi.org/10.4155/fmc-2018-0495
    56. Lydia Benkaidali, François André, Gautier Moroy, Bahoueddine Tangour, François Maurel, Michel Petitjean. Four Major Channels Detected in the Cytochrome P450 3A4: A Step toward Understanding Its Multispecificity. International Journal of Molecular Sciences 2019, 20 (4) , 987. https://doi.org/10.3390/ijms20040987
    57. Angelo Spinello, Ida Ritacco, Alessandra Magistrato. The Catalytic Mechanism of Steroidogenic Cytochromes P450 from All-Atom Simulations: Entwinement with Membrane Environment, Redox Partners, and Post-Transcriptional Regulation. Catalysts 2019, 9 (1) , 81. https://doi.org/10.3390/catal9010081
    58. Charleen G. Don, Martin Smieško. Out‐compute drug side effects: Focus on cytochrome P450 2D6 modeling. WIREs Computational Molecular Science 2018, 8 (5) https://doi.org/10.1002/wcms.1366
    59. Hwei-Ming Peng, Chase Barlow, Richard J. Auchus. Catalytic modulation of human cytochromes P450 17A1 and P450 11B2 by phospholipid. The Journal of Steroid Biochemistry and Molecular Biology 2018, 181 , 63-72. https://doi.org/10.1016/j.jsbmb.2018.03.003
    60. Martin Šrejber, Veronika Navrátilová, Markéta Paloncýová, Václav Bazgier, Karel Berka, Pavel Anzenbacher, Michal Otyepka. Membrane-attached mammalian cytochromes P450: An overview of the membrane's effects on structure, drug binding, and interactions with redox partners. Journal of Inorganic Biochemistry 2018, 183 , 117-136. https://doi.org/10.1016/j.jinorgbio.2018.03.002
    61. Philippe Urban, Thomas Lautier, Denis Pompon, Gilles Truan. Ligand Access Channels in Cytochrome P450 Enzymes: A Review. International Journal of Molecular Sciences 2018, 19 (6) , 1617. https://doi.org/10.3390/ijms19061617
    62. Carlo Barnaba, Bikash Ranjan Sahoo, Thirupathi Ravula, Ilce G. Medina‐Meza, Sang‐Choul Im, G. M. Anantharamaiah, Lucy Waskell, Ayyalusamy Ramamoorthy. Cytochrome‐P450‐Induced Ordering of Microsomal Membranes Modulates Affinity for Drugs. Angewandte Chemie 2018, 130 (13) , 3449-3453. https://doi.org/10.1002/ange.201713167
    63. Carlo Barnaba, Bikash Ranjan Sahoo, Thirupathi Ravula, Ilce G. Medina‐Meza, Sang‐Choul Im, G. M. Anantharamaiah, Lucy Waskell, Ayyalusamy Ramamoorthy. Cytochrome‐P450‐Induced Ordering of Microsomal Membranes Modulates Affinity for Drugs. Angewandte Chemie International Edition 2018, 57 (13) , 3391-3395. https://doi.org/10.1002/anie.201713167
    64. Chloe Y.S. Cheng, Tae-Kang Kim, Saowanee Jeayeng, Andrzej T. Slominski, Robert C. Tuckey. Properties of purified CYP2R1 in a reconstituted membrane environment and its 25-hydroxylation of 20-hydroxyvitamin D3. The Journal of Steroid Biochemistry and Molecular Biology 2018, 177 , 59-69. https://doi.org/10.1016/j.jsbmb.2017.07.011
    65. John C. Hackett. Membrane-embedded substrate recognition by cytochrome P450 3A4. Journal of Biological Chemistry 2018, 293 (11) , 4037-4046. https://doi.org/10.1074/jbc.RA117.000961
    66. Mei-Hui Hsu, Uzen Savas, Eric F. Johnson. The X-Ray Crystal Structure of the Human Mono-Oxygenase Cytochrome P450 3A5-Ritonavir Complex Reveals Active Site Differences between P450s 3A4 and 3A5. Molecular Pharmacology 2018, 93 (1) , 14-24. https://doi.org/10.1124/mol.117.109744
    67. Alessandra Magistrato. Direct in silico visualization of ligands channelling through proteins: The next-generation frontier of computational biology. Physics of Life Reviews 2017, 22-23 , 82-84. https://doi.org/10.1016/j.plrev.2017.08.004
    68. Veronika Navrátilová, Markéta Paloncýová, Karel Berka, Shintaro Mise, Yuki Haga, Chisato Matsumura, Toshiyuki Sakaki, Hideyuki Inui, Michal Otyepka. Molecular insights into the role of a distal F240A mutation that alters CYP1A1 activity towards persistent organic pollutants. Biochimica et Biophysica Acta (BBA) - General Subjects 2017, 1861 (11) , 2852-2860. https://doi.org/10.1016/j.bbagen.2017.08.002
    69. Dmitri R. Davydov, Nadezhda Y. Davydova, John T. Rodgers, Thomas H. Rushmore, Jeffrey P. Jones. Toward a systems approach to the human cytochrome P450 ensemble: interactions between CYP2D6 and CYP2E1 and their functional consequences. Biochemical Journal 2017, 474 (20) , 3523-3542. https://doi.org/10.1042/BCJ20170543
    70. Lionel Ducassou, Laura Dhers, Gabriella Jonasson, Nicolas Pietrancosta, Jean-Luc Boucher, Daniel Mansuy, François André. Membrane-bound human orphan cytochrome P450 2U1: Sequence singularities, construction of a full 3D model, and substrate docking. Biochimie 2017, 140 , 166-175. https://doi.org/10.1016/j.biochi.2017.07.007
    71. Kang‐Cheng Liu, John M. X. Hughes, Sam Hay, Nigel S. Scrutton. Liver microsomal lipid enhances the activity and redox coupling of colocalized cytochrome P450 reductase‐cytochrome P450 3A4 in nanodiscs. The FEBS Journal 2017, 284 (14) , 2302-2319. https://doi.org/10.1111/febs.14129
    72. Chi Huu Nguyen, Nicole Huttary, Atanas G. Atanasov, Waranya Chatuphonprasert, Stefan Brenner, Adryan Fristiohady, Junli Hong, Serena Stadler, Silvio Holzner, Daniela Milovanovic, Verena M. Dirsch, Brigitte Kopp, Philipp Saiko, Liselotte Krenn, Walter Jäger, Georg Krupitza. Fenofibrate inhibits tumour intravasation by several independent mechanisms in a 3-dimensional co-culture model. International Journal of Oncology 2017, 50 (5) , 1879-1888. https://doi.org/10.3892/ijo.2017.3956
    73. Mei-Hui Hsu, Brian R. Baer, Allan E. Rettie, Eric F. Johnson. The Crystal Structure of Cytochrome P450 4B1 (CYP4B1) Monooxygenase Complexed with Octane Discloses Several Structural Adaptations for ω-Hydroxylation. Journal of Biological Chemistry 2017, 292 (13) , 5610-5621. https://doi.org/10.1074/jbc.M117.775494
    74. Paul Quehl, Jan Schüürmann, Joel Hollender, Joachim Jose. Improving the activity of surface displayed cytochrome P450 enzymes by optimizing the outer membrane linker. Biochimica et Biophysica Acta (BBA) - Biomembranes 2017, 1859 (1) , 104-116. https://doi.org/10.1016/j.bbamem.2016.10.022
    75. Ying-Lu Cui, Rong-Ling Wu. Molecular dynamics investigations of membrane-bound CYP2C19 polymorphisms reveal distinct mechanisms for peripheral variants by long-range effects on the enzymatic activity. Molecular BioSystems 2017, 13 (6) , 1070-1079. https://doi.org/10.1039/C6MB00827E
    76. Florent Di Meo, Gabin Fabre, Karel Berka, Tahani Ossman, Benjamin Chantemargue, Markéta Paloncýová, Pierre Marquet, Michal Otyepka, Patrick Trouillas. In silico pharmacology: Drug membrane partitioning and crossing. Pharmacological Research 2016, 111 , 471-486. https://doi.org/10.1016/j.phrs.2016.06.030
    77. Li Shangguan, Yuewu Zhao, Li Mi, Ling Jiang, Songqin Liu. Direct electrochemistry and electrocatalysis of cytochrome P450s immobilized on gold/graphene-based nanocomposites. Journal of Electroanalytical Chemistry 2016, 772 , 46-51. https://doi.org/10.1016/j.jelechem.2016.04.014
    78. E. E. Scott, C. R. Wolf, M. Otyepka, S. C. Humphreys, J. R. Reed, C. J. Henderson, L. A. McLaughlin, M. Paloncyova, V. Navratilova, K. Berka, P. Anzenbacher, U. P. Dahal, C. Barnaba, J. A. Brozik, J. P. Jones, D. F. Estrada, J. S. Laurence, J. W. Park, W. L. Backes. The Role of Protein-Protein and Protein-Membrane Interactions on P450 Function. Drug Metabolism and Disposition 2016, 44 (4) , 576-590. https://doi.org/10.1124/dmd.115.068569
    79. Xiaofeng Yu, Daria B. Kokh, Prajwal Nandekar, Ghulam Mustafa, Stefan Richter, Rebecca C. Wade. Dynathor: Dynamics of the Complex of Cytochrome P450 and Cytochrome P450 Reductase in a Phospholipid Bilayer. 2016, 255-264. https://doi.org/10.1007/978-3-319-24633-8_17
    80. Ying-Lu Cui, Qiao Xue, Qing-Chuan Zheng, Ji-Long Zhang, Chui-Peng Kong, Jing-Rong Fan, Hong-Xing Zhang. Structural features and dynamic investigations of the membrane-bound cytochrome P450 17A1. Biochimica et Biophysica Acta (BBA) - Biomembranes 2015, 1848 (10) , 2013-2021. https://doi.org/10.1016/j.bbamem.2015.05.017
    81. Daniel R. McDougle, Javier L. Baylon, Daryl D. Meling, Amogh Kambalyal, Yelena V. Grinkova, Jared Hammernik, Emad Tajkhorshid, Aditi Das. Incorporation of charged residues in the CYP2J2 F-G loop disrupts CYP2J2–lipid bilayer interactions. Biochimica et Biophysica Acta (BBA) - Biomembranes 2015, 1848 (10) , 2460-2470. https://doi.org/10.1016/j.bbamem.2015.07.015
    82. Liu Yang, Ce Shi, Xiaoying Mu, Chao Liu, Ke Shi, Wenjiao Zhu, Qing Yang. Cloning and expression of a wild eggplant cytochrome P450 gene, StoCYP77A2, involved in plant resistance to Verticillium dahliae. Plant Biotechnology Reports 2015, 9 (4) , 167-177. https://doi.org/10.1007/s11816-015-0355-6
    83. Philippe Urban, Gilles Truan, Denis Pompon. Access channels to the buried active site control substrate specificity in CYP1A P450 enzymes. Biochimica et Biophysica Acta (BBA) - General Subjects 2015, 1850 (4) , 696-707. https://doi.org/10.1016/j.bbagen.2014.12.015
    84. Xiaofeng Yu, Vlad Cojocaru, Ghulam Mustafa, Outi M. H. Salo‐Ahen, Galina I. Lepesheva, Rebecca C. Wade. Dynamics of CYP51: implications for function and inhibitor design. Journal of Molecular Recognition 2015, 28 (2) , 59-73. https://doi.org/10.1002/jmr.2412
    85. Dmitri R. Davydov, Nadezhda Y. Davydova, Elena V. Sineva, James R. Halpert. Interactions among Cytochromes P450 in Microsomal Membranes. Journal of Biological Chemistry 2015, 290 (6) , 3850-3864. https://doi.org/10.1074/jbc.M114.615443
    86. Thomas L. Poulos, Eric F. Johnson. Structures of Cytochrome P450 Enzymes. 2015, 3-32. https://doi.org/10.1007/978-3-319-12108-6_1
    87. Irina F. Sevrioukova, Thomas L. Poulos. Current Approaches for Investigating and Predicting Cytochrome P450 3A4-Ligand Interactions. 2015, 83-105. https://doi.org/10.1007/978-3-319-16009-2_3
    88. Elaine W. Tieu, Edith K. Y. Tang, Robert C. Tuckey. Kinetic analysis of human CYP 24A1 metabolism of vitamin D via the C24‐oxidation pathway. The FEBS Journal 2014, 281 (14) , 3280-3296. https://doi.org/10.1111/febs.12862
    89. Laura J. Kingsley, Markus A. Lill, . Ensemble Generation and the Influence of Protein Flexibility on Geometric Tunnel Prediction in Cytochrome P450 Enzymes. PLoS ONE 2014, 9 (6) , e99408. https://doi.org/10.1371/journal.pone.0099408
    90. Satyan Sharma, Marc F. Lensink, André H. Juffer. The structure of the CD3ζζ transmembrane dimer in lipid bilayers. Biochimica et Biophysica Acta (BBA) - Biomembranes 2014, 1838 (3) , 739-746. https://doi.org/10.1016/j.bbamem.2013.12.001

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect