ACS Publications. Most Trusted. Most Cited. Most Read
Rapid Selective Etching of PMMA Residues from Transferred Graphene by Carbon Dioxide
My Activity

Figure 1Loading Img
    Article

    Rapid Selective Etching of PMMA Residues from Transferred Graphene by Carbon Dioxide
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
    Department of Mechanical Engineering and the Materials Science and Engineering Program, The University of Texas at Austin, Austin, Texas 78712, United States
    § Texas Instruments Incorporated, Dallas, Texas 75243, United States
    *E-mail: [email protected]. Phone: +1 (972)-883-5751. Fax: +1 (972)-883-5725.
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2013, 117, 44, 23000–23008
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp408429v
    Published October 10, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    During chemical-vapor-deposited graphene transfer onto target substrates, a polymer film coating is necessary to provide a mechanical support. However, the remaining polymer residues after organic solvent rinsing cannot be effectively removed by the empirical thermal annealing in vacuum or forming gas. Little progress has been achieved in the past years, for little is known about the chemical evolution of the polymer macromolecules and their interaction with the environment. Through in situ Raman and infrared spectroscopy studies of PMMA transferred graphene annealed in nitrogen, two main processes are uncovered involving the polymer dehydrogenation below 200 °C and a subsequent depolymerization above 200 °C. Polymeric carbons over the monolayer graphitic carbon are found to constitute a fundamental bottleneck for a thorough etching of PMMA residues. The dehydrogenated polymeric chains consist of active C═C bonding sites that are readily attacked by oxidative gases. The combination of Raman spectroscopy, X-ray photoemission spectroscopy, and transmission electron microscopy reveals the largely improved carbon removal by annealing in oxidative atmospheres. CO2 outperforms other oxidative gases (e.g., NO2, O2) because of its moderate oxidative strength to remove polymeric carbons efficiently at 500 °C in a few minutes while preserving the underlying graphene lattice. The strategy and mechanism described here open the way for a significantly improved oxidative cleaning of transferred graphene sheets, which may require optimization tailored to specific applications.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The SEM image of suspended graphene on prepatterned holes, the reference hole for TEM imaging, and Raman spectra of the sample prepared by a slightly modified condition for confirming the existence and the same origin of the two new Raman peaks. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 87 publications.

    1. Mohang Cai, Jianfang Yang, Xueyi Lu, Xia Lu. Layer-by-Layer Self-Assembly Strategies of Atomically Thin Two-Dimensional Nanomaterials: Principles, Methods, and Functional Applications. ACS Applied Nano Materials 2024, 7 (24) , 27940-27959. https://doi.org/10.1021/acsanm.3c06286
    2. Kangning Zhao, Wan-Chi Lee, Mojtaba Rezaei, Heng-Yu Chi, Shaoxian Li, Luis Francisco Villalobos, Kuang-Jung Hsu, Yuyang Zhang, Feng-Chao Wang, Kumar Varoon Agrawal. Tuning Pore Size in Graphene in the Angstrom Regime for Highly Selective Ion–Ion Separation. ACS Nano 2024, 18 (7) , 5571-5580. https://doi.org/10.1021/acsnano.3c11068
    3. Jing-jiang Yu, Atsushi Muto, James Kilcrease, Takeshi Sunaoshi, Sadatsugu Nozaki, Alexander Rzhevskii, Sara Chahid, Rajendra Dulal, Serafim Teknowijoyo, Armen Gulian. Surface Functionalization of Substrate-Transferred Graphene for Electronic Applications. ACS Applied Nano Materials 2023, 6 (9) , 7629-7636. https://doi.org/10.1021/acsanm.3c00783
    4. Barry Brennan, Alba Centeno, Amaia Zurutuza, Paul Mack, Keith R. Paton, Andrew J. Pollard. Gas Cluster Ion Beam Cleaning of CVD-Grown Graphene for Use in Electronic Device Fabrication. ACS Applied Nano Materials 2021, 4 (5) , 5187-5197. https://doi.org/10.1021/acsanm.1c00519
    5. G. K. Rolim, G. V. Soares, H. I. Boudinov, C. Radtke. Chemical Doping and Etching of Graphene: Tuning the Effects of NO Annealing. The Journal of Physical Chemistry C 2019, 123 (43) , 26577-26582. https://doi.org/10.1021/acs.jpcc.9b02214
    6. Pavan Chaturvedi, Ivan V. Vlassiouk, David A. Cullen, Adam J. Rondinone, Nickolay V. Lavrik, Sergei N. Smirnov. Ionic Conductance through Graphene: Assessing Its Applicability as a Proton Selective Membrane. ACS Nano 2019, 13 (10) , 12109-12119. https://doi.org/10.1021/acsnano.9b06505
    7. Djawhar Ferrah, Olivier Renault, Daniil Marinov, Javier Arias-Zapata, Nicolas Chevalier, Denis Mariolle, Denis Rouchon, Hanako Okuno, Vincent Bouchiat, Gilles Cunge. CF4/H2 Plasma Cleaning of Graphene Regenerates Electronic Properties of the Pristine Material. ACS Applied Nano Materials 2019, 2 (3) , 1356-1366. https://doi.org/10.1021/acsanm.8b02249
    8. Ruiheng Li, Zongyi Li, Elias Pambou, Philipp Gutfreund, Thomas A. Waigh, John R. P. Webster, and Jian R. Lu . Determination of PMMA Residues on a Chemical-Vapor-Deposited Monolayer of Graphene by Neutron Reflection and Atomic Force Microscopy. Langmuir 2018, 34 (5) , 1827-1833. https://doi.org/10.1021/acs.langmuir.7b03117
    9. Hui Zhu, Qingxiao Wang, Lanxia Cheng, Rafik Addou, Jiyoung Kim, Moon J. Kim, and Robert M. Wallace . Defects and Surface Structural Stability of MoTe2 Under Vacuum Annealing. ACS Nano 2017, 11 (11) , 11005-11014. https://doi.org/10.1021/acsnano.7b04984
    10. Ke Xu, Hao Lu, Erich W. Kinder, Alan Seabaugh, and Susan K. Fullerton-Shirey . Monolayer Solid-State Electrolyte for Electric Double Layer Gating of Graphene Field-Effect Transistors. ACS Nano 2017, 11 (6) , 5453-5464. https://doi.org/10.1021/acsnano.6b08505
    11. Xiaohan Wang, Andrei Dolocan, Harry Chou, Li Tao, Andrew Dick, Deji Akinwande, and C. Grant Willson . Direct Observation of Poly(Methyl Methacrylate) Removal from a Graphene Surface. Chemistry of Materials 2017, 29 (5) , 2033-2039. https://doi.org/10.1021/acs.chemmater.6b03875
    12. Aozhen Xie, Ningning Xuan, Kun Ba, and Zhengzong Sun . Pristine Graphene Electrode in Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces 2017, 9 (5) , 4643-4648. https://doi.org/10.1021/acsami.6b14732
    13. Hoon Hahn Yoon, Sungchul Jung, Gahyun Choi, Junhyung Kim, Youngeun Jeon, Yong Soo Kim, Hu Young Jeong, Kwanpyo Kim, Soon-Yong Kwon, and Kibog Park . Strong Fermi-Level Pinning at Metal/n-Si(001) Interface Ensured by Forming an Intact Schottky Contact with a Graphene Insertion Layer. Nano Letters 2017, 17 (1) , 44-49. https://doi.org/10.1021/acs.nanolett.6b03137
    14. Brett Barwick and Ahmed H. Zewail . Photonics and Plasmonics in 4D Ultrafast Electron Microscopy. ACS Photonics 2015, 2 (10) , 1391-1402. https://doi.org/10.1021/acsphotonics.5b00427
    15. Bonnie J. Tyler, Barry Brennan, Helena Stec, Trupti Patel, Ling Hao, Ian S. Gilmore, and Andrew J. Pollard . Removal of Organic Contamination from Graphene with a Controllable Mass-Selected Argon Gas Cluster Ion Beam. The Journal of Physical Chemistry C 2015, 119 (31) , 17836-17841. https://doi.org/10.1021/acs.jpcc.5b03144
    16. Wei Sun Leong, Chang Tai Nai, and John T. L. Thong . What Does Annealing Do to Metal–Graphene Contacts?. Nano Letters 2014, 14 (7) , 3840-3847. https://doi.org/10.1021/nl500999r
    17. Cheng Gong, Stephen McDonnell, Xiaoye Qin, Angelica Azcatl, Hong Dong, Yves J. Chabal, Kyeongjae Cho, and Robert M. Wallace . Realistic Metal–Graphene Contact Structures. ACS Nano 2014, 8 (1) , 642-649. https://doi.org/10.1021/nn405249n
    18. Cheng Gong, Chunming Huang, Justin Miller, Lanxia Cheng, Yufeng Hao, David Cobden, Jiyoung Kim, Rodney S. Ruoff, Robert M. Wallace, Kyeongjae Cho, Xiaodong Xu, and Yves J. Chabal . Metal Contacts on Physical Vapor Deposited Monolayer MoS2. ACS Nano 2013, 7 (12) , 11350-11357. https://doi.org/10.1021/nn4052138
    19. Kshipra Sharma, Uriel López-Sánchez, Hugues Nury, Guy Schoehn, Claudine Darnault, Cécile Breyton, Camille Petit-Etienne, Céline Vergnaud, Wai Li Ling, Gilles Cunge, Hanako Okuno. Precision defect integrated graphene as reliable support membrane for high-resolution cryo-transmission electron microscopy. Carbon 2024, 230 , 119625. https://doi.org/10.1016/j.carbon.2024.119625
    20. Jared Keith Averitt, Sajedeh Pourianejad, Olubunmi O. Ayodele, Kirby Schmidt, Anthony Trofe, Joseph Starobin, Tetyana Ignatova. Efficient high-throughput method utilizing neural network potentials to calculate interaction energies, validated by clean transfer experiment of CVD graphene with polymer mixtures. Carbon 2024, 229 , 119336. https://doi.org/10.1016/j.carbon.2024.119336
    21. Yun Seong Cho, Joohoon Kang. Two-dimensional materials as catalysts, interfaces, and electrodes for an efficient hydrogen evolution reaction. Nanoscale 2024, 16 (8) , 3936-3950. https://doi.org/10.1039/D4NR00147H
    22. Kyoichi Suzuki, Ryo Ichiki, Satoshi Kitazaki, Yui Ogawa. Quantum Hall effect in graphene transferred by water-soluble transfer sheet and home-use laminator. Japanese Journal of Applied Physics 2023, 62 (11) , 110903. https://doi.org/10.35848/1347-4065/ad0747
    23. E. A. Dronina, M. M. Mikhalik, N. G. Kovalchuk, K. A. Niherysh, A. V. Felsharuk, S. L. Prischepa, I. V. Komissarov. Raman Spectroscopy Study of the Charge Carrier Concentration and Mechanical Stresses in Graphene Transferred Employing Different Frames. Journal of Applied Spectroscopy 2023, 90 (4) , 775-782. https://doi.org/10.1007/s10812-023-01595-7
    24. Xiao Guo, Yongsong Wang, Siwen You, Dingbang Yang, Guiping Jia, Fei Song, Weidong Dou, Han Huang. Substrate effect on phonon in graphene layers. Carbon Letters 2023, 33 (5) , 1359-1365. https://doi.org/10.1007/s42823-022-00400-3
    25. Yuzuki Ono, Hojun Im. Thermal annealing effects on graphene/n-Si Schottky junction solar cell: removal of PMMA residues. Japanese Journal of Applied Physics 2023, 62 (4) , 045002. https://doi.org/10.35848/1347-4065/acca57
    26. Dong Hoon Shin, Hakseong Kim, Sung Hyun Kim, Hyeonsik Cheong, Peter G. Steeneken, Chirlmin Joo, Sang Wook Lee. Graphene nano-electromechanical mass sensor with high resolution at room temperature. iScience 2023, 26 (2) , 105958. https://doi.org/10.1016/j.isci.2023.105958
    27. Jorge Torres Quiñones, Minhee Yun. Graphene transfer implementations to micro and nano electronic. Microelectronic Engineering 2023, 269 , 111915. https://doi.org/10.1016/j.mee.2022.111915
    28. Tianbo Duan, Hu Li, Raffaello Papadakis, Klaus Leifer. Towards ballistic transport CVD graphene by controlled removal of polymer residues. Nanotechnology 2022, 33 (49) , 495704. https://doi.org/10.1088/1361-6528/ac8d9b
    29. Pavan Chaturvedi, Nicole K. Moehring, Peifu Cheng, Ivan Vlassiouk, Michael S. H. Boutilier, Piran R. Kidambi. Deconstructing proton transport through atomically thin monolayer CVD graphene membranes. Journal of Materials Chemistry A 2022, 10 (37) , 19797-19810. https://doi.org/10.1039/D2TA01737G
    30. Aisha Okmi, Xuemei Xiao, Yue Zhang, Rui He, Olugbenga Olunloyo, Sumner B. Harris, Tara Jabegu, Ningxin Li, Diren Maraba, Yasmeen Sherif, Ondrej Dyck, Ivan Vlassiouk, Kai Xiao, Pei Dong, Baoxing Xu, Sidong Lei. Discovery of Graphene‐Water Membrane Structure: Toward High‐Quality Graphene Process. Advanced Science 2022, 9 (26) https://doi.org/10.1002/advs.202201336
    31. Ruijie Zhang, Menghan Li, Lin Li, Yixuan Fan, Qing Zhang, Gui Yu, Dechao Geng, Wenping Hu. The way towards for ultraflat and superclean graphene. Nano Select 2022, 3 (3) , 485-504. https://doi.org/10.1002/nano.202100217
    32. Chunmeng Liu, Jiaqi Zhang, Sankar Ganesh Ramaraj, Xiaobin Zhang, Manoharan Muruganathan, Hiroshi Mizuta, Yoshifumi Oshima. Current effect on suspended graphene nanoribbon studied using in–situ transmission electron microscopy. Applied Surface Science 2022, 573 , 151563. https://doi.org/10.1016/j.apsusc.2021.151563
    33. Yanjing Gao, Jielin Chen, Guorui Chen, Chunhai Fan, Xiaoguo Liu. Recent Progress in the Transfer of Graphene Films and Nanostructures. Small Methods 2021, 5 (12) https://doi.org/10.1002/smtd.202100771
    34. Omer Refet Caylan, Goknur Cambaz Buke. Low-temperature synthesis and growth model of thin Mo2C crystals on indium. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-87660-7
    35. N. Medvedev, I. Milov, B. Ziaja. Structural stability and electron‐phonon coupling in two‐dimensional carbon allotropes at high electronic and atomic temperatures. Carbon Trends 2021, 5 , 100121. https://doi.org/10.1016/j.cartre.2021.100121
    36. Chao-yi Zhu, Song-ang Peng, Xiao-rui Zhang, Yao Yao, Xin-nan Huang, Yun-peng Yan, Da-yong Zhang, Jing-yuan Shi, Zhi Jin. Reducing metal/graphene contact resistance via N, N-dimethylacetamide-assisted clean fabrication process. Nanotechnology 2021, 32 (31) , 315201. https://doi.org/10.1088/1361-6528/abfa56
    37. Ti Xie, Qin Wang, Robert M. Wallace, Cheng Gong. Understanding and optimization of graphene gas sensors. Applied Physics Letters 2021, 119 (1) , 013104. https://doi.org/10.1063/5.0057066
    38. Adam J Watson, Wenbo Lu, Marcos H D Guimarães, Meike Stöhr. Transfer of large-scale two-dimensional semiconductors: challenges and developments. 2D Materials 2021, 8 (3) , 032001. https://doi.org/10.1088/2053-1583/abf234
    39. Yantao Zhang, Yubin Yuan, Guiming Cao, Chuanyu Han, Xin Li, Xiaoli Wang, Guohe Zhang, Li Geng, Weihua Liu. A fresh-bias photoresponse of graphene field-effect transistor: An electrical tunable fast dipole moment generation. Carbon 2021, 173 , 322-328. https://doi.org/10.1016/j.carbon.2020.11.022
    40. Bozhong Zhuang, Shiyun Li, Siyang Li, Jun Yin. Ways to eliminate PMMA residues on graphene —— superclean graphene. Carbon 2021, 173 , 609-636. https://doi.org/10.1016/j.carbon.2020.11.047
    41. Luis Francisco Villalobos, Shiqi Huang, Mostapha Dakhchoune, Guangwei He, Wan-Chi Lee, Kumar Varoon Agrawal. Polybenzimidazole copolymer derived lacey carbon film for graphene transfer and contamination removal strategies for imaging graphene nanopores. Carbon 2021, 173 , 980-988. https://doi.org/10.1016/j.carbon.2020.11.068
    42. Shiqi Huang, Shaoxian Li, Luis Francisco Villalobos, Mostapha Dakhchoune, Marina Micari, Deepu J. Babu, Mohammad Tohidi Vahdat, Mounir Mensi, Emad Oveisi, Kumar Varoon Agrawal. Millisecond lattice gasification for high-density CO 2 - and O 2 -sieving nanopores in single-layer graphene. Science Advances 2021, 7 (9) https://doi.org/10.1126/sciadv.abf0116
    43. Peifu Cheng, Nicole K. Moehring, Juan Carlos Idrobo, Ilia N. Ivanov, Piran R. Kidambi. Scalable synthesis of nanoporous atomically thin graphene membranes for dialysis and molecular separations via facile isopropanol-assisted hot lamination. Nanoscale 2021, 13 (5) , 2825-2837. https://doi.org/10.1039/D0NR07384A
    44. Yeonhoo Kim, Taehoon Kim, Jinwoo Lee, Yong Seok Choi, Joonhee Moon, Seo Yun Park, Tae Hyung Lee, Hoon Kee Park, Sol A Lee, Min Sang Kwon, Hyung‐Gi Byun, Jong‐Heun Lee, Myoung‐Gyu Lee, Byung Hee Hong, Ho Won Jang. Tailored Graphene Micropatterns by Wafer‐Scale Direct Transfer for Flexible Chemical Sensor Platform. Advanced Materials 2021, 33 (2) https://doi.org/10.1002/adma.202004827
    45. A. Chaves, J. G. Azadani, Hussain Alsalman, D. R. da Costa, R. Frisenda, A. J. Chaves, Seung Hyun Song, Y. D. Kim, Daowei He, Jiadong Zhou, A. Castellanos-Gomez, F. M. Peeters, Zheng Liu, C. L. Hinkle, Sang-Hyun Oh, Peide D. Ye, Steven J. Koester, Young Hee Lee, Ph. Avouris, Xinran Wang, Tony Low. Bandgap engineering of two-dimensional semiconductor materials. npj 2D Materials and Applications 2020, 4 (1) https://doi.org/10.1038/s41699-020-00162-4
    46. Aisha Okmi, Ningxin Li, Guanhui Gao, Yelyzaveta Rublova, Tara Jabegu, Diren Maraba, Sidong Lei. How surface tension matters in polymer-free graphene transfer. Oxford Open Materials Science 2020, 1 (1) https://doi.org/10.1093/oxfmat/itab007
    47. Tuqeer Nasir, Bum Jun Kim, Muhammad Hassnain, Sang Hoon Lee, Byung Joo Jeong, Ik Jun Choi, Youngho Kim, Hak Ki Yu, Jae-Young Choi. Plasticized Polystyrene by Addition of -Diene Based Molecules for Defect-Less CVD Graphene Transfer. Polymers 2020, 12 (8) , 1839. https://doi.org/10.3390/polym12081839
    48. Claudia Backes, Amr M Abdelkader, Concepción Alonso, Amandine Andrieux-Ledier, Raul Arenal, Jon Azpeitia, Nilanthy Balakrishnan, Luca Banszerus, Julien Barjon, Ruben Bartali, Sebastiano Bellani, Claire Berger, Reinhard Berger, M M Bernal Ortega, Carlo Bernard, Peter H Beton, André Beyer, Alberto Bianco, Peter Bøggild, Francesco Bonaccorso, Gabriela Borin Barin, Cristina Botas, Rebeca A Bueno, Daniel Carriazo, Andres Castellanos-Gomez, Meganne Christian, Artur Ciesielski, Tymoteusz Ciuk, Matthew T Cole, Jonathan Coleman, Camilla Coletti, Luigi Crema, Huanyao Cun, Daniela Dasler, Domenico De Fazio, Noel Díez, Simon Drieschner, Georg S Duesberg, Roman Fasel, Xinliang Feng, Alberto Fina, Stiven Forti, Costas Galiotis, Giovanni Garberoglio, Jorge M García, Jose Antonio Garrido, Marco Gibertini, Armin Gölzhäuser, Julio Gómez, Thomas Greber, Frank Hauke, Adrian Hemmi, Irene Hernandez-Rodriguez, Andreas Hirsch, Stephen A Hodge, Yves Huttel, Peter U Jepsen, Ignacio Jimenez, Ute Kaiser, Tommi Kaplas, HoKwon Kim, Andras Kis, Konstantinos Papagelis, Kostas Kostarelos, Aleksandra Krajewska, Kangho Lee, Changfeng Li, Harri Lipsanen, Andrea Liscio, Martin R Lohe, Annick Loiseau, Lucia Lombardi, Maria Francisca López, Oliver Martin, Cristina Martín, Lidia Martínez, Jose Angel Martin-Gago, José Ignacio Martínez, Nicola Marzari, Álvaro Mayoral, John McManus, Manuela Melucci, Javier Méndez, Cesar Merino, Pablo Merino, Andreas P Meyer, Elisa Miniussi, Vaidotas Miseikis, Neeraj Mishra, Vittorio Morandi, Carmen Munuera, Roberto Muñoz, Hugo Nolan, Luca Ortolani, Anna K Ott, Irene Palacio, Vincenzo Palermo, John Parthenios, Iwona Pasternak, Amalia Patane, Maurizio Prato, Henri Prevost, Vladimir Prudkovskiy, Nicola Pugno, Teófilo Rojo, Antonio Rossi, Pascal Ruffieux, Paolo Samorì, Léonard Schué, Eki Setijadi, Thomas Seyller, Giorgio Speranza, Christoph Stampfer, Ingrid Stenger, Wlodek Strupinski, Yuri Svirko, Simone Taioli, Kenneth B K Teo, Matteo Testi, Flavia Tomarchio, Mauro Tortello, Emanuele Treossi, Andrey Turchanin, Ester Vazquez, Elvira Villaro, Patrick R Whelan, Zhenyuan Xia, Rositza Yakimova, Sheng Yang, G Reza Yazdi, Chanyoung Yim, Duhee Yoon, Xianghui Zhang, Xiaodong Zhuang, Luigi Colombo, Andrea C Ferrari, Mar Garcia-Hernandez. Production and processing of graphene and related materials. 2D Materials 2020, 7 (2) , 022001. https://doi.org/10.1088/2053-1583/ab1e0a
    49. Xiaojian Yang, Mingdi Yan. Removing contaminants from transferred CVD graphene. Nano Research 2020, 13 (3) , 599-610. https://doi.org/10.1007/s12274-020-2671-6
    50. Wencai Ren. Preparation of graphene electrode. 2020, 27-57. https://doi.org/10.1016/B978-0-08-102482-9.00003-4
    51. Umesha Mogera, Giridhar U. Kulkarni. A new twist in graphene research: Twisted graphene. Carbon 2020, 156 , 470-487. https://doi.org/10.1016/j.carbon.2019.09.053
    52. Yanwei He, Hao Tian, Alireza Khanaki, Wenhao Shi, Jason Tran, Zhenjun Cui, Peng Wei, Jianlin Liu. Large-area adlayer-free single-layer h-BN film achieved by controlling intercalation growth. Applied Surface Science 2019, 498 , 143851. https://doi.org/10.1016/j.apsusc.2019.143851
    53. Z Xiao, C Durkan. Size effects in the resistivity of graphene nanoribbons. Nanotechnology 2019, 30 (44) , 445203. https://doi.org/10.1088/1361-6528/ab374c
    54. Xuewen Wang, Yinghui Sun, Kai Liu. Chemical and structural stability of 2D layered materials. 2D Materials 2019, 6 (4) , 042001. https://doi.org/10.1088/2053-1583/ab20d6
    55. Chia-Ming Yang, Tsung-Cheng Chen, Yu-Cheng Yang, M. Meyyappan. Annealing effect on UV-illuminated recovery in gas response of graphene-based NO 2 sensors. RSC Advances 2019, 9 (40) , 23343-23351. https://doi.org/10.1039/C9RA01295H
    56. Lai‐Peng Ma, Wencai Ren, Hui‐Ming Cheng. Transfer Methods of Graphene from Metal Substrates: A Review. Small Methods 2019, 3 (7) https://doi.org/10.1002/smtd.201900049
    57. Zhuocong Xiao, Qifang Wan, Colm Durkan. Cleaning Transferred Graphene for Optimization of Device Performance. Advanced Materials Interfaces 2019, 6 (11) https://doi.org/10.1002/admi.201801794
    58. Bananakere Nanjegowda Chandrashekar, Nianduo Cai, Louis W.Y. Liu, Ankanahalli Shankaregowda Smitha, Zefei Wu, Pengcheng Chen, Run Shi, Weijun Wang, Jingwei Wang, Chunmei Tang, Chun Cheng. Oil boundary approach for sublimation enabled camphor mediated graphene transfer. Journal of Colloid and Interface Science 2019, 546 , 11-19. https://doi.org/10.1016/j.jcis.2019.03.053
    59. Jierui Liang, Ke Xu, Blaec Toncini, Brian Bersch, Bhakti Jariwala, Yu‐Chuan Lin, Joshua Robinson, Susan K. Fullerton‐Shirey. Impact of Post‐Lithography Polymer Residue on the Electrical Characteristics of MoS 2 and WSe 2 Field Effect Transistors. Advanced Materials Interfaces 2019, 6 (3) https://doi.org/10.1002/admi.201801321
    60. Angelo Armano, Gianpiero Buscarino, Marco Cannas, Franco Mario Gelardi, Filippo Giannazzo, Emanuela Schiliró, Raffaella Lo Nigro, Simonpietro Agnello. Graphene‐SiO 2 Interaction from Composites to Doping. physica status solidi (a) 2019, 216 (3) https://doi.org/10.1002/pssa.201800540
    61. Liudmyla Prozorovska, Piran R. Kidambi. State‐of‐the‐Art and Future Prospects for Atomically Thin Membranes from 2D Materials. Advanced Materials 2018, 30 (52) https://doi.org/10.1002/adma.201801179
    62. Keren M Freedy, Ashutosh Giri, Brian M Foley, Matthew R Barone, Patrick E Hopkins, Stephen McDonnell. Titanium contacts to graphene: process-induced variability in electronic and thermal transport. Nanotechnology 2018, 29 (14) , 145201. https://doi.org/10.1088/1361-6528/aaaacd
    63. Jin-Wook Shin, Jun-Han Han, Hyunsu Cho, Jaehyun Moon, Byoung-Hwa Kwon, Seungmin Cho, Taeshik Yoon, Taek-Soo Kim, Maki Suemitsu, Jeong-Ik Lee, Nam Sung Cho. Display process compatible accurate graphene patterning for OLED applications. 2D Materials 2018, 5 (1) , 014003. https://doi.org/10.1088/2053-1583/aa9cae
    64. A. Armano, G. Buscarino, M. Cannas, F.M. Gelardi, F. Giannazzo, E. Schilirò, S. Agnello. Monolayer graphene doping and strain dynamics induced by thermal treatments in controlled atmosphere. Carbon 2018, 127 , 270-279. https://doi.org/10.1016/j.carbon.2017.11.008
    65. Dong Wang, Jing Ning, Jincheng Zhang, Lixin Guo, Yue Hao. Investigation of dielectric substrates on electrical and optical performance of wafer-scale graphene using non-contact methods. Semiconductor Science and Technology 2017, 32 (10) , 105001. https://doi.org/10.1088/1361-6641/aa832f
    66. Ahmad Ehteshamul Islam, Dmitri N. Zakharov, Jennifer Carpena-Nuňez, Ming-Siao Hsiao, Lawrence F. Drummy, Eric A. Stach, Benji Maruyama. Atomic level cleaning of poly-methyl-methacrylate residues from the graphene surface using radiolized water at high temperatures. Applied Physics Letters 2017, 111 (10) https://doi.org/10.1063/1.5001479
    67. Mukesh Tripathi, Andreas Mittelberger, Kimmo Mustonen, Clemens Mangler, Jani Kotakoski, Jannik C. Meyer, Toma Susi. Cleaning graphene: Comparing heat treatments in air and in vacuum. physica status solidi (RRL) – Rapid Research Letters 2017, 11 (8) https://doi.org/10.1002/pssr.201700124
    68. Filippo Giubileo, Antonio Di Bartolomeo. The role of contact resistance in graphene field-effect devices. Progress in Surface Science 2017, 92 (3) , 143-175. https://doi.org/10.1016/j.progsurf.2017.05.002
    69. Wei Wei, Caixia Meng, Qiang Fu, Xinhe Bao. Intercalation-etching of graphene on Pt(111) in H2 and O2 observed by in-situ low energy electron microscopy. Science China Chemistry 2017, 60 (5) , 656-662. https://doi.org/10.1007/s11426-017-9020-2
    70. Zhikun Zhang, Jinhong Du, Dingdong Zhang, Hengda Sun, Lichang Yin, Laipeng Ma, Jiangshan Chen, Dongge Ma, Hui-Ming Cheng, Wencai Ren. Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nature Communications 2017, 8 (1) https://doi.org/10.1038/ncomms14560
    71. Jianbo Sun, Harry O Finklea, Yuxin Liu. Characterization and electrolytic cleaning of poly(methyl methacrylate) residues on transferred chemical vapor deposited graphene. Nanotechnology 2017, 28 (12) , 125703. https://doi.org/10.1088/1361-6528/aa5e55
    72. Yuanfang Yu, Zhenzhen Li, Wenhui Wang, Xitao Guo, Jie Jiang, Haiyan Nan, Zhenhua Ni. Investigation of multilayer domains in large-scale CVD monolayer graphene by optical imaging. Journal of Semiconductors 2017, 38 (3) , 033003. https://doi.org/10.1088/1674-4926/38/3/033003
    73. Lianqiao Yang, Zhangfu Chen, Wei Feng, Mengjie Wei, Guo Chen, Yanqiong Zheng, Zixing Wang, Jianhua Zhang, Bin Wei. Improved performance of graphene by effectively removing surface poly-methyl methacrylate residual during the process of wet-etching transfer. Molecular Crystals and Liquid Crystals 2017, 644 (1) , 26-35. https://doi.org/10.1080/15421406.2016.1277323
    74. Shyamprasad N. Raja, David Osenberg, Kyoungjun Choi, Hyung Gyu Park, Dimos Poulikakos. Annealing and polycrystallinity effects on the thermal conductivity of supported CVD graphene monolayers. Nanoscale 2017, 9 (40) , 15515-15524. https://doi.org/10.1039/C7NR05346K
    75. Gaurav Goyal, Yong Bok Lee, Armin Darvish, Chi Won Ahn, Min Jun Kim. Hydrophilic and size-controlled graphene nanopores for protein detection. Nanotechnology 2016, 27 (49) , 495301. https://doi.org/10.1088/0957-4484/27/49/495301
    76. Dikai Xu, Xuegong Yu, Lifei Yang, Deren Yang. Interface engineering of Graphene-Silicon heterojunction solar cells. Superlattices and Microstructures 2016, 99 , 3-12. https://doi.org/10.1016/j.spmi.2016.03.022
    77. Ki Seok Kim, Hyo-Ki Hong, Hanearl Jung, Il-Kwon Oh, Zonghoon Lee, Hyungjun Kim, Geun Young Yeom, Kyong Nam Kim. Surface treatment process applicable to next generation graphene-based electronics. Carbon 2016, 104 , 119-124. https://doi.org/10.1016/j.carbon.2016.03.054
    78. Tuna Demirbaş, Mehmet Z. Baykara. Nanoscale tribology of graphene grown by chemical vapor deposition and transferred onto silicon oxide substrates. Journal of Materials Research 2016, 31 (13) , 1914-1923. https://doi.org/10.1557/jmr.2016.11
    79. D. Ferrah, O. Renault, C. Petit‐Etienne, H. Okuno, C. Berne, V. Bouchiat, G. Cunge. XPS investigations of graphene surface cleaning using H 2 ‐ and Cl 2 ‐based inductively coupled plasma. Surface and Interface Analysis 2016, 48 (7) , 451-455. https://doi.org/10.1002/sia.6010
    80. Joonkyu Park, Dong-Whan Kim, Ju Yeon Woo, Jun Lee, Chang-Soo Han. De-doping of graphene by Joule heating with water. Journal of Physics D: Applied Physics 2015, 48 (45) , 455102. https://doi.org/10.1088/0022-3727/48/45/455102
    81. Hollie V. Patten, Matěj Velický, Robert A.W. Dryfe. Electrochemistry of Graphene. 2015, 121-162. https://doi.org/10.1002/9783527697489.ch4
    82. G. Cunge, D. Ferrah, C. Petit-Etienne, A. Davydova, H. Okuno, D. Kalita, V. Bouchiat, O. Renault. Dry efficient cleaning of poly-methyl-methacrylate residues from graphene with high-density H2 and H2-N2 plasmas. Journal of Applied Physics 2015, 118 (12) https://doi.org/10.1063/1.4931370
    83. D. L. Mafra, T. Ming, J. Kong. Facile graphene transfer directly to target substrates with a reusable metal catalyst. Nanoscale 2015, 7 (36) , 14807-14812. https://doi.org/10.1039/C5NR03892H
    84. Woosuk Choi, Young-Soo Seo, Jun-Young Park, K. B. Kim, Jongwan Jung, Naesung Lee, Yongho Seo, Suklyun Hong. Effect of Annealing in Ar/H 2 Environment on Chemical Vapor Deposition-Grown Graphene Transferred With Poly (Methyl Methacrylate). IEEE Transactions on Nanotechnology 2015, 14 (1) , 70-74. https://doi.org/10.1109/TNANO.2014.2365208
    85. Robert M. Wallace. In-situ characterization of 2D materials for beyond CMOS applications. 2014, 614-615. https://doi.org/10.1109/NANO.2014.6967958
    86. Robert M. Wallace. Correlating interface chemistry and device behavior. 2014, 189-190. https://doi.org/10.1109/DRC.2014.6872361
    87. Grzegorz Lupina, Julia Kitzmann, Mindaugas Lukosius, Jarek Dabrowski, Andre Wolff, Wolfgang Mehr. Deposition of thin silicon layers on transferred large area graphene. Applied Physics Letters 2013, 103 (26) https://doi.org/10.1063/1.4858235

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2013, 117, 44, 23000–23008
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp408429v
    Published October 10, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    4453

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.