Rapid Selective Etching of PMMA Residues from Transferred Graphene by Carbon DioxideClick to copy article linkArticle link copied!
- Cheng Gong
- Herman Carlo Floresca
- David Hinojos
- Stephen McDonnell
- Xiaoye Qin
- Yufeng Hao
- Srikar Jandhyala
- Greg Mordi
- Jiyoung Kim
- Luigi Colombo
- Rodney S. Ruoff
- Moon J. Kim
- Kyeongjae Cho
- Robert M. Wallace
- Yves J. Chabal
Abstract
During chemical-vapor-deposited graphene transfer onto target substrates, a polymer film coating is necessary to provide a mechanical support. However, the remaining polymer residues after organic solvent rinsing cannot be effectively removed by the empirical thermal annealing in vacuum or forming gas. Little progress has been achieved in the past years, for little is known about the chemical evolution of the polymer macromolecules and their interaction with the environment. Through in situ Raman and infrared spectroscopy studies of PMMA transferred graphene annealed in nitrogen, two main processes are uncovered involving the polymer dehydrogenation below 200 °C and a subsequent depolymerization above 200 °C. Polymeric carbons over the monolayer graphitic carbon are found to constitute a fundamental bottleneck for a thorough etching of PMMA residues. The dehydrogenated polymeric chains consist of active C═C bonding sites that are readily attacked by oxidative gases. The combination of Raman spectroscopy, X-ray photoemission spectroscopy, and transmission electron microscopy reveals the largely improved carbon removal by annealing in oxidative atmospheres. CO2 outperforms other oxidative gases (e.g., NO2, O2) because of its moderate oxidative strength to remove polymeric carbons efficiently at 500 °C in a few minutes while preserving the underlying graphene lattice. The strategy and mechanism described here open the way for a significantly improved oxidative cleaning of transferred graphene sheets, which may require optimization tailored to specific applications.
Cited By
This article is cited by 87 publications.
- Mohang Cai, Jianfang Yang, Xueyi Lu, Xia Lu. Layer-by-Layer Self-Assembly Strategies of Atomically Thin Two-Dimensional Nanomaterials: Principles, Methods, and Functional Applications. ACS Applied Nano Materials 2024, 7
(24)
, 27940-27959. https://doi.org/10.1021/acsanm.3c06286
- Kangning Zhao, Wan-Chi Lee, Mojtaba Rezaei, Heng-Yu Chi, Shaoxian Li, Luis Francisco Villalobos, Kuang-Jung Hsu, Yuyang Zhang, Feng-Chao Wang, Kumar Varoon Agrawal. Tuning Pore Size in Graphene in the Angstrom Regime for Highly Selective Ion–Ion Separation. ACS Nano 2024, 18
(7)
, 5571-5580. https://doi.org/10.1021/acsnano.3c11068
- Jing-jiang Yu, Atsushi Muto, James Kilcrease, Takeshi Sunaoshi, Sadatsugu Nozaki, Alexander Rzhevskii, Sara Chahid, Rajendra Dulal, Serafim Teknowijoyo, Armen Gulian. Surface Functionalization of Substrate-Transferred Graphene for Electronic Applications. ACS Applied Nano Materials 2023, 6
(9)
, 7629-7636. https://doi.org/10.1021/acsanm.3c00783
- Barry Brennan, Alba Centeno, Amaia Zurutuza, Paul Mack, Keith R. Paton, Andrew J. Pollard. Gas Cluster Ion Beam Cleaning of CVD-Grown Graphene for Use in Electronic Device Fabrication. ACS Applied Nano Materials 2021, 4
(5)
, 5187-5197. https://doi.org/10.1021/acsanm.1c00519
- G. K. Rolim, G. V. Soares, H. I. Boudinov, C. Radtke. Chemical Doping and Etching of Graphene: Tuning the Effects of NO Annealing. The Journal of Physical Chemistry C 2019, 123
(43)
, 26577-26582. https://doi.org/10.1021/acs.jpcc.9b02214
- Pavan Chaturvedi, Ivan V. Vlassiouk, David A. Cullen, Adam J. Rondinone, Nickolay V. Lavrik, Sergei N. Smirnov. Ionic Conductance through Graphene: Assessing Its Applicability as a Proton Selective Membrane. ACS Nano 2019, 13
(10)
, 12109-12119. https://doi.org/10.1021/acsnano.9b06505
- Djawhar Ferrah, Olivier Renault, Daniil Marinov, Javier Arias-Zapata, Nicolas Chevalier, Denis Mariolle, Denis Rouchon, Hanako Okuno, Vincent Bouchiat, Gilles Cunge. CF4/H2 Plasma Cleaning of Graphene Regenerates Electronic Properties of the Pristine Material. ACS Applied Nano Materials 2019, 2
(3)
, 1356-1366. https://doi.org/10.1021/acsanm.8b02249
- Ruiheng Li, Zongyi Li, Elias Pambou, Philipp Gutfreund, Thomas A. Waigh, John R. P. Webster, and Jian R. Lu . Determination of PMMA Residues on a Chemical-Vapor-Deposited Monolayer of Graphene by Neutron Reflection and Atomic Force Microscopy. Langmuir 2018, 34
(5)
, 1827-1833. https://doi.org/10.1021/acs.langmuir.7b03117
- Hui Zhu, Qingxiao Wang, Lanxia Cheng, Rafik Addou, Jiyoung Kim, Moon J. Kim, and Robert M. Wallace . Defects and Surface Structural Stability of MoTe2 Under Vacuum Annealing. ACS Nano 2017, 11
(11)
, 11005-11014. https://doi.org/10.1021/acsnano.7b04984
- Ke Xu, Hao Lu, Erich W. Kinder, Alan Seabaugh, and Susan K. Fullerton-Shirey . Monolayer Solid-State Electrolyte for Electric Double Layer Gating of Graphene Field-Effect Transistors. ACS Nano 2017, 11
(6)
, 5453-5464. https://doi.org/10.1021/acsnano.6b08505
- Xiaohan Wang, Andrei Dolocan, Harry Chou, Li Tao, Andrew Dick, Deji Akinwande, and C. Grant Willson . Direct Observation of Poly(Methyl Methacrylate) Removal from a Graphene Surface. Chemistry of Materials 2017, 29
(5)
, 2033-2039. https://doi.org/10.1021/acs.chemmater.6b03875
- Aozhen Xie, Ningning Xuan, Kun Ba, and Zhengzong Sun . Pristine Graphene Electrode in Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces 2017, 9
(5)
, 4643-4648. https://doi.org/10.1021/acsami.6b14732
- Hoon Hahn Yoon, Sungchul Jung, Gahyun Choi, Junhyung Kim, Youngeun Jeon, Yong Soo Kim, Hu Young Jeong, Kwanpyo Kim, Soon-Yong Kwon, and Kibog Park . Strong Fermi-Level Pinning at Metal/n-Si(001) Interface Ensured by Forming an Intact Schottky Contact with a Graphene Insertion Layer. Nano Letters 2017, 17
(1)
, 44-49. https://doi.org/10.1021/acs.nanolett.6b03137
- Brett Barwick and Ahmed H. Zewail . Photonics and Plasmonics in 4D Ultrafast Electron Microscopy. ACS Photonics 2015, 2
(10)
, 1391-1402. https://doi.org/10.1021/acsphotonics.5b00427
- Bonnie J. Tyler, Barry Brennan, Helena Stec, Trupti Patel, Ling Hao, Ian S. Gilmore, and Andrew J. Pollard . Removal of Organic Contamination from Graphene with a Controllable Mass-Selected Argon Gas Cluster Ion Beam. The Journal of Physical Chemistry C 2015, 119
(31)
, 17836-17841. https://doi.org/10.1021/acs.jpcc.5b03144
- Wei Sun Leong, Chang Tai Nai, and John T. L. Thong . What Does Annealing Do to Metal–Graphene Contacts?. Nano Letters 2014, 14
(7)
, 3840-3847. https://doi.org/10.1021/nl500999r
- Cheng Gong, Stephen McDonnell, Xiaoye Qin, Angelica Azcatl, Hong Dong, Yves J. Chabal, Kyeongjae Cho, and Robert M. Wallace . Realistic Metal–Graphene Contact Structures. ACS Nano 2014, 8
(1)
, 642-649. https://doi.org/10.1021/nn405249n
- Cheng Gong, Chunming Huang, Justin Miller, Lanxia Cheng, Yufeng Hao, David Cobden, Jiyoung Kim, Rodney S. Ruoff, Robert M. Wallace, Kyeongjae Cho, Xiaodong Xu, and Yves J. Chabal . Metal Contacts on Physical Vapor Deposited Monolayer MoS2. ACS Nano 2013, 7
(12)
, 11350-11357. https://doi.org/10.1021/nn4052138
- Kshipra Sharma, Uriel López-Sánchez, Hugues Nury, Guy Schoehn, Claudine Darnault, Cécile Breyton, Camille Petit-Etienne, Céline Vergnaud, Wai Li Ling, Gilles Cunge, Hanako Okuno. Precision defect integrated graphene as reliable support membrane for high-resolution cryo-transmission electron microscopy. Carbon 2024, 230 , 119625. https://doi.org/10.1016/j.carbon.2024.119625
- Jared Keith Averitt, Sajedeh Pourianejad, Olubunmi O. Ayodele, Kirby Schmidt, Anthony Trofe, Joseph Starobin, Tetyana Ignatova. Efficient high-throughput method utilizing neural network potentials to calculate interaction energies, validated by clean transfer experiment of CVD graphene with polymer mixtures. Carbon 2024, 229 , 119336. https://doi.org/10.1016/j.carbon.2024.119336
- Yun Seong Cho, Joohoon Kang. Two-dimensional materials as catalysts, interfaces, and electrodes for an efficient hydrogen evolution reaction. Nanoscale 2024, 16
(8)
, 3936-3950. https://doi.org/10.1039/D4NR00147H
- Kyoichi Suzuki, Ryo Ichiki, Satoshi Kitazaki, Yui Ogawa. Quantum Hall effect in graphene transferred by water-soluble transfer sheet and home-use laminator. Japanese Journal of Applied Physics 2023, 62
(11)
, 110903. https://doi.org/10.35848/1347-4065/ad0747
- E. A. Dronina, M. M. Mikhalik, N. G. Kovalchuk, K. A. Niherysh, A. V. Felsharuk, S. L. Prischepa, I. V. Komissarov. Raman Spectroscopy Study of the Charge Carrier Concentration and Mechanical Stresses in Graphene Transferred Employing Different Frames. Journal of Applied Spectroscopy 2023, 90
(4)
, 775-782. https://doi.org/10.1007/s10812-023-01595-7
- Xiao Guo, Yongsong Wang, Siwen You, Dingbang Yang, Guiping Jia, Fei Song, Weidong Dou, Han Huang. Substrate effect on phonon in graphene layers. Carbon Letters 2023, 33
(5)
, 1359-1365. https://doi.org/10.1007/s42823-022-00400-3
- Yuzuki Ono, Hojun Im. Thermal annealing effects on graphene/n-Si Schottky junction solar cell: removal of PMMA residues. Japanese Journal of Applied Physics 2023, 62
(4)
, 045002. https://doi.org/10.35848/1347-4065/acca57
- Dong Hoon Shin, Hakseong Kim, Sung Hyun Kim, Hyeonsik Cheong, Peter G. Steeneken, Chirlmin Joo, Sang Wook Lee. Graphene nano-electromechanical mass sensor with high resolution at room temperature. iScience 2023, 26
(2)
, 105958. https://doi.org/10.1016/j.isci.2023.105958
- Jorge Torres Quiñones, Minhee Yun. Graphene transfer implementations to micro and nano electronic. Microelectronic Engineering 2023, 269 , 111915. https://doi.org/10.1016/j.mee.2022.111915
- Tianbo Duan, Hu Li, Raffaello Papadakis, Klaus Leifer. Towards ballistic transport CVD graphene by controlled removal of polymer residues. Nanotechnology 2022, 33
(49)
, 495704. https://doi.org/10.1088/1361-6528/ac8d9b
- Pavan Chaturvedi, Nicole K. Moehring, Peifu Cheng, Ivan Vlassiouk, Michael S. H. Boutilier, Piran R. Kidambi. Deconstructing proton transport through atomically thin monolayer CVD graphene membranes. Journal of Materials Chemistry A 2022, 10
(37)
, 19797-19810. https://doi.org/10.1039/D2TA01737G
- Aisha Okmi, Xuemei Xiao, Yue Zhang, Rui He, Olugbenga Olunloyo, Sumner B. Harris, Tara Jabegu, Ningxin Li, Diren Maraba, Yasmeen Sherif, Ondrej Dyck, Ivan Vlassiouk, Kai Xiao, Pei Dong, Baoxing Xu, Sidong Lei. Discovery of Graphene‐Water Membrane Structure: Toward High‐Quality Graphene Process. Advanced Science 2022, 9
(26)
https://doi.org/10.1002/advs.202201336
- Ruijie Zhang, Menghan Li, Lin Li, Yixuan Fan, Qing Zhang, Gui Yu, Dechao Geng, Wenping Hu. The way towards for ultraflat and superclean graphene. Nano Select 2022, 3
(3)
, 485-504. https://doi.org/10.1002/nano.202100217
- Chunmeng Liu, Jiaqi Zhang, Sankar Ganesh Ramaraj, Xiaobin Zhang, Manoharan Muruganathan, Hiroshi Mizuta, Yoshifumi Oshima. Current effect on suspended graphene nanoribbon studied using in–situ transmission electron microscopy. Applied Surface Science 2022, 573 , 151563. https://doi.org/10.1016/j.apsusc.2021.151563
- Yanjing Gao, Jielin Chen, Guorui Chen, Chunhai Fan, Xiaoguo Liu. Recent Progress in the Transfer of Graphene Films and Nanostructures. Small Methods 2021, 5
(12)
https://doi.org/10.1002/smtd.202100771
- Omer Refet Caylan, Goknur Cambaz Buke. Low-temperature synthesis and growth model of thin Mo2C crystals on indium. Scientific Reports 2021, 11
(1)
https://doi.org/10.1038/s41598-021-87660-7
- N. Medvedev, I. Milov, B. Ziaja. Structural stability and electron‐phonon coupling in two‐dimensional carbon allotropes at high electronic and atomic temperatures. Carbon Trends 2021, 5 , 100121. https://doi.org/10.1016/j.cartre.2021.100121
- Chao-yi Zhu, Song-ang Peng, Xiao-rui Zhang, Yao Yao, Xin-nan Huang, Yun-peng Yan, Da-yong Zhang, Jing-yuan Shi, Zhi Jin. Reducing metal/graphene contact resistance via N, N-dimethylacetamide-assisted clean fabrication process. Nanotechnology 2021, 32
(31)
, 315201. https://doi.org/10.1088/1361-6528/abfa56
- Ti Xie, Qin Wang, Robert M. Wallace, Cheng Gong. Understanding and optimization of graphene gas sensors. Applied Physics Letters 2021, 119
(1)
, 013104. https://doi.org/10.1063/5.0057066
- Adam J Watson, Wenbo Lu, Marcos H D Guimarães, Meike Stöhr. Transfer of large-scale two-dimensional semiconductors: challenges and developments. 2D Materials 2021, 8
(3)
, 032001. https://doi.org/10.1088/2053-1583/abf234
- Yantao Zhang, Yubin Yuan, Guiming Cao, Chuanyu Han, Xin Li, Xiaoli Wang, Guohe Zhang, Li Geng, Weihua Liu. A fresh-bias photoresponse of graphene field-effect transistor: An electrical tunable fast dipole moment generation. Carbon 2021, 173 , 322-328. https://doi.org/10.1016/j.carbon.2020.11.022
- Bozhong Zhuang, Shiyun Li, Siyang Li, Jun Yin. Ways to eliminate PMMA residues on graphene —— superclean graphene. Carbon 2021, 173 , 609-636. https://doi.org/10.1016/j.carbon.2020.11.047
- Luis Francisco Villalobos, Shiqi Huang, Mostapha Dakhchoune, Guangwei He, Wan-Chi Lee, Kumar Varoon Agrawal. Polybenzimidazole copolymer derived lacey carbon film for graphene transfer and contamination removal strategies for imaging graphene nanopores. Carbon 2021, 173 , 980-988. https://doi.org/10.1016/j.carbon.2020.11.068
- Shiqi Huang, Shaoxian Li, Luis Francisco Villalobos, Mostapha Dakhchoune, Marina Micari, Deepu J. Babu, Mohammad Tohidi Vahdat, Mounir Mensi, Emad Oveisi, Kumar Varoon Agrawal. Millisecond lattice gasification for high-density CO
2
- and O
2
-sieving nanopores in single-layer graphene. Science Advances 2021, 7
(9)
https://doi.org/10.1126/sciadv.abf0116
- Peifu Cheng, Nicole K. Moehring, Juan Carlos Idrobo, Ilia N. Ivanov, Piran R. Kidambi. Scalable synthesis of nanoporous atomically thin graphene membranes for dialysis and molecular separations
via
facile isopropanol-assisted hot lamination. Nanoscale 2021, 13
(5)
, 2825-2837. https://doi.org/10.1039/D0NR07384A
- Yeonhoo Kim, Taehoon Kim, Jinwoo Lee, Yong Seok Choi, Joonhee Moon, Seo Yun Park, Tae Hyung Lee, Hoon Kee Park, Sol A Lee, Min Sang Kwon, Hyung‐Gi Byun, Jong‐Heun Lee, Myoung‐Gyu Lee, Byung Hee Hong, Ho Won Jang. Tailored Graphene Micropatterns by Wafer‐Scale Direct Transfer for Flexible Chemical Sensor Platform. Advanced Materials 2021, 33
(2)
https://doi.org/10.1002/adma.202004827
- A. Chaves, J. G. Azadani, Hussain Alsalman, D. R. da Costa, R. Frisenda, A. J. Chaves, Seung Hyun Song, Y. D. Kim, Daowei He, Jiadong Zhou, A. Castellanos-Gomez, F. M. Peeters, Zheng Liu, C. L. Hinkle, Sang-Hyun Oh, Peide D. Ye, Steven J. Koester, Young Hee Lee, Ph. Avouris, Xinran Wang, Tony Low. Bandgap engineering of two-dimensional semiconductor materials. npj 2D Materials and Applications 2020, 4
(1)
https://doi.org/10.1038/s41699-020-00162-4
- Aisha Okmi, Ningxin Li, Guanhui Gao, Yelyzaveta Rublova, Tara Jabegu, Diren Maraba, Sidong Lei. How surface tension matters in polymer-free graphene transfer. Oxford Open Materials Science 2020, 1
(1)
https://doi.org/10.1093/oxfmat/itab007
- Tuqeer Nasir, Bum Jun Kim, Muhammad Hassnain, Sang Hoon Lee, Byung Joo Jeong, Ik Jun Choi, Youngho Kim, Hak Ki Yu, Jae-Young Choi. Plasticized Polystyrene by Addition of -Diene Based Molecules for Defect-Less CVD Graphene Transfer. Polymers 2020, 12
(8)
, 1839. https://doi.org/10.3390/polym12081839
- Claudia Backes, Amr M Abdelkader, Concepción Alonso, Amandine Andrieux-Ledier, Raul Arenal, Jon Azpeitia, Nilanthy Balakrishnan, Luca Banszerus, Julien Barjon, Ruben Bartali, Sebastiano Bellani, Claire Berger, Reinhard Berger, M M Bernal Ortega, Carlo Bernard, Peter H Beton, André Beyer, Alberto Bianco, Peter Bøggild, Francesco Bonaccorso, Gabriela Borin Barin, Cristina Botas, Rebeca A Bueno, Daniel Carriazo, Andres Castellanos-Gomez, Meganne Christian, Artur Ciesielski, Tymoteusz Ciuk, Matthew T Cole, Jonathan Coleman, Camilla Coletti, Luigi Crema, Huanyao Cun, Daniela Dasler, Domenico De Fazio, Noel Díez, Simon Drieschner, Georg S Duesberg, Roman Fasel, Xinliang Feng, Alberto Fina, Stiven Forti, Costas Galiotis, Giovanni Garberoglio, Jorge M García, Jose Antonio Garrido, Marco Gibertini, Armin Gölzhäuser, Julio Gómez, Thomas Greber, Frank Hauke, Adrian Hemmi, Irene Hernandez-Rodriguez, Andreas Hirsch, Stephen A Hodge, Yves Huttel, Peter U Jepsen, Ignacio Jimenez, Ute Kaiser, Tommi Kaplas, HoKwon Kim, Andras Kis, Konstantinos Papagelis, Kostas Kostarelos, Aleksandra Krajewska, Kangho Lee, Changfeng Li, Harri Lipsanen, Andrea Liscio, Martin R Lohe, Annick Loiseau, Lucia Lombardi, Maria Francisca López, Oliver Martin, Cristina Martín, Lidia Martínez, Jose Angel Martin-Gago, José Ignacio Martínez, Nicola Marzari, Álvaro Mayoral, John McManus, Manuela Melucci, Javier Méndez, Cesar Merino, Pablo Merino, Andreas P Meyer, Elisa Miniussi, Vaidotas Miseikis, Neeraj Mishra, Vittorio Morandi, Carmen Munuera, Roberto Muñoz, Hugo Nolan, Luca Ortolani, Anna K Ott, Irene Palacio, Vincenzo Palermo, John Parthenios, Iwona Pasternak, Amalia Patane, Maurizio Prato, Henri Prevost, Vladimir Prudkovskiy, Nicola Pugno, Teófilo Rojo, Antonio Rossi, Pascal Ruffieux, Paolo Samorì, Léonard Schué, Eki Setijadi, Thomas Seyller, Giorgio Speranza, Christoph Stampfer, Ingrid Stenger, Wlodek Strupinski, Yuri Svirko, Simone Taioli, Kenneth B K Teo, Matteo Testi, Flavia Tomarchio, Mauro Tortello, Emanuele Treossi, Andrey Turchanin, Ester Vazquez, Elvira Villaro, Patrick R Whelan, Zhenyuan Xia, Rositza Yakimova, Sheng Yang, G Reza Yazdi, Chanyoung Yim, Duhee Yoon, Xianghui Zhang, Xiaodong Zhuang, Luigi Colombo, Andrea C Ferrari, Mar Garcia-Hernandez. Production and processing of graphene and related materials. 2D Materials 2020, 7
(2)
, 022001. https://doi.org/10.1088/2053-1583/ab1e0a
- Xiaojian Yang, Mingdi Yan. Removing contaminants from transferred CVD graphene. Nano Research 2020, 13
(3)
, 599-610. https://doi.org/10.1007/s12274-020-2671-6
- Wencai Ren. Preparation of graphene electrode. 2020, 27-57. https://doi.org/10.1016/B978-0-08-102482-9.00003-4
- Umesha Mogera, Giridhar U. Kulkarni. A new twist in graphene research: Twisted graphene. Carbon 2020, 156 , 470-487. https://doi.org/10.1016/j.carbon.2019.09.053
- Yanwei He, Hao Tian, Alireza Khanaki, Wenhao Shi, Jason Tran, Zhenjun Cui, Peng Wei, Jianlin Liu. Large-area adlayer-free single-layer h-BN film achieved by controlling intercalation growth. Applied Surface Science 2019, 498 , 143851. https://doi.org/10.1016/j.apsusc.2019.143851
- Z Xiao, C Durkan. Size effects in the resistivity of graphene nanoribbons. Nanotechnology 2019, 30
(44)
, 445203. https://doi.org/10.1088/1361-6528/ab374c
- Xuewen Wang, Yinghui Sun, Kai Liu. Chemical and structural stability of 2D layered materials. 2D Materials 2019, 6
(4)
, 042001. https://doi.org/10.1088/2053-1583/ab20d6
- Chia-Ming Yang, Tsung-Cheng Chen, Yu-Cheng Yang, M. Meyyappan. Annealing effect on UV-illuminated recovery in gas response of graphene-based NO
2
sensors. RSC Advances 2019, 9
(40)
, 23343-23351. https://doi.org/10.1039/C9RA01295H
- Lai‐Peng Ma, Wencai Ren, Hui‐Ming Cheng. Transfer Methods of Graphene from Metal Substrates: A Review. Small Methods 2019, 3
(7)
https://doi.org/10.1002/smtd.201900049
- Zhuocong Xiao, Qifang Wan, Colm Durkan. Cleaning Transferred Graphene for Optimization of Device Performance. Advanced Materials Interfaces 2019, 6
(11)
https://doi.org/10.1002/admi.201801794
- Bananakere Nanjegowda Chandrashekar, Nianduo Cai, Louis W.Y. Liu, Ankanahalli Shankaregowda Smitha, Zefei Wu, Pengcheng Chen, Run Shi, Weijun Wang, Jingwei Wang, Chunmei Tang, Chun Cheng. Oil boundary approach for sublimation enabled camphor mediated graphene transfer. Journal of Colloid and Interface Science 2019, 546 , 11-19. https://doi.org/10.1016/j.jcis.2019.03.053
- Jierui Liang, Ke Xu, Blaec Toncini, Brian Bersch, Bhakti Jariwala, Yu‐Chuan Lin, Joshua Robinson, Susan K. Fullerton‐Shirey. Impact of Post‐Lithography Polymer Residue on the Electrical Characteristics of MoS
2
and WSe
2
Field Effect Transistors. Advanced Materials Interfaces 2019, 6
(3)
https://doi.org/10.1002/admi.201801321
- Angelo Armano, Gianpiero Buscarino, Marco Cannas, Franco Mario Gelardi, Filippo Giannazzo, Emanuela Schiliró, Raffaella Lo Nigro, Simonpietro Agnello. Graphene‐SiO
2
Interaction from Composites to Doping. physica status solidi (a) 2019, 216
(3)
https://doi.org/10.1002/pssa.201800540
- Liudmyla Prozorovska, Piran R. Kidambi. State‐of‐the‐Art and Future Prospects for Atomically Thin Membranes from 2D Materials. Advanced Materials 2018, 30
(52)
https://doi.org/10.1002/adma.201801179
- Keren M Freedy, Ashutosh Giri, Brian M Foley, Matthew R Barone, Patrick E Hopkins, Stephen McDonnell. Titanium contacts to graphene: process-induced variability in electronic and thermal transport. Nanotechnology 2018, 29
(14)
, 145201. https://doi.org/10.1088/1361-6528/aaaacd
- Jin-Wook Shin, Jun-Han Han, Hyunsu Cho, Jaehyun Moon, Byoung-Hwa Kwon, Seungmin Cho, Taeshik Yoon, Taek-Soo Kim, Maki Suemitsu, Jeong-Ik Lee, Nam Sung Cho. Display process compatible accurate graphene patterning for OLED applications. 2D Materials 2018, 5
(1)
, 014003. https://doi.org/10.1088/2053-1583/aa9cae
- A. Armano, G. Buscarino, M. Cannas, F.M. Gelardi, F. Giannazzo, E. Schilirò, S. Agnello. Monolayer graphene doping and strain dynamics induced by thermal treatments in controlled atmosphere. Carbon 2018, 127 , 270-279. https://doi.org/10.1016/j.carbon.2017.11.008
- Dong Wang, Jing Ning, Jincheng Zhang, Lixin Guo, Yue Hao. Investigation of dielectric substrates on electrical and optical performance of wafer-scale graphene using non-contact methods. Semiconductor Science and Technology 2017, 32
(10)
, 105001. https://doi.org/10.1088/1361-6641/aa832f
- Ahmad Ehteshamul Islam, Dmitri N. Zakharov, Jennifer Carpena-Nuňez, Ming-Siao Hsiao, Lawrence F. Drummy, Eric A. Stach, Benji Maruyama. Atomic level cleaning of poly-methyl-methacrylate residues from the graphene surface using radiolized water at high temperatures. Applied Physics Letters 2017, 111
(10)
https://doi.org/10.1063/1.5001479
- Mukesh Tripathi, Andreas Mittelberger, Kimmo Mustonen, Clemens Mangler, Jani Kotakoski, Jannik C. Meyer, Toma Susi. Cleaning graphene: Comparing heat treatments in air and in vacuum. physica status solidi (RRL) – Rapid Research Letters 2017, 11
(8)
https://doi.org/10.1002/pssr.201700124
- Filippo Giubileo, Antonio Di Bartolomeo. The role of contact resistance in graphene field-effect devices. Progress in Surface Science 2017, 92
(3)
, 143-175. https://doi.org/10.1016/j.progsurf.2017.05.002
- Wei Wei, Caixia Meng, Qiang Fu, Xinhe Bao. Intercalation-etching of graphene on Pt(111) in H2 and O2 observed by in-situ low energy electron microscopy. Science China Chemistry 2017, 60
(5)
, 656-662. https://doi.org/10.1007/s11426-017-9020-2
- Zhikun Zhang, Jinhong Du, Dingdong Zhang, Hengda Sun, Lichang Yin, Laipeng Ma, Jiangshan Chen, Dongge Ma, Hui-Ming Cheng, Wencai Ren. Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nature Communications 2017, 8
(1)
https://doi.org/10.1038/ncomms14560
- Jianbo Sun, Harry O Finklea, Yuxin Liu. Characterization and electrolytic cleaning of poly(methyl methacrylate) residues on transferred chemical vapor deposited graphene. Nanotechnology 2017, 28
(12)
, 125703. https://doi.org/10.1088/1361-6528/aa5e55
- Yuanfang Yu, Zhenzhen Li, Wenhui Wang, Xitao Guo, Jie Jiang, Haiyan Nan, Zhenhua Ni. Investigation of multilayer domains in large-scale CVD monolayer graphene by optical imaging. Journal of Semiconductors 2017, 38
(3)
, 033003. https://doi.org/10.1088/1674-4926/38/3/033003
- Lianqiao Yang, Zhangfu Chen, Wei Feng, Mengjie Wei, Guo Chen, Yanqiong Zheng, Zixing Wang, Jianhua Zhang, Bin Wei. Improved performance of graphene by effectively removing surface poly-methyl methacrylate residual during the process of wet-etching transfer. Molecular Crystals and Liquid Crystals 2017, 644
(1)
, 26-35. https://doi.org/10.1080/15421406.2016.1277323
- Shyamprasad N. Raja, David Osenberg, Kyoungjun Choi, Hyung Gyu Park, Dimos Poulikakos. Annealing and polycrystallinity effects on the thermal conductivity of supported CVD graphene monolayers. Nanoscale 2017, 9
(40)
, 15515-15524. https://doi.org/10.1039/C7NR05346K
- Gaurav Goyal, Yong Bok Lee, Armin Darvish, Chi Won Ahn, Min Jun Kim. Hydrophilic and size-controlled graphene nanopores for protein detection. Nanotechnology 2016, 27
(49)
, 495301. https://doi.org/10.1088/0957-4484/27/49/495301
- Dikai Xu, Xuegong Yu, Lifei Yang, Deren Yang. Interface engineering of Graphene-Silicon heterojunction solar cells. Superlattices and Microstructures 2016, 99 , 3-12. https://doi.org/10.1016/j.spmi.2016.03.022
- Ki Seok Kim, Hyo-Ki Hong, Hanearl Jung, Il-Kwon Oh, Zonghoon Lee, Hyungjun Kim, Geun Young Yeom, Kyong Nam Kim. Surface treatment process applicable to next generation graphene-based electronics. Carbon 2016, 104 , 119-124. https://doi.org/10.1016/j.carbon.2016.03.054
- Tuna Demirbaş, Mehmet Z. Baykara. Nanoscale tribology of graphene grown by chemical vapor deposition and transferred onto silicon oxide substrates. Journal of Materials Research 2016, 31
(13)
, 1914-1923. https://doi.org/10.1557/jmr.2016.11
- D. Ferrah, O. Renault, C. Petit‐Etienne, H. Okuno, C. Berne, V. Bouchiat, G. Cunge. XPS investigations of graphene surface cleaning using H
2
‐ and Cl
2
‐based inductively coupled plasma. Surface and Interface Analysis 2016, 48
(7)
, 451-455. https://doi.org/10.1002/sia.6010
- Joonkyu Park, Dong-Whan Kim, Ju Yeon Woo, Jun Lee, Chang-Soo Han. De-doping of graphene by Joule heating with water. Journal of Physics D: Applied Physics 2015, 48
(45)
, 455102. https://doi.org/10.1088/0022-3727/48/45/455102
- Hollie V. Patten, Matěj Velický, Robert A.W. Dryfe. Electrochemistry of Graphene. 2015, 121-162. https://doi.org/10.1002/9783527697489.ch4
- G. Cunge, D. Ferrah, C. Petit-Etienne, A. Davydova, H. Okuno, D. Kalita, V. Bouchiat, O. Renault. Dry efficient cleaning of poly-methyl-methacrylate residues from graphene with high-density H2 and H2-N2 plasmas. Journal of Applied Physics 2015, 118
(12)
https://doi.org/10.1063/1.4931370
- D. L. Mafra, T. Ming, J. Kong. Facile graphene transfer directly to target substrates with a reusable metal catalyst. Nanoscale 2015, 7
(36)
, 14807-14812. https://doi.org/10.1039/C5NR03892H
- Woosuk Choi, Young-Soo Seo, Jun-Young Park, K. B. Kim, Jongwan Jung, Naesung Lee, Yongho Seo, Suklyun Hong. Effect of Annealing in Ar/H
2
Environment on Chemical Vapor Deposition-Grown Graphene Transferred With Poly (Methyl Methacrylate). IEEE Transactions on Nanotechnology 2015, 14
(1)
, 70-74. https://doi.org/10.1109/TNANO.2014.2365208
- Robert M. Wallace. In-situ characterization of 2D materials for beyond CMOS applications. 2014, 614-615. https://doi.org/10.1109/NANO.2014.6967958
- Robert M. Wallace. Correlating interface chemistry and device behavior. 2014, 189-190. https://doi.org/10.1109/DRC.2014.6872361
- Grzegorz Lupina, Julia Kitzmann, Mindaugas Lukosius, Jarek Dabrowski, Andre Wolff, Wolfgang Mehr. Deposition of thin silicon layers on transferred large area graphene. Applied Physics Letters 2013, 103
(26)
https://doi.org/10.1063/1.4858235
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.