ACS Publications. Most Trusted. Most Cited. Most Read
My Activity

Figure 1Loading Img

CO2 Adsorption in Fe2(dobdc): A Classical Force Field Parameterized from Quantum Mechanical Calculations

View Author Information
Department of Chemistry, Supercomputing Institute, and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
Department of Chemical and Biomolecular Engineering, #Department of Chemistry, University of California, Berkeley, California 94720-1462, United States
§ Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseonggu, 305-710, Korea
SUBATECH, UMR CNRS 6457, IN2P3/EMN Nantes/Université de Nantes, 4 rue Alfred Kastler, BP20722, 44307 Nantes Cédex 3, France
Cite this: J. Phys. Chem. C 2014, 118, 23, 12230–12240
Publication Date (Web):April 8, 2014
Copyright © 2014 American Chemical Society

    Article Views





    Other access options
    Supporting Info (1)»


    Abstract Image

    Carbon dioxide adsorption isotherms have been computed for the metal–organic framework (MOF) Fe2(dobdc), where dobdc4– = 2,5-dioxido-1,4-benzenedicarboxylate. A force field derived from quantum mechanical calculations has been used to model adsorption isotherms within a MOF. Restricted open-shell Møller–Plesset second-order perturbation theory (ROMP2) calculations have been performed to obtain interaction energy curves between a CO2 molecule and a cluster model of Fe2(dobdc). The force field parameters have been optimized to best reproduced these curves and used in Monte Carlo simulations to obtain CO2 adsorption isotherms. The experimental loading of CO2 adsorbed within Fe2(dobdc) was reproduced quite accurately. This parametrization scheme could easily be utilized to predict isotherms of various guests inside this and other similar MOFs not yet synthesized.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.


    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    Jump To

    Clusters and unit cells, equations used to perform the NEMO decomposition, a plot showing the effect of the scaling factor on the dispersion term, and an isosteric heat of adsorption plot of CO2 in Fe2(dobdc). This material is available free of charge via the Internet at

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system:

    Cited By

    This article is cited by 43 publications.

    1. I-Ting Sung, Li-Chiang Lin. In Silico Study of Metal–Organic Frameworks for CO2/CO Separation: Molecular Simulations and Machine Learning. The Journal of Physical Chemistry C 2023, 127 (28) , 13886-13899.
    2. Hongxiao Lv, Liming Fan, Chenxu Jiao, Xiutang Zhang. Heterometallic YbCo–Organic Framework for Efficiently Catalyzing Cycloaddition of CO2 with Epoxides and Knoevenagel Condensation. Crystal Growth & Design 2023, 23 (4) , 2882-2892.
    3. Ting-Hsiang Hung, Zhi-Xun Xu, Dun-Yen Kang, Li-Chiang Lin. Chemistry-Encoded Convolutional Neural Networks for Predicting Gaseous Adsorption in Porous Materials. The Journal of Physical Chemistry C 2022, 126 (5) , 2813-2822.
    4. Amir H. Farmahini, Shreenath Krishnamurthy, Daniel Friedrich, Stefano Brandani, Lev Sarkisov. Performance-Based Screening of Porous Materials for Carbon Capture. Chemical Reviews 2021, 121 (17) , 10666-10741.
    5. Eun Hyun Cho, Li-Chiang Lin. Electrostatic Potential Optimized Molecular Models for Molecular Simulations: CO, CO2, COS, H2S, N2, N2O, and SO2. Journal of Chemical Theory and Computation 2019, 15 (11) , 6323-6332.
    6. Mayank Agrawal, David S. Sholl. Effects of Intrinsic Flexibility on Adsorption Properties of Metal–Organic Frameworks at Dilute and Nondilute Loadings. ACS Applied Materials & Interfaces 2019, 11 (34) , 31060-31068.
    7. Hakan Demir, Samuel J. Stoneburner, WooSeok Jeong, Debmalya Ray, Xuan Zhang, Omar K. Farha, Christopher J. Cramer, J. Ilja Siepmann, Laura Gagliardi. Metal–Organic Frameworks with Metal–Catecholates for O2/N2 Separation. The Journal of Physical Chemistry C 2019, 123 (20) , 12935-12946.
    8. Tim M. Becker, Li-Chiang Lin, David Dubbeldam, Thijs J. H. Vlugt. Polarizable Force Field for CO2 in M-MOF-74 Derived from Quantum Mechanics. The Journal of Physical Chemistry C 2018, 122 (42) , 24488-24498.
    9. Jongwon Choi, Li-Chiang Lin, Jeffrey C. Grossman. Role of Structural Defects in the Water Adsorption Properties of MOF-801. The Journal of Physical Chemistry C 2018, 122 (10) , 5545-5552.
    10. Jiamei Yu, Lin-Hua Xie, Jian-Rong Li, Yuguang Ma, Jorge M. Seminario, and Perla B. Balbuena . CO2 Capture and Separations Using MOFs: Computational and Experimental Studies. Chemical Reviews 2017, 117 (14) , 9674-9754.
    11. Bess Vlaisavljevich, Johanna Huck, Zeric Hulvey, Kyuho Lee, Jarad A. Mason, Jeffrey B. Neaton, Jeffrey R. Long, Craig M. Brown, Dario Alfè, Angelos Michaelides, and Berend Smit . Performance of van der Waals Corrected Functionals for Guest Adsorption in the M2(dobdc) Metal–Organic Frameworks. The Journal of Physical Chemistry A 2017, 121 (21) , 4139-4151.
    12. Tim M. Becker, Jurn Heinen, David Dubbeldam, Li-Chiang Lin, and Thijs J. H. Vlugt . Polarizable Force Fields for CO2 and CH4 Adsorption in M-MOF-74. The Journal of Physical Chemistry C 2017, 121 (8) , 4659-4673.
    13. Ambarish R. Kulkarni and David S. Sholl . Screening of Copper Open Metal Site MOFs for Olefin/Paraffin Separations Using DFT-Derived Force Fields. The Journal of Physical Chemistry C 2016, 120 (40) , 23044-23054.
    14. Joshua Borycz, Davide Tiana, Emmanuel Haldoupis, Jeffrey C. Sung, Omar K. Farha, J. Ilja Siepmann, and Laura Gagliardi . CO2 Adsorption in M-IRMOF-10 (M = Mg, Ca, Fe, Cu, Zn, Ge, Sr, Cd, Sn, Ba). The Journal of Physical Chemistry C 2016, 120 (23) , 12819-12830.
    15. Rocio Mercado, Bess Vlaisavljevich, Li-Chiang Lin, Kyuho Lee, Yongjin Lee, Jarad A. Mason, Dianne J. Xiao, Miguel I. Gonzalez, Matthew T. Kapelewski, Jeffrey B. Neaton, and Berend Smit . Force Field Development from Periodic Density Functional Theory Calculations for Gas Separation Applications Using Metal–Organic Frameworks. The Journal of Physical Chemistry C 2016, 120 (23) , 12590-12604.
    16. Joshua Borycz, Joachim Paier, Pragya Verma, Lucy E. Darago, Dianne J. Xiao, Donald G. Truhlar, Jeffrey R. Long, and Laura Gagliardi . Structural and Electronic Effects on the Properties of Fe2(dobdc) upon Oxidation with N2O. Inorganic Chemistry 2016, 55 (10) , 4924-4934.
    17. M. Althaf Hussain, Yarasi Soujanya, and G. Narahari Sastry . Computational Design of Functionalized Imidazolate Linkers of Zeolitic Imidazolate Frameworks for Enhanced CO2 Adsorption. The Journal of Physical Chemistry C 2015, 119 (41) , 23607-23618.
    18. Ambarish R. Kulkarni and David S. Sholl . DFT-Derived Force Fields for Modeling Hydrocarbon Adsorption in MIL-47(V). Langmuir 2015, 31 (30) , 8453-8468.
    19. Emmanuel Haldoupis, Joshua Borycz, Huiliang Shi, Konstantinos D. Vogiatzis, Peng Bai, Wendy L. Queen, Laura Gagliardi, and J. Ilja Siepmann . Ab Initio Derived Force Fields for Predicting CO2 Adsorption and Accessibility of Metal Sites in the Metal–Organic Frameworks M-MOF-74 (M = Mn, Co, Ni, Cu). The Journal of Physical Chemistry C 2015, 119 (28) , 16058-16071.
    20. Samuel O. Odoh, Christopher J. Cramer, Donald G. Truhlar, and Laura Gagliardi . Quantum-Chemical Characterization of the Properties and Reactivities of Metal–Organic Frameworks. Chemical Reviews 2015, 115 (12) , 6051-6111.
    21. Hyun Seung Koh, Malay Kumar Rana, Antek G. Wong-Foy, and Donald J. Siegel . Predicting Methane Storage in Open-Metal-Site Metal–Organic Frameworks. The Journal of Physical Chemistry C 2015, 119 (24) , 13451-13458.
    22. Konstantinos D. Vogiatzis, Wim Klopper, and Joachim Friedrich . Non-covalent Interactions of CO2 with Functional Groups of Metal–Organic Frameworks from a CCSD(T) Scheme Applicable to Large Systems. Journal of Chemical Theory and Computation 2015, 11 (4) , 1574-1584.
    23. Kyuho Lee, Joshua D. Howe, Li-Chiang Lin, Berend Smit, and Jeffrey B. Neaton . Small-Molecule Adsorption in Open-Site Metal–Organic Frameworks: A Systematic Density Functional Theory Study for Rational Design. Chemistry of Materials 2015, 27 (3) , 668-678.
    24. Brij Mohan, Virender, Ritika Kadiyan, Sandeep Kumar, Vijay Gupta, Badri Parshad, Alexander A. Solovev, Armando J.L. Pombeiro, Krishan Kumar, Pawan Kumar Sharma. Carbon dioxide capturing activities of porous metal-organic frameworks (MOFs). Microporous and Mesoporous Materials 2024, 366 , 112932.
    25. Yageng Zhou, Xiang Zhang, Teng Zhou, Kai Sundmacher. Computational Screening of Metal-Organic Frameworks for Ethylene Purification from Ethane/Ethylene/Acetylene Mixture. Nanomaterials 2022, 12 (5) , 869.
    26. Aisha Asghar, Naseem Iqbal, Tayyaba Noor, Benson M. Kariuki, Luke Kidwell, Timothy L. Easun. Efficient electrochemical synthesis of a manganese-based metal–organic framework for H 2 and CO 2 uptake. Green Chemistry 2021, 23 (3) , 1220-1227.
    27. Projesh Kumar Roy, Kishant Kumar, Foram M. Thakkar, Amar Deep Pathak, K.Ganapathy Ayappa, Prabal K. Maiti. Investigations on 6FDA/BPDA-DAM polymer melt properties and CO2 adsorption using molecular dynamics simulations. Journal of Membrane Science 2020, 613 , 118377.
    28. Jonathan M. Waldrop, Konrad Patkowski. Interactions of CO 2 with cluster models of metal–organic frameworks. Journal of Computational Chemistry 2020, 41 (23) , 2066-2083.
    29. Ülkü Kökçam-Demir, Anna Goldman, Leili Esrafili, Maniya Gharib, Ali Morsali, Oliver Weingart, Christoph Janiak. Coordinatively unsaturated metal sites (open metal sites) in metal–organic frameworks: design and applications. Chemical Society Reviews 2020, 49 (9) , 2751-2798.
    30. Amir H. Farmahini, Daniel Friedrich, Stefano Brandani, Lev Sarkisov. Exploring new sources of efficiency in process-driven materials screening for post-combustion carbon capture. Energy & Environmental Science 2020, 13 (3) , 1018-1037.
    31. Aisha Asghar, Naseem Iqbal, Leena Aftab, Tayyaba Noor, Benson M. Kariuki, Luke Kidwell, Timothy L. Easun. Ethylenediamine loading into a manganese-based metal–organic framework enhances water stability and carbon dioxide uptake of the framework. Royal Society Open Science 2020, 7 (3) , 191934.
    32. Lijun Deng, Nian Zhou, Shan Tang, Ying Li. Improved Dreiding force field for single layer black phosphorus. Physical Chemistry Chemical Physics 2019, 21 (30) , 16804-16817.
    33. Sorout Shalini, Shyamapada Nandi, Anita Justin, Rahul Maity, Ramanathan Vaidhyanathan. Potential of ultramicroporous metal–organic frameworks in CO 2 clean-up. Chemical Communications 2018, 54 (96) , 13472-13490.
    34. Benjawan Kaewruksa, Viwat Vchirawongkwin, Vithaya Ruangpornvisuti. Adsorption of propane and propylene in zeolitic imidazolate framework ZIF-8 pore: periodic SCC-DFTB method. Adsorption 2018, 24 (7) , 691-701.
    35. Mohammad Gholami, Saeid Yeganegi. Molecular simulations of adsorption and separation of ethylene/ethane and propylene/propane mixtures on Ni 2 (dobdc) and Ni 2 (m-dobdc) metal-organic frameworks. Molecular Simulation 2018, 44 (5) , 389-395.
    36. Abhishek Sharma, Runhong Huang, Ateeque Malani, Ravichandar Babarao. Computational materials chemistry for carbon capture using porous materials. Journal of Physics D: Applied Physics 2017, 50 (46) , 463002.
    37. Suwimol Wongsakulphasatch, Worapon Kiatkittipong, Janenipa Saupsor, Jatuphol Chaiwiseshphol, Pakorn Piroonlerkgul, Vudhichai Parasuk, Suttichai Assabumrungrat. Effect of Fe open metal site in metal‐organic frameworks on post‐combustion CO 2 capture performance. Greenhouse Gases: Science and Technology 2017, 7 (2) , 383-394.
    38. Lei Sun, Wei‐Qiao Deng. Recent developments of first‐principles force fields. WIREs Computational Molecular Science 2017, 7 (1)
    39. Guillaume Maurin. Role of Molecular Simulations in the Field of MOFs. 2016, 765-794.
    40. François-Xavier Coudert, Alain H. Fuchs. Computational characterization and prediction of metal–organic framework properties. Coordination Chemistry Reviews 2016, 307 , 211-236.
    41. Reda Boulmène, Muthuramalingam Prakash, Majdi Hochlaf. Microscopic investigations of site and functional selectivity of triazole for CO 2 capture and catalytic applications. Physical Chemistry Chemical Physics 2016, 18 (43) , 29709-29720.
    42. Jason S. Lee, Bess Vlaisavljevich, David K. Britt, Craig M. Brown, Maciej Haranczyk, Jeffrey B. Neaton, Berend Smit, Jeffrey R. Long, Wendy L. Queen. Understanding Small‐Molecule Interactions in Metal–Organic Frameworks: Coupling Experiment with Theory. Advanced Materials 2015, 27 (38) , 5785-5796.
    43. Sungmin Han, Heejin Kim, Jaehoon Kim, Yousung Jung. Modulating the magnetic behavior of Fe( ii )–MOF-74 by the high electron affinity of the guest molecule. Physical Chemistry Chemical Physics 2015, 17 (26) , 16977-16982.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Your Mendeley pairing has expired. Please reconnect