ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Mechanisms of Aggregation of Cysteine Functionalized Gold Nanoparticles

View Author Information
Elettra-Sincrotrone Trieste S.C.p.A., in Area Science Park, Strada Statale 14, km 163.5, Basovizza (Trieste), 34149, Italy
Peter Grünberg Institute (PGI-6) and JARA-FIT, Research Center Jülich, 52425 Jülich, Germany
§ Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, V Holešovikách 2, 18000 Prague 8, Czech Republic
CNR-IOM Laboratorio TASC, Basovizza (Trieste), I-34149, Italy
eChemistry Laboratory, Faculty of Life and Social Sciences, Swinburne University of Technology, Hawthorn, Melbourne, Victoria 3122, Australia
*Tel.: +39 040 375 8458. E-mail: [email protected]
Cite this: J. Phys. Chem. C 2014, 118, 19, 10481–10487
Publication Date (Web):April 22, 2014
https://doi.org/10.1021/jp502401w
Copyright © 2014 American Chemical Society

    Article Views

    5598

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (4 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    The interaction of gold nanoparticles (AuNPs) with cysteine and its derivatives is the basis of a number of bionanotechnologies, and for these, the most important process is aggregation (or antiaggregation), which enables an array of colorimetric detection methods. When AuNPs were functionalized with cysteine, its dimer cystine, or the cysteine-derived tripeptide, glutathione, three different mechanisms of aggregation were observed. Both cysteine and glutathione induced aggregation of AuNPs without further pH modification: the first by interparticle zwitterionic interaction and the second by interparticle hydrogen bonding. Cystine, however, did not induce aggregation, although it dissociated into two cysteinate moieties upon adsorption on the AuNPs, which appear to be chemically identical to cysteinate produced from cysteine adsorption. We show that the difference is due to the lower coverage of cysteinate from cystine and differences in charge states of the adsorbates. On modifying the pH to 1.5, the surface species become cationic (neutral COOH and protonated NH3+), and aggregation of cystine/AuNPs occurs immediately by interparticle hydrogen bonding. Thus, cysteine may induce aggregation by neutral hydrogen bonding or zwitterionic interaction between nanoparticles, but the mechanism depends sensitively on a number of parameters.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Calculation of ionic state mole fractions, and S 2p spectra are presented. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 77 publications.

    1. Regaputra S. Janitra, Wanda Destiarani, Ari Hardianto, Umi Baroroh, Fauzian G. Rohmatulloh, Rustaman, Toto Subroto, Rukiah, Muhammad Yusuf. Multilayer Model of Gold Nanoparticles (AuNPs) and Its Application in the Classical Molecular Dynamics Simulation of Citrate-Capped AuNPs. The Journal of Physical Chemistry B 2023, 127 (32) , 7103-7110. https://doi.org/10.1021/acs.jpcb.3c00771
    2. Xiaolu Zhuo, David Vila-Liarte, Shengyan Wang, Dorleta Jimenez de Aberasturi, Luis M. Liz-Marzán. Coated Chiral Plasmonic Nanorods with Enhanced Structural Stability. Chemistry of Materials 2023, 35 (14) , 5689-5698. https://doi.org/10.1021/acs.chemmater.3c01267
    3. Lu Zhao, Xianzhen Song, Dawei Fan, Xuejing Liu, Huan Wang, Qin Wei, Dan Wu. Highly Efficient Signal On/Off Electrochemiluminescence Gel Aptasensor Based on a Controlled Release Strategy for the Sensitive Detection of Prostate Specific Antigen. Analytical Chemistry 2023, 95 (13) , 5695-5701. https://doi.org/10.1021/acs.analchem.2c05655
    4. Pradip Maiti, Ujjal Saren, Utsav Chakraborty, Tanmoy Singha, Sharmistha Paul, Pabitra Kumar Paul. Comparative and Selective Interaction of Amino Acid d-Cysteine with Colloidal Gold Nanoparticles in the Presence of a Fluorescent Probe in Aqueous Medium. ACS Omega 2022, 7 (33) , 29013-29026. https://doi.org/10.1021/acsomega.2c02725
    5. Yan Wang, Xinping Wang, Tiange Gao, Chenxi Lou, Haifang Wang, Yuanfang Liu, Aoneng Cao. Folding of Flexible Protein Fragments and Design of Nanoparticle-Based Artificial Antibody Targeting Lysozyme. The Journal of Physical Chemistry B 2022, 126 (27) , 5045-5054. https://doi.org/10.1021/acs.jpcb.2c03200
    6. Matthew N. Creyer, Zhicheng Jin, Colman Moore, Wonjun Yim, Jiajing Zhou, Jesse V. Jokerst. Modulation of Gold Nanorod Growth via the Proteolysis of Dithiol Peptides for Enzymatic Biomarker Detection. ACS Applied Materials & Interfaces 2021, 13 (38) , 45236-45243. https://doi.org/10.1021/acsami.1c11620
    7. Siddharth Agrawal, Ryan A. Mysko, Michael M. Nigra, Swomitra K. Mohanty, Michael P. Hoepfner. Plasmonic Photocatalytic Enhancement of L-Cysteine Self-Assembled Gold Nanoparticle Clusters for Fenton Reaction Catalysis. Langmuir 2021, 37 (11) , 3281-3287. https://doi.org/10.1021/acs.langmuir.0c03254
    8. Barbara Pem, Mateja Toma, Valerije Vrček, Ivana Vinković Vrček. Combined NMR and Computational Study of Cysteine Oxidation during Nucleation of Metallic Clusters in Biological Systems. Inorganic Chemistry 2021, 60 (6) , 4144-4161. https://doi.org/10.1021/acs.inorgchem.1c00321
    9. Lili Liu, Duo Song, Biao Jin, Michael A. Sinnwell, Jun Liu, James J. De Yoreo, Maria L. Sushko. Role of the Solvent–Surfactant Duality of Ionic Liquids in Directing Two-Dimensional Particle Assembly. The Journal of Physical Chemistry C 2020, 124 (44) , 24215-24222. https://doi.org/10.1021/acs.jpcc.0c07221
    10. Silvia Varela-Aramburu, Chandradhish Ghosh, Felix Goerdeler, Patricia Priegue, Oren Moscovitz, Peter H. Seeberger. Targeting and Inhibiting Plasmodium falciparum Using Ultra-small Gold Nanoparticles. ACS Applied Materials & Interfaces 2020, 12 (39) , 43380-43387. https://doi.org/10.1021/acsami.0c09075
    11. Katherinne I. Requejo, Anton V. Liopo, Eugene R. Zubarev. Gold Nanorod Synthesis with Small Thiolated Molecules. Langmuir 2020, 36 (14) , 3758-3769. https://doi.org/10.1021/acs.langmuir.0c00302
    12. Hao-Hua Deng, Kai-Yuan Huang, Shao-Bin He, Li-Ping Xue, Hua-Ping Peng, Dai-Jun Zha, Wei-Ming Sun, Xing-Hua Xia, Wei Chen. Rational Design of High-Performance Donor–Linker–Acceptor Hybrids Using a Schiff Base for Enabling Photoinduced Electron Transfer. Analytical Chemistry 2020, 92 (2) , 2019-2026. https://doi.org/10.1021/acs.analchem.9b04434
    13. Dan Li, Guannan Wang, Liming Cheng, Cuiping Wang, Xifan Mei. Engineering the Self-Assembly Induced Emission of Copper Nanoclusters as 3D Nanomaterials with Mesoporous Sphere Structures by the Crosslinking of Ce3+. ACS Omega 2018, 3 (11) , 14755-14765. https://doi.org/10.1021/acsomega.8b02204
    14. Tianyu Du, Hang Zhang, Jun Ruan, Hui Jiang, Hong-Yuan Chen, Xuemei Wang. Adjusting the Linear Range of Au-MOF Fluorescent Probes for Real-Time Analyzing Intracellular GSH in Living Cells. ACS Applied Materials & Interfaces 2018, 10 (15) , 12417-12423. https://doi.org/10.1021/acsami.7b19356
    15. Longhua Tang and Jinghong Li . Plasmon-Based Colorimetric Nanosensors for Ultrasensitive Molecular Diagnostics. ACS Sensors 2017, 2 (7) , 857-875. https://doi.org/10.1021/acssensors.7b00282
    16. Gunja Pandav, Victor Pryamitsyn, Jeffrey Errington, and Venkat Ganesan . Multibody Interactions, Phase Behavior, and Clustering in Nanoparticle–Polyelectrolyte Mixtures. The Journal of Physical Chemistry B 2015, 119 (45) , 14536-14550. https://doi.org/10.1021/acs.jpcb.5b07905
    17. Yunlei Xianyu, Yiping Chen, and Xingyu Jiang . Horseradish Peroxidase-Mediated, Iodide-Catalyzed Cascade Reaction for Plasmonic Immunoassays. Analytical Chemistry 2015, 87 (21) , 10688-10692. https://doi.org/10.1021/acs.analchem.5b03522
    18. Minh-Phuong Ngoc Bui, Snober Ahmed, and Abdennour Abbas . Single-Digit Pathogen and Attomolar Detection with the Naked Eye Using Liposome-Amplified Plasmonic Immunoassay. Nano Letters 2015, 15 (9) , 6239-6246. https://doi.org/10.1021/acs.nanolett.5b02837
    19. Yu Liu, Fangfang Wang, Yawen Liu, Lu Cao, Haiming Hu, Xiaowei Yao, Junping Zheng, Hongtao Liu. A label-free plasmonic nanosensor driven by horseradish peroxidase-assisted tetramethylbenzidine redox catalysis for colorimetric sensing H2O2 and cholesterol. Sensors and Actuators B: Chemical 2023, 389 , 133893. https://doi.org/10.1016/j.snb.2023.133893
    20. Akhilesh Rai, Sahadevan Seena, Teresa Gagliardi, Paulo J. Palma. Advances in the design of amino acid and peptidesynthesized gold nanoparticles for their applications. Advances in Colloid and Interface Science 2023, 318 , 102951. https://doi.org/10.1016/j.cis.2023.102951
    21. Marcin Witkowski, Agata Królikowska, Janusz Cukras, Wojciech Dzwolak. Hidden Dynamics of Noble-metal-bound Thiol Monolayers Revealed by SERS-monitored Entropy-driven Exchange of Cysteine Isotopologues. Applied Surface Science 2023, 623 , 156985. https://doi.org/10.1016/j.apsusc.2023.156985
    22. Vidyadevi Bhoyar, Sagar Trivedi, Shreyas Gaikwad, Aarti Belgamwar, Veena Belgamwar. Nanotechnology-based drug targeting to infectious diseases. 2023, 269-300. https://doi.org/10.1016/B978-0-323-91763-6.00007-2
    23. Roman Nudelman, Hashim Alhmoud, Bahman Delalat, Ishdeep Kaur, Anastasia Vitkin, Laure Bourgeois, Ilan Goldfarb, Anna Cifuentes-Rius, Nicolas H. Voelcker, Shachar Richter. From nanoparticles to crystals: one-pot programmable biosynthesis of photothermal gold structures and their use for biomedical applications. Journal of Nanobiotechnology 2022, 20 (1) https://doi.org/10.1186/s12951-022-01680-7
    24. Abdulaziz K. Assaifan, Abdulrahman S. Aljdidalmri, Hamad Albrithen, Abdullah Alodhayb, Khalid E. Alzahrani, Abeer Alshammari, Mahmoud A. Al-Gawati, Saleh Husam Aldeligan. Probing the Influence of Crosslinking Layer Incubation Time on the Performance of Non-Faradaic Impedimetric Biosensors. Journal of The Electrochemical Society 2022, 169 (11) , 117511. https://doi.org/10.1149/1945-7111/aca2e9
    25. Atieh Aghajani, Marie‐Pierre Santoni, Peyman Mirzaei, Ahmed A. Mohamed, Mohamed M. Chehimi, Mohamed Jouini. Tuning arylation of gold nanoparticles for the electrocatalyzed oxidation of ethanol. Applied Organometallic Chemistry 2022, 36 (10) https://doi.org/10.1002/aoc.6835
    26. Trang Thi Thuy Nguyen, Seungjoo Haam, Joon-Seo Park, Sang-Wha Lee. Cysteine-Encapsulated Liposome for Investigating Biomolecular Interactions at Lipid Membranes. International Journal of Molecular Sciences 2022, 23 (18) , 10566. https://doi.org/10.3390/ijms231810566
    27. Yu Liu, Yanan Cao, Cong Zhang, Cheng Ye, Qinglai Bian, Xue Cheng, Hui Xia, Junping Zheng, Hongtao Liu. A novel colorimetric method for H2O2 sensing and its application: Fe2+-catalyzed H2O2 prevents aggregation of AuNPs by oxidizing cysteine (FeHOAuC). Analytica Chimica Acta 2022, 1207 , 339840. https://doi.org/10.1016/j.aca.2022.339840
    28. Evair D. Nascimento, Wilson T. Fonseca, Tássia R. de Oliveira, Camila R.S.T.B. de Correia, Vitor M. Faça, Beatriz P. de Morais, Virginia C. Silvestrini, Henrique Pott-Junior, Felipe R. Teixeira, Ronaldo C. Faria. COVID-19 diagnosis by SARS-CoV-2 Spike protein detection in saliva using an ultrasensitive magneto-assay based on disposable electrochemical sensor. Sensors and Actuators B: Chemical 2022, 353 , 131128. https://doi.org/10.1016/j.snb.2021.131128
    29. Beeta Rani Khalkho, Manas Kanti Deb, Ramsingh Kurrey, Bhuneshwari Sahu, Anushree Saha, Tarun Kumar Patle, Ravishankar Chauhan, Kamlesh Shrivas. Citrate functionalized gold nanoparticles assisted micro extraction of L-cysteine in milk and water samples using Fourier transform infrared spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2022, 267 , 120523. https://doi.org/10.1016/j.saa.2021.120523
    30. Ricardo A Pinho, Daniela PS Haupenthal, Paulo Emílio Fauser, Anand Thirupathi, Paulo CL Silveira. Gold Nanoparticle-Based Therapy for Muscle Inflammation and Oxidative Stress. Journal of Inflammation Research 2022, Volume 15 , 3219-3234. https://doi.org/10.2147/JIR.S327292
    31. Ganga Periyasamy, Divya Maldepalli Govindachar. Influence of Interface in Structure, Stability and Electronic Properties of Dimeric Gold Nanoclusters. SSRN Electronic Journal 2022, 2021 https://doi.org/10.2139/ssrn.4095196
    32. Richard H. Huang, Nazia Nayeem, Ye He, Jorge Morales, Duncan Graham, Rafal Klajn, Maria Contel, Stephen O'Brien, Rein V. Ulijn. Self‐Complementary Zwitterionic Peptides Direct Nanoparticle Assembly and Enable Enzymatic Selection of Endocytic Pathways. Advanced Materials 2022, 34 (1) https://doi.org/10.1002/adma.202104962
    33. Qingqing Fan, Yuan Gao, Federico Mazur, Rona Chandrawati. Nanoparticle-based colorimetric sensors to detect neurodegenerative disease biomarkers. Biomaterials Science 2021, 9 (21) , 6983-7007. https://doi.org/10.1039/D1BM01226F
    34. Shaoqing Li, Wei Huang, Wei Tan, Lizhu Zhang, Yanli Zhang, Hongyu Shi, Motilal Mathesh, Colin J. Barrow, Wenrong Yang, Hongbin Wang. A Cu( ii )-triggered release system by l -cysteine functionalized gold nanoparticles for “on-demand” molecular delivery and bioimaging in cells. Molecular Systems Design & Engineering 2021, 6 (10) , 825-831. https://doi.org/10.1039/D1ME00074H
    35. Abdulaziz K. Assaifan, Mahmoud Hezam, Mahmoud A. Al-Gawati, Khalid E. Alzahrani, Abdullah Alswieleh, Prabhakarn Arunachalam, Abdullah Al-Mayouf, Abdullah Alodhayb, Hamad Albrithen. Label-free and simple detection of trace Pb(II) in tap water using non-faradaic impedimetric sensors. Sensors and Actuators A: Physical 2021, 329 , 112833. https://doi.org/10.1016/j.sna.2021.112833
    36. Atsuko Jimbo, Yui Nishikado, Kohei Imura. Optical Field and Chemical Environment Near the Surface Modified Gold Nanoparticle Assembly Revealed by Two-Photon Induced Photoluminescence and Surface Enhanced Raman Scattering. Bulletin of the Chemical Society of Japan 2021, 94 (9) , 2272-2278. https://doi.org/10.1246/bcsj.20210160
    37. Igor V. Mironov, Viktoria Yu. Kharlamova. On the redox interaction of HAuCl4 with thiomalate, as well as with cysteine and glutathione in aqueous solutions. Inorganica Chimica Acta 2021, 525 , 120500. https://doi.org/10.1016/j.ica.2021.120500
    38. Ella Rizki Farihatul Maftuhah, Suyanta Suyanta, Sri Juari Santosa. A Preliminary Study on the Selective Detection of Hypochlorite Based on Antiagregation of AuNPs. Key Engineering Materials 2021, 884 , 353-359. https://doi.org/10.4028/www.scientific.net/KEM.884.353
    39. Igor V. Mironov, Viktoria Yu. Kharlamova. Synthesis of gold nanoparticles in aqueous solutions not containing additional interfering components using sulfite method: the effect of thiol-containing acid additives. Gold Bulletin 2021, 54 (1) , 37-44. https://doi.org/10.1007/s13404-021-00291-8
    40. Elli Akrivi, Foteini Kappi, Vasiliki Gouma, Athanasios G. Vlessidis, Dimosthenis L. Giokas, Nikolaos Kourkoumelis. Biothiol modulated growth and aggregation of gold nanoparticles and their determination in biological fluids using digital photometry. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2021, 249 , 119337. https://doi.org/10.1016/j.saa.2020.119337
    41. Heng-Yong Nie, Elena Romanovskaia, Valentin Romanovski, Jonas Hedberg, Yolanda S. Hedberg. Detection of gold cysteine thiolate complexes on gold nanoparticles with time-of-flight secondary ion mass spectrometry. Biointerphases 2021, 16 (2) https://doi.org/10.1116/6.0000910
    42. Alexandra Teixeira, Juan L. Paris, Foteini Roumani, Lorena Diéguez, Marta Prado, Begoña Espiña, Sara Abalde-Cela, Alejandro Garrido-Maestu, Laura Rodriguez-Lorenzo. Multifuntional Gold Nanoparticles for the SERS Detection of Pathogens Combined with a LAMP–in–Microdroplets Approach. Materials 2020, 13 (8) , 1934. https://doi.org/10.3390/ma13081934
    43. Maruthupandy Muthuchamy, Thillaichidambaram Muneeswaran, Govindan Rajivgandhi, Quero Franck, Anand Muthusamy, Song Ji-Ming. Biologically synthesized copper and zinc oxide nanoparticles for important biomolecules detection and antimicrobial applications. Materials Today Communications 2020, 22 , 100766. https://doi.org/10.1016/j.mtcomm.2019.100766
    44. Liwei Wang, Guixian Liu, Junhe Han, Ruoping Li, Junhui Liu, Ke Chen, Mingju Huang. One-pot synthesis of 3D Au nanoparticle clusters with tunable size and their application. Nanotechnology 2020, 31 (8) , 085601. https://doi.org/10.1088/1361-6528/ab53ad
    45. Jiyeon Park, Tae Ho Kang, Inhee Choi, Jungwoo Choe. Induction of crystal nucleation by orientation-controlled binding of His 6 -tagged proteins to functionalized gold nanoparticles. CrystEngComm 2020, 22 (6) , 1032-1040. https://doi.org/10.1039/C9CE01786K
    46. Dmitriy V. Sotnikov, Irina V. Safenkova, Anatoly V. Zherdev, Vadim G. Avdienko, Irina V. Kozlova, Suren S. Babayan, Vladislav Ya. Gergert, Boris B. Dzantiev. A Mechanism of Gold Nanoparticle Aggregation by Immunoglobulin G Preparation. Applied Sciences 2020, 10 (2) , 475. https://doi.org/10.3390/app10020475
    47. Valentina Guerrero‐Florez, Diana Blach, Fernando Martínez O. Nonpolar Interface Composition in Cetyltrimethylammonium Bromide Reverse Micellar Environments to Control Size and Induce Anisotropy on Gold Nanoparticles. ChemistrySelect 2019, 4 (47) , 13983-13991. https://doi.org/10.1002/slct.201903844
    48. Edgar Augusto Ortiz-Benítez, Norma Velázquez-Guadarrama, Noé Valentín Durán Figueroa, Héctor Quezada, José de Jesús Olivares-Trejo. Antibacterial mechanism of gold nanoparticles on Streptococcus pneumoniae. Metallomics 2019, 11 (7) , 1265-1276. https://doi.org/10.1039/C9MT00084D
    49. Edgar Augusto Ortiz-Benítez, Norma Velázquez-Guadarrama, Noé Valentín Durán Figueroa, Héctor Quezada, José de Jesús Olivares-Trejo. Antibacterial mechanism of gold nanoparticles on Streptococcus pneumoniae. Metallomics 2019, 11 (7) , 1265-1276. https://doi.org/10.1039/c9mt00084d
    50. Zhenzhen Huang, Bohui Duan, Jinshuo Li, Min Wang, Wensheng Yang. Fabrication of prime number checkers based on colorimetric responses of gold nanoparticles. New Journal of Chemistry 2019, 43 (22) , 8728-8734. https://doi.org/10.1039/C9NJ00914K
    51. Asieh Aramvash, Hadis Zarei, Azadeh Azizi, Mansooreh Sadat Seyedkarimi. Investigating the Structural Stability of RADA16-I Peptide Conjugated to Gold Nanoparticles. International Journal of Peptide Research and Therapeutics 2019, 25 (2) , 753-760. https://doi.org/10.1007/s10989-018-9724-7
    52. Bin Li, Lucas A. Lane. Probing the biological obstacles of nanomedicine with gold nanoparticles. WIREs Nanomedicine and Nanobiotechnology 2019, 11 (3) https://doi.org/10.1002/wnan.1542
    53. A. Yu. Olenin. Chemically Modified Silver and Gold Nanoparticles in Spectrometric Analysis. Journal of Analytical Chemistry 2019, 74 (4) , 355-375. https://doi.org/10.1134/S1061934819040099
    54. Esther Jeyasekaran, Sridevi Venkatachalam. Colorimetric detection of cysteine based on dispersion–aggregation mechanism of chitosan stabilized gold nanoparticles. Canadian Journal of Chemistry 2019, 97 (3) , 233-237. https://doi.org/10.1139/cjc-2018-0258
    55. Fatma BAYRAKÇEKEN NİŞANCI. Alkol Tedavisinde Kullanılan Disülfiram’ın Nanotaşıyıcısı Olarak Sistein-Altın Nanopartiküllerin Sentezi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2019, 9 (1) , 479-486. https://doi.org/10.21597/jist.467229
    56. Shin Usune, Masaki Kubo, Takao Tsukada, Osamu Koike, Rei Tatsumi, Masahiro Fujita, Seiichi Takami, Tadafumi Adschiri. Numerical simulations of dispersion and aggregation behavior of surface-modified nanoparticles under shear flow. Powder Technology 2019, 343 , 113-121. https://doi.org/10.1016/j.powtec.2018.10.057
    57. Wenbo Yu, Tingting Zhang, Mingfang Ma, Chaochao Chen, Xiao Liang, Kai Wen, Zhanhui Wang, Jianzhong Shen. Highly sensitive visual detection of amantadine residues in poultry at the ppb level: A colorimetric immunoassay based on a Fenton reaction and gold nanoparticles aggregation. Analytica Chimica Acta 2018, 1027 , 130-136. https://doi.org/10.1016/j.aca.2018.04.035
    58. George Z. Tsogas, Foteini A. Kappi, Athanasios G. Vlessidis, Dimosthenis L. Giokas. Recent Advances in Nanomaterial Probes for Optical Biothiol Sensing: A Review. Analytical Letters 2018, 51 (4) , 443-468. https://doi.org/10.1080/00032719.2017.1329833
    59. Siewdorlang Diamai, Wandibahun Warjri, Dipika Saha, Devendra P.S. Negi. Sensitive determination of 6-mercaptopurine based on the aggregation of phenylalanine-capped gold nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2018, 538 , 593-599. https://doi.org/10.1016/j.colsurfa.2017.11.052
    60. Robert G. Acres, Xun Cheng, Klára Beranová, Sofiia Bercha, Tomáš Skála, Vladimír Matolín, Ye Xu, Kevin C. Prince, Nataliya Tsud. An experimental and theoretical study of adenine adsorption on Au(111). Physical Chemistry Chemical Physics 2018, 20 (7) , 4688-4698. https://doi.org/10.1039/C7CP08102B
    61. Reshma S. Nair, Jimna Mohamed Ameer, Malcolm R. Alison, Thapasimuthu V. Anilkumar. A gold nanoparticle coated porcine cholecyst-derived bioscaffold for cardiac tissue engineering. Colloids and Surfaces B: Biointerfaces 2017, 157 , 130-137. https://doi.org/10.1016/j.colsurfb.2017.05.056
    62. Lei Mou, Xingyu Jiang. Materials for Microfluidic Immunoassays: A Review. Advanced Healthcare Materials 2017, 6 (15) https://doi.org/10.1002/adhm.201601403
    63. Wenjing Zhao, Rong-Yao Wang, Hong Wei, Jingliang Li, Yinglu Ji, Xinxin Jiang, Xiaochun Wu, Xiangdong Zhang. Recognition of chiral zwitterionic interactions at nanoscale interfaces by chiroplasmonic nanosensors. Physical Chemistry Chemical Physics 2017, 19 (32) , 21401-21406. https://doi.org/10.1039/C7CP03004E
    64. Sajad Ahmad Bhat, Sarwar Ahmad Pandit, Mudasir Ahmad Rather, Ghulam Mohd Rather, Nusrat Rashid, Pravin P. Ingole, Mohsin Ahmad Bhat. Self-assembled AuNPs on sulphur-doped graphene: a dual and highly efficient electrochemical sensor for nitrite (NO 2 − ) and nitric oxide (NO). New Journal of Chemistry 2017, 41 (16) , 8347-8358. https://doi.org/10.1039/C7NJ01565H
    65. Jian-Fang Li, Peng-Cheng Huang, Fang-Ying Wu. Specific pH effect for selective colorimetric assay of glutathione using anti-aggregation of label-free gold nanoparticles. RSC Advances 2017, 7 (22) , 13426-13432. https://doi.org/10.1039/C7RA00399D
    66. Chunqiu Zhao, Tianyu Du, Fawad ur Rehman, Lanmei Lai, Xiaoli Liu, Xuerui Jiang, Xiaoqi Li, Yun Chen, Hang Zhang, Yi Sun, Shouhua Luo, Hui Jiang, Matthias Selke, Xuemei Wang. Biosynthesized Gold Nanoclusters and Iron Complexes as Scaffolds for Multimodal Cancer Bioimaging. Small 2016, 12 (45) , 6255-6265. https://doi.org/10.1002/smll.201602526
    67. Jiawei Gu, Hongxia Dai, Yong Kong, Yongxin Tao, Haixia Chu, Zhifang Tong. Chiral electrochemical recognition of cysteine enantiomers with molecularly imprinted overoxidized polypyrrole-Au nanoparticles. Synthetic Metals 2016, 222 , 137-143. https://doi.org/10.1016/j.synthmet.2016.05.007
    68. Romain Aufaure, Julie Hardouin, Nadine Millot, Laurence Motte, Yoann Lalatonne, Erwann Guénin. Tetrazine Click Chemistry for the Modification of 1-Hydroxy-1,1-methylenebisphosphonic Acids: Towards Bio-orthogonal Functionalization of Gold Nanoparticles. Chemistry - A European Journal 2016, 22 (45) , 16022-16027. https://doi.org/10.1002/chem.201602899
    69. Susanna Monti, Vincenzo Carravetta, Hans Ågren. Theoretical Study of the Adsorption Mechanism of Cystine on Au(110) in Aqueous Solution. Small 2016, 12 (44) , 6134-6143. https://doi.org/10.1002/smll.201602275
    70. Huifang Zhang, Xiaoming Ma, Shuisheng Hu, Yue Lin, Longhua Guo, Bin Qiu, Zhenyu Lin, Guonan Chen. Highly sensitive visual detection of Avian Influenza A (H7N9) virus based on the enzyme-induced metallization. Biosensors and Bioelectronics 2016, 79 , 874-880. https://doi.org/10.1016/j.bios.2016.01.004
    71. Li Li, Jianbo Liu, Xiaohai Yang, Jin Huang, Dinggeng He, Xi Guo, Lan Wan, Xiaoxiao He, Kemin Wang. Biomimetic synthesis of highly biocompatible gold nanoparticles with amino acid-dithiocarbamate as a precursor for SERS imaging. Nanotechnology 2016, 27 (10) , 105603. https://doi.org/10.1088/0957-4484/27/10/105603
    72. Qian Zhang, Diming Zhang, Yanli Lu, Gang Xu, Yao Yao, Shuang Li, Qingjun Liu. Label-free amino acid detection based on nanocomposites of graphene oxide hybridized with gold nanoparticles. Biosensors and Bioelectronics 2016, 77 , 963-970. https://doi.org/10.1016/j.bios.2015.10.065
    73. Victor Pryamitsyn, Venkat Ganesan. Pair interactions in polyelectrolyte-nanoparticle systems: Influence of dielectric inhomogeneities and the partial dissociation of polymers and nanoparticles. The Journal of Chemical Physics 2015, 143 (16) https://doi.org/10.1063/1.4934242
    74. Wenchao Ding, Peina Zhang, Yijing Li, Haibing Xia, Dayang Wang, Xutang Tao. Effect of Latent Heat in Boiling Water on the Synthesis of Gold Nanoparticles of Different Sizes by using the Turkevich Method. ChemPhysChem 2015, 16 (2) , 447-454. https://doi.org/10.1002/cphc.201402648
    75. Mohsen Ashjari, Soheila Dehfuly, Daryoush Fatehi, Ronak Shabani, Morteza Koruji. Efficient functionalization of gold nanoparticles using cysteine conjugated protoporphyrin IX for singlet oxygen production in vitro. RSC Advances 2015, 5 (127) , 104621-104628. https://doi.org/10.1039/C5RA15862A
    76. Tsukasa Mizutaru, Taro Sakuraba, Toru Nakayama, Galina Marzun, Philipp Wagener, Christoph Rehbock, Stephan Barcikowski, Katsuhisa Murakami, Junichi Fujita, Noriyuki Ishii, Yohei Yamamoto. Cysteine-containing oligopeptide β-sheets as redispersants for agglomerated metal nanoparticles. Journal of Materials Chemistry A 2015, 3 (34) , 17612-17619. https://doi.org/10.1039/C5TA02098K
    77. Romain Aufaure, Yoann Lalatonne, Nicole Lièvre, Olivier Heintz, Laurence Motte, Erwann Guénin. One pot microwave assisted synthesis of bisphosphonate alkene capped gold nanoparticles. RSC Adv. 2014, 4 (103) , 59315-59322. https://doi.org/10.1039/C4RA11847B

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect