ACS Publications. Most Trusted. Most Cited. Most Read
Dynamical Heterogeneity in the Supercooled Liquid State of the Phase Change Material GeTe
My Activity

Figure 1Loading Img
    Article

    Dynamical Heterogeneity in the Supercooled Liquid State of the Phase Change Material GeTe
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5 CH-8093 Zurich, Switzerland
    Faculty of Informatics, Università della Svizzera Italiana, Via G. Buffi 13, CH-6900 Lugano, Switzerland
    Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, CH-8903 Zurich, Switzerland
    Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany, and
    § Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, Via R. Cozzi 53, I-20125 Milano, Italy
    *(G.C.S.) E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry B

    Cite this: J. Phys. Chem. B 2014, 118, 47, 13621–13628
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp507361f
    Published October 30, 2014
    Copyright © 2014 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A contending technology for nonvolatile memories of the next generation is based on a remarkable property of chalcogenide alloys known as phase change materials, namely their ability to undergo a fast and reversible transition between the amorphous and crystalline phases upon heating. The fast crystallization has been ascribed to the persistence of a high atomic mobility in the supercooled liquid phase, down to temperatures close to the glass transition. In this work we unravel the atomistic, structural origin of this feature in the supercooled liquid state of GeTe, a prototypical phase change compound, by means of molecular dynamic simulations. To this end, we employed an interatomic potential based on a neural network framework, which allows simulating thousands of atoms for tens of ns by keeping an accuracy close to that of the underlying first-principles framework. Our findings demonstrate that the high atomic mobility is related to the presence of clusters of slow and fast moving atoms. The latter contain a large fraction of chains of homopolar Ge–Ge bonds, which at low temperatures have a tendency to move by discontinuous cage-jump rearrangements. This structural fingerprint of dynamical heterogeneity provides an explanation of the breakdown of the Stokes–Einstein relation in GeTe, which is the ultimate origin of the fast crystallization of phase change materials exploited in the devices.

    Copyright © 2014 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Results of dynamical heterogeneity in the supercooled liquid state of the phase change material GeTe. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 60 publications.

    1. Zilin Qiao, Zhixuan Ying, Xi Zhou, Kejie Feng, Le Shi. Hydrogen Bond Network Shaping Proton Penetration Behavior across Two-Dimensional Nanoporous Materials. ACS Applied Materials & Interfaces 2024, 16 (40) , 54445-54455. https://doi.org/10.1021/acsami.4c11275
    2. Maria Bokova, Andrey Tverjanovich, Chris J. Benmore, Daniele Fontanari, Anton Sokolov, Maxim Khomenko, Mohammad Kassem, Ilya Ozheredov, Eugene Bychkov. Unraveling the Atomic Structure of Bulk Binary Ga–Te Glasses with Surprising Nanotectonic Features for Phase-Change Memory Applications. ACS Applied Materials & Interfaces 2021, 13 (31) , 37363-37379. https://doi.org/10.1021/acsami.1c09070
    3. Markus M. Hoffmann, Matthew D. Too, Michael Vogel, Torsten Gutmann, Gerd Buntkowsky. Breakdown of the Stokes–Einstein Equation for Solutions of Water in Oil Reverse Micelles. The Journal of Physical Chemistry B 2020, 124 (41) , 9115-9125. https://doi.org/10.1021/acs.jpcb.0c06124
    4. Felix C. Mocanu, Konstantinos Konstantinou, Tae Hoon Lee, Noam Bernstein, Volker L. Deringer, Gábor Csányi, Stephen R. Elliott. Modeling the Phase-Change Memory Material, Ge2Sb2Te5, with a Machine-Learned Interatomic Potential. The Journal of Physical Chemistry B 2018, 122 (38) , 8998-9006. https://doi.org/10.1021/acs.jpcb.8b06476
    5. S. Gabardi, E. Baldi, E. Bosoni, D. Campi, S. Caravati, G. C. Sosso, J. Behler, and M. Bernasconi . Atomistic Simulations of the Crystallization and Aging of GeTe Nanowires. The Journal of Physical Chemistry C 2017, 121 (42) , 23827-23838. https://doi.org/10.1021/acs.jpcc.7b09862
    6. Yimin Chen, Guoxiang Wang, Lijian Song, Xiang Shen, Junqiang Wang, Juntao Huo, Rongping Wang, Tiefeng Xu, Shixun Dai, and Qiuhua Nie . Unraveling the Crystallization Kinetics of Supercooled Liquid GeTe by Ultrafast Calorimetry. Crystal Growth & Design 2017, 17 (7) , 3687-3693. https://doi.org/10.1021/acs.cgd.7b00259
    7. Yuqing Qiu, Nathan Odendahl, Arpa Hudait, Ryan Mason, Allan K. Bertram, Francesco Paesani, Paul J. DeMott, and Valeria Molinero . Ice Nucleation Efficiency of Hydroxylated Organic Surfaces Is Controlled by Their Structural Fluctuations and Mismatch to Ice. Journal of the American Chemical Society 2017, 139 (8) , 3052-3064. https://doi.org/10.1021/jacs.6b12210
    8. Ping Ma, Hao Tong, Ting Huang, Ming Xu, Niannian Yu, Xiaomin Cheng, Cheng-Jun Sun, and Xiangshui Miao . Variations of Local Motifs around Ge Atoms in Amorphous GeTe Ultrathin Films. The Journal of Physical Chemistry C 2017, 121 (2) , 1122-1128. https://doi.org/10.1021/acs.jpcc.6b09841
    9. Jérôme Cuny, Yu Xie, Chris J. Pickard, and Ali A. Hassanali . Ab Initio Quality NMR Parameters in Solid-State Materials Using a High-Dimensional Neural-Network Representation. Journal of Chemical Theory and Computation 2016, 12 (2) , 765-773. https://doi.org/10.1021/acs.jctc.5b01006
    10. Bin Chen, Jamo Momand, Paul A. Vermeulen, and Bart J. Kooi . Crystallization Kinetics of Supercooled Liquid Ge–Sb Based on Ultrafast Calorimetry. Crystal Growth & Design 2016, 16 (1) , 242-248. https://doi.org/10.1021/acs.cgd.5b01151
    11. Gabriele C. Sosso, Matteo Salvalaglio, Jörg Behler, Marco Bernasconi, and Michele Parrinello . Heterogeneous Crystallization of the Phase Change Material GeTe via Atomistic Simulations. The Journal of Physical Chemistry C 2015, 119 (11) , 6428-6434. https://doi.org/10.1021/acs.jpcc.5b00296
    12. Jens Moesgaard, Tomoki Fujita, Shuai Wei. Unveiling the boson peaks in amorphous phase-change materials. Journal of Physics: Condensed Matter 2025, 37 (2) , 025101. https://doi.org/10.1088/1361-648X/ad80ef
    13. Omar Abou El Kheir, Luigi Bonati, Michele Parrinello, Marco Bernasconi. Unraveling the crystallization kinetics of the Ge2Sb2Te5 phase change compound with a machine-learned interatomic potential. npj Computational Materials 2024, 10 (1) https://doi.org/10.1038/s41524-024-01217-6
    14. Shingo Urata, Marco Bertani, Alfonso Pedone. Applications of machine‐learning interatomic potentials for modeling ceramics, glass, and electrolytes: A review. Journal of the American Ceramic Society 2024, 107 (12) , 7665-7691. https://doi.org/10.1111/jace.19934
    15. P. Süle. Resolving heterogeneous particle mobility in deeply quenched liquid iron: an ultra-fast assembly-free two-step nucleation mechanism. Physical Chemistry Chemical Physics 2024, 26 (40) , 26091-26108. https://doi.org/10.1039/D4CP02526A
    16. Bai-Qian Wang, Tian-Yu Zhao, Huan-Ran Ding, Yu-Ting Liu, Nian-Ke Chen, Meng Niu, Xiao-Dong Li, Ming Xu, Hong-Bo Sun, Shengbai Zhang, Xian-Bin Li. Partial melting nature of phase-change memory Ge-Sb-Te superlattice uncovered by large-scale machine learning interatomic potential molecular dynamics. Acta Materialia 2024, 276 , 120123. https://doi.org/10.1016/j.actamat.2024.120123
    17. Yuhan Chen, Davide Campi, Marco Bernasconi, Riccardo Mazzarello. Atomistic Study of the Configurational Entropy and the Fragility of Supercooled Liquid GeTe. Advanced Functional Materials 2024, 34 (22) https://doi.org/10.1002/adfm.202314264
    18. Tae Hoon Lee, Stephen Elliott. Materials modelling: current state-of-the-art for phase-change photonic computing. 2024, 193-231. https://doi.org/10.1016/B978-0-12-823491-4.00007-2
    19. Tomoki Fujita, Yuhan Chen, Yoshio Kono, Seiya Takahashi, Hidetaka Kasai, Davide Campi, Marco Bernasconi, Koji Ohara, Hirokatsu Yumoto, Takahisa Koyama, Hiroshi Yamazaki, Yasunori Senba, Haruhiko Ohashi, Ichiro Inoue, Yujiro Hayashi, Makina Yabashi, Eiji Nishibori, Riccardo Mazzarello, Shuai Wei. Pressure-induced reversal of Peierls-like distortions elicits the polyamorphic transition in GeTe and GeSe. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-43457-y
    20. Jutta Rogal, Grisell Díaz Leines. Controlling crystallization: what liquid structure and dynamics reveal about crystal nucleation mechanisms. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2023, 381 (2250) https://doi.org/10.1098/rsta.2022.0249
    21. Sang Yup Lee, Minseong Kim, Tae Kyung Won, Seung Hyuk Back, Youngjoo Hong, Byeong-Su Kim, Dong June Ahn. Janus regulation of ice growth by hyperbranched polyglycerols generating dynamic hydrogen bonding. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-34300-x
    22. Grisell Díaz Leines, Angelos Michaelides, Jutta Rogal. Interplay of structural and dynamical heterogeneity in the nucleation mechanism in nickel. Faraday Discussions 2022, 235 , 406-415. https://doi.org/10.1039/D1FD00099C
    23. Daniele Dragoni, Jörg Behler, Marco Bernasconi. Mechanism of amorphous phase stabilization in ultrathin films of monoatomic phase change material. Nanoscale 2021, 13 (38) , 16146-16155. https://doi.org/10.1039/D1NR03432D
    24. Vikas Dubey, Shivam Dueby, Snehasis Daschakraborty. Breakdown of the Stokes–Einstein relation in supercooled water: the jump-diffusion perspective. Physical Chemistry Chemical Physics 2021, 23 (36) , 19964-19986. https://doi.org/10.1039/D1CP02202D
    25. Hao Zhang, Xinyi Wang, Hai-Bin Yu, Jack F. Douglas. Dynamic heterogeneity, cooperative motion, and Johari–Goldstein $$\beta $$-relaxation in a metallic glass-forming material exhibiting a fragile-to-strong transition. The European Physical Journal E 2021, 44 (4) https://doi.org/10.1140/epje/s10189-021-00060-7
    26. Yu-Xing Zhou, Han-Yi Zhang, Volker L. Deringer, Wei Zhang. Structure and Dynamics of Supercooled Liquid Ge 2 Sb 2 Te 5 from Machine‐Learning‐Driven Simulations. physica status solidi (RRL) – Rapid Research Letters 2021, 15 (3) https://doi.org/10.1002/pssr.202000403
    27. Wei Zhang, Evan Ma. Unveiling the structural origin to control resistance drift in phase-change memory materials. Materials Today 2020, 41 , 156-176. https://doi.org/10.1016/j.mattod.2020.07.016
    28. Ryutaro Souda, Takashi Aizawa, Naoyuki Sugiyama, Masaki Takeguchi. Nucleation and growth of water ice on oxide surfaces: the influence of a precursor to water dissociation. Physical Chemistry Chemical Physics 2020, 22 (36) , 20515-20523. https://doi.org/10.1039/D0CP01897J
    29. Shuai Wei, Christoph Persch, Moritz Stolpe, Zach Evenson, Garrett Coleman, Pierre Lucas, Matthias Wuttig. Violation of the Stokes–Einstein relation in Ge2Sb2Te5, GeTe, Ag4In3Sb67Te26, and Ge15Sb85, and its connection to fast crystallization. Acta Materialia 2020, 195 , 491-500. https://doi.org/10.1016/j.actamat.2020.05.044
    30. Dongheon Lee, Kyeongpung Lee, Dongsun Yoo, Wonseok Jeong, Seungwu Han. Crystallization of amorphous GeTe simulated by neural network potential addressing medium-range order. Computational Materials Science 2020, 181 , 109725. https://doi.org/10.1016/j.commatsci.2020.109725
    31. Ping Ma, Hao Tong, Ming Xu, Xiaomin Cheng, Xiangshui Miao. Suppressed resistance drift from short range order of amorphous GeTe ultrathin films. Applied Physics Letters 2020, 117 (2) https://doi.org/10.1063/5.0009362
    32. Chong Qiao, Y. R. Guo, Songyou Wang, Yu Jia, Cai-Zhuang Wang, Kai-Ming Ho. Origin of short- and medium-range order in supercooled liquid Ge 3 Sb 2 Te 6 using ab initio molecular dynamics simulations. Physical Chemistry Chemical Physics 2020, 22 (17) , 9759-9766. https://doi.org/10.1039/D0CP00389A
    33. Bart J. Kooi, Matthias Wuttig. Chalcogenides by Design: Functionality through Metavalent Bonding and Confinement. Advanced Materials 2020, 32 (21) https://doi.org/10.1002/adma.201908302
    34. Le Shi, Zhixuan Ying, Ao Xu, Yonghong Cheng. Anomalous proton conduction behavior across a nanoporous two-dimensional conjugated aromatic polymer membrane. Physical Chemistry Chemical Physics 2020, 22 (5) , 2978-2985. https://doi.org/10.1039/C9CP06372B
    35. E Bosoni, D Campi, D Donadio, G C Sosso, J Behler, M Bernasconi. Atomistic simulations of thermal conductivity in GeTe nanowires. Journal of Physics D: Applied Physics 2020, 53 (5) , 054001. https://doi.org/10.1088/1361-6463/ab5478
    36. Ryan C. Roberts, Ryan Poling-Skutvik, Jacinta C. Conrad, Jeremy C. Palmer. Tracer transport in attractive and repulsive supercooled liquids and glasses. The Journal of Chemical Physics 2019, 151 (19) https://doi.org/10.1063/1.5121851
    37. G.C. Sosso, M. Bernasconi. Harnessing machine learning potentials to understand the functional properties of phase-change materials. MRS Bulletin 2019, 44 (09) , 705-709. https://doi.org/10.1557/mrs.2019.202
    38. M. Bernasconi. Atomistic Simulations of Phase Change Materials for Electronic Memories. International Journal of Nanoscience 2019, 18 (03n04) , 1940082. https://doi.org/10.1142/S0219581X19400829
    39. Wei Zhang, Riccardo Mazzarello, Matthias Wuttig, Evan Ma. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nature Reviews Materials 2019, 4 (3) , 150-168. https://doi.org/10.1038/s41578-018-0076-x
    40. Silvia Gabardi, Gabriele G. Sosso, Joerg Behler, Marco Bernasconi. Priming effects in the crystallization of the phase change compound GeTe from atomistic simulations. Faraday Discussions 2019, 213 , 287-301. https://doi.org/10.1039/C8FD00101D
    41. Martin Fitzner, Gabriele C. Sosso, Stephen J. Cox, Angelos Michaelides. Ice is born in low-mobility regions of supercooled liquid water. Proceedings of the National Academy of Sciences 2019, 116 (6) , 2009-2014. https://doi.org/10.1073/pnas.1817135116
    42. Changjiu Chen, Kaikin Wong, Rithin P. Krishnan, Lei Zhifeng, Dehong Yu, Zhaoping Lu, Suresh M. Chathoth. Highly collective atomic transport mechanism in high-entropy glass-forming metallic liquids. Journal of Materials Science & Technology 2019, 35 (1) , 44-47. https://doi.org/10.1016/j.jmst.2018.09.008
    43. Shuai Wei, Zach Evenson, Moritz Stolpe, Pierre Lucas, C. Austen Angell. Breakdown of the Stokes-Einstein relation above the melting temperature in a liquid phase-change material. Science Advances 2018, 4 (11) https://doi.org/10.1126/sciadv.aat8632
    44. Andrea Ghetti, Augusto Benvenuti, Aurelio Mauri, Haitao Liu, Chandra Mouli. Emerging Memory Modeling Challenges (Invited Paper). 2018, 101-106. https://doi.org/10.1109/SISPAD.2018.8551635
    45. I. Ronneberger, W. Zhang, R. Mazzarello. Crystal growth of Ge2Sb2Te5 at high temperatures. MRS Communications 2018, 8 (3) , 1018-1023. https://doi.org/10.1557/mrc.2018.131
    46. Gabriele C. Sosso, Volker L. Deringer, Stephen R. Elliott, Gábor Csányi. Understanding the thermal properties of amorphous solids using machine-learning-based interatomic potentials. Molecular Simulation 2018, 44 (11) , 866-880. https://doi.org/10.1080/08927022.2018.1447107
    47. H. Flores-Ruiz, M. Micoulaut. From elemental tellurium to Ge2Sb2Te5 melts: High temperature dynamic and relaxation properties in relationship with the possible fragile to strong transition. The Journal of Chemical Physics 2018, 148 (3) https://doi.org/10.1063/1.5013668
    48. Mattia Boniardi. Thermal Model and Remarkable Temperature Effects on the Chalcogenide Alloy. 2018, 41-64. https://doi.org/10.1007/978-3-319-69053-7_3
    49. Andrea Redaelli. Self-Consistent Numerical Model. 2018, 65-88. https://doi.org/10.1007/978-3-319-69053-7_4
    50. M. Micoulaut, M Bauchy. Evidence for Anomalous Dynamic Heterogeneities in Isostatic Supercooled Liquids. Physical Review Letters 2017, 118 (14) https://doi.org/10.1103/PhysRevLett.118.145502
    51. Can Yildirim, Jean-Yves Raty, Matthieu Micoulaut. Anomalous diffusion and non-monotonic relaxation processes in Ge-Se liquids. The Journal of Chemical Physics 2016, 144 (22) https://doi.org/10.1063/1.4953077
    52. Jens R. Stellhorn, Shinya Hosokawa, Wolf‐Christian Pilgrim, Nils Blanc, Nathalie Boudet, Hiroo Tajiri, Shinji Kohara. Short‐ and intermediate‐range order in amorphous GeTe. physica status solidi (b) 2016, 253 (6) , 1038-1045. https://doi.org/10.1002/pssb.201552559
    53. Matthieu Micoulaut. Relaxation and physical aging in network glasses: a review. Reports on Progress in Physics 2016, 79 (6) , 066504. https://doi.org/10.1088/0034-4885/79/6/066504
    54. Federico Zipoli, Daniel Krebs, Alessandro Curioni. Structural origin of resistance drift in amorphous GeTe. Physical Review B 2016, 93 (11) https://doi.org/10.1103/PhysRevB.93.115201
    55. G. C. Sosso, J. Behler, M. Bernasconi. Atomic mobility in the overheated amorphous GeTe compound for phase change memories. physica status solidi (a) 2016, 213 (2) , 329-334. https://doi.org/10.1002/pssa.201532378
    56. Yi Luan, Ming Yang, Qianqian Ma, Yue Qi, Hongyi Gao, Zhenyu Wu, Ge Wang. Introduction of an organic acid phase changing material into metal–organic frameworks and the study of its thermal properties. Journal of Materials Chemistry A 2016, 4 (20) , 7641-7649. https://doi.org/10.1039/C6TA01676F
    57. Wei Zhang, Volker L. Deringer, Richard Dronskowski, Riccardo Mazzarello, Evan Ma, Matthias Wuttig. Density-functional theory guided advances in phase-change materials and memories. MRS Bulletin 2015, 40 (10) , 856-869. https://doi.org/10.1557/mrs.2015.227
    58. S. Gabardi, S. Caravati, G. C. Sosso, J. Behler, M. Bernasconi. Microscopic origin of resistance drift in the amorphous state of the phase-change compound GeTe. Physical Review B 2015, 92 (5) https://doi.org/10.1103/PhysRevB.92.054201
    59. Davide Campi, Davide Donadio, Gabriele C. Sosso, Jörg Behler, Marco Bernasconi. Electron-phonon interaction and thermal boundary resistance at the crystal-amorphous interface of the phase change compound GeTe. Journal of Applied Physics 2015, 117 (1) https://doi.org/10.1063/1.4904910
    60. Sebastiano Caravati, Gabriele C. Sosso, Marco Bernasconi. Functional Properties of Phase Change Materials from Atomistic Simulations. 2015, 415-440. https://doi.org/10.1007/978-3-319-15675-0_15

    The Journal of Physical Chemistry B

    Cite this: J. Phys. Chem. B 2014, 118, 47, 13621–13628
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp507361f
    Published October 30, 2014
    Copyright © 2014 American Chemical Society

    Article Views

    1232

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.