ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Solubility of the Precombustion Gases CO2, CH4, CO, H2, N2, and H2S in the Ionic Liquid [bmim][Tf2N] from Monte Carlo Simulations

View Author Information
Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
Department of Physical, Chemical, and Natural Systems, University Pablo de Olavide, Carretera de Utrera km. 1, 41013 Seville, Spain
Cite this: J. Phys. Chem. C 2014, 118, 41, 23599–23604
Publication Date (Web):September 22, 2014
https://doi.org/10.1021/jp5080434
Copyright © 2014 American Chemical Society

    Article Views

    1811

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (302 KB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Monte Carlo simulations were used to compute the solubility of the pure gases CO2, CH4, CO, H2, N2, and H2S in the ionic liquid (IL) 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [bmim][Tf2N]. Simulations in the osmotic ensemble were performed to compute absorption isotherms at a temperature of 333.15 K using the versatile continuous fractional component Monte Carlo (CFCMC) method. The predicted gas solubilities and Henry constants are in good agreement with the experimental data. The Monte Carlo simulations correctly predict the observed solubility trend, which obeys the following order: H2S > CO2 > CH4 > CO > N2 > H2. Relevant separation selectivities for the precombustion process are calculated from the pure gas Henry constants and a comparison with experimental data is provided.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Force field parameters of all the studied components and details of the Peng–Robinson equation of state modeling can be found here. This material is available free of charge via the Internet at http://pubs.acs.org/.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 59 publications.

    1. Kishant Kumar, Sonanki Keshri, Anand Bharti, Shailesh Kumar, Santosh Mogurampelly. Solubility of Gases in Choline Chloride-Based Deep Eutectic Solvents from Molecular Dynamics Simulation. Industrial & Engineering Chemistry Research 2022, 61 (13) , 4659-4671. https://doi.org/10.1021/acs.iecr.1c04923
    2. Xiaoyang Liu, Jason E. Bara, C. Heath Turner. Understanding Gas Solubility of Pure Component and Binary Mixtures within Multivalent Ionic Liquids from Molecular Simulations. The Journal of Physical Chemistry B 2021, 125 (29) , 8165-8174. https://doi.org/10.1021/acs.jpcb.1c04212
    3. Fernanda Paludetto Pelaquim, Antonio Marinho Barbosa Neto, Irede Angela Lucini Dalmolin, Mariana Conceição da Costa. Gas Solubility Using Deep Eutectic Solvents: Review and Analysis. Industrial & Engineering Chemistry Research 2021, 60 (24) , 8607-8620. https://doi.org/10.1021/acs.iecr.1c00947
    4. Noura Dawass, Ricardo R. Wanderley, Mahinder Ramdin, Othonas A. Moultos, Hanna K. Knuutila, Thijs J. H. Vlugt. Solubility of Carbon Dioxide, Hydrogen Sulfide, Methane, and Nitrogen in Monoethylene Glycol; Experiments and Molecular Simulation. Journal of Chemical & Engineering Data 2021, 66 (1) , 524-534. https://doi.org/10.1021/acs.jced.0c00771
    5. Koen Heijmans, Ionut C. Tranca, David M. J. Smeulders, Thijs J. H. Vlugt, Silvia V. Gaastra-Nedea. Gibbs Ensemble Monte Carlo for Reactive Force Fields to Determine the Vapor–Liquid Equilibrium of CO2 and H2O. Journal of Chemical Theory and Computation 2021, 17 (1) , 322-329. https://doi.org/10.1021/acs.jctc.0c00876
    6. Remco Hens, Ahmadreza Rahbari, Sebastián Caro-Ortiz, Noura Dawass, Máté Erdős, Ali Poursaeidesfahani, Hirad S. Salehi, Alper T. Celebi, Mahinder Ramdin, Othonas A. Moultos, David Dubbeldam, Thijs J. H. Vlugt. Brick-CFCMC: Open Source Software for Monte Carlo Simulations of Phase and Reaction Equilibria Using the Continuous Fractional Component Method. Journal of Chemical Information and Modeling 2020, 60 (6) , 2678-2682. https://doi.org/10.1021/acs.jcim.0c00334
    7. Shaoqi Yang, Guangming Cai, Xingmei Lu, Chenguang Wang, Mi Feng, Junli Xu, Qing Zhou, Jiayu Xin, Longlong Ma. Selective Deoxygenation of Lignin-Derived Phenols and Dimeric Ethers with Protic Ionic Liquids. Industrial & Engineering Chemistry Research 2020, 59 (11) , 4864-4871. https://doi.org/10.1021/acs.iecr.9b05984
    8. Utkarsh Kapoor, Jindal K. Shah. Monte Carlo Simulations of Pure and Mixed Gas Solubilities of CO2 and CH4 in Nonideal Ionic Liquid–Ionic Liquid Mixtures. Industrial & Engineering Chemistry Research 2019, 58 (50) , 22569-22578. https://doi.org/10.1021/acs.iecr.9b03384
    9. Min Yu, Shaojuan Zeng, Zongxu Wang, Zongyuan Hu, Haifeng Dong, Yi Nie, Baozeng Ren, Xiangping Zhang. Protic Ionic-Liquid-Supported Activated Carbon with Hierarchical Pores for Efficient NH3 Adsorption. ACS Sustainable Chemistry & Engineering 2019, 7 (13) , 11769-11777. https://doi.org/10.1021/acssuschemeng.9b02051
    10. Tausif Altamash, Abdulkarem I. Amhamed, Santiago Aparicio, Mert Atilhan. Combined Experimental and Theoretical Study on High Pressure Methane Solubility in Natural Deep Eutectic Solvents. Industrial & Engineering Chemistry Research 2019, 58 (19) , 8097-8111. https://doi.org/10.1021/acs.iecr.9b00702
    11. Qiao Shi, Pinqiang Cao, Zhengde Han, Fulong Ning, Hao Gong, Yue Xin, Zhisen Zhang, Jianyang Wu. Role of Guest Molecules in the Mechanical Properties of Clathrate Hydrates. Crystal Growth & Design 2018, 18 (11) , 6729-6741. https://doi.org/10.1021/acs.cgd.8b01017
    12. Jose Manuel Vicent-Luna, Juan Jose Gutiérrez-Sevillano, Said Hamad, Juan Anta, Sofia Calero. Role of Ionic Liquid [EMIM]+[SCN]− in the Adsorption and Diffusion of Gases in Metal–Organic Frameworks. ACS Applied Materials & Interfaces 2018, 10 (35) , 29694-29704. https://doi.org/10.1021/acsami.8b11842
    13. Tim M. Becker, Meng Wang, Abhishek Kabra, Seyed Hossein Jamali, Mahinder Ramdin, David Dubbeldam, Carlos A. Infante Ferreira, Thijs J. H. Vlugt. Absorption Refrigeration Cycles with Ammonia–Ionic Liquid Working Pairs Studied by Molecular Simulation. Industrial & Engineering Chemistry Research 2018, 57 (15) , 5442-5452. https://doi.org/10.1021/acs.iecr.8b00442
    14. Lan-yun Wang, Yong-liang Xu, Zhen-dong Li, Ya-nan Wei, and Jian-ping Wei . CO2/CH4 and H2S/CO2 Selectivity by Ionic Liquids in Natural Gas Sweetening. Energy & Fuels 2018, 32 (1) , 10-23. https://doi.org/10.1021/acs.energyfuels.7b02852
    15. Asghar Abedini, Ellis Crabtree, Jason E. Bara, and C. Heath Turner . Molecular Simulation of Ionic Polyimides and Composites with Ionic Liquids as Gas-Separation Membranes. Langmuir 2017, 33 (42) , 11377-11389. https://doi.org/10.1021/acs.langmuir.7b01977
    16. Ali Poursaeidesfahani, Remco Hens, Ahmadreza Rahbari, Mahinder Ramdin, David Dubbeldam, and Thijs J. H. Vlugt . Efficient Application of Continuous Fractional Component Monte Carlo in the Reaction Ensemble. Journal of Chemical Theory and Computation 2017, 13 (9) , 4452-4466. https://doi.org/10.1021/acs.jctc.7b00092
    17. Seyed Hossein Jamali, Mahinder Ramdin, Tim M. Becker, Shwet Kumar Rinwa, Wim Buijs, and Thijs J. H. Vlugt . Thermodynamic and Transport Properties of Crown-Ethers: Force Field Development and Molecular Simulations. The Journal of Physical Chemistry B 2017, 121 (35) , 8367-8376. https://doi.org/10.1021/acs.jpcb.7b06547
    18. Shaojuan Zeng, Xiangping Zhang, Lu Bai, Xiaochun Zhang, Hui Wang, Jianji Wang, Di Bao, Mengdie Li, Xinyan Liu, and Suojiang Zhang . Ionic-Liquid-Based CO2 Capture Systems: Structure, Interaction and Process. Chemical Reviews 2017, 117 (14) , 9625-9673. https://doi.org/10.1021/acs.chemrev.7b00072
    19. Mansi S. Shah, Michael Tsapatsis, and J. Ilja Siepmann . Hydrogen Sulfide Capture: From Absorption in Polar Liquids to Oxide, Zeolite, and Metal–Organic Framework Adsorbents and Membranes. Chemical Reviews 2017, 117 (14) , 9755-9803. https://doi.org/10.1021/acs.chemrev.7b00095
    20. J. M. Vicent-Luna, A. Luna-Triguero, and S. Calero . Storage and Separation of Carbon Dioxide and Methane in Hydrated Covalent Organic Frameworks. The Journal of Physical Chemistry C 2016, 120 (41) , 23756-23762. https://doi.org/10.1021/acs.jpcc.6b05233
    21. Xinyan Liu, Ying Huang, Yongsheng Zhao, Rafiqul Gani, Xiangping Zhang, and Suojiang Zhang . Ionic Liquid Design and Process Simulation for Decarbonization of Shale Gas. Industrial & Engineering Chemistry Research 2016, 55 (20) , 5931-5944. https://doi.org/10.1021/acs.iecr.6b00029
    22. Ali Poursaeidesfahani, Ariana Torres-Knoop, David Dubbeldam, and Thijs J. H. Vlugt . Direct Free Energy Calculation in the Continuous Fractional Component Gibbs Ensemble. Journal of Chemical Theory and Computation 2016, 12 (4) , 1481-1490. https://doi.org/10.1021/acs.jctc.5b01230
    23. Debing Li, Wei Hu, Junqiao Zhang, Hui Shi, Qu Chen, Tianyang Sun, Lijun Liang, and Qi Wang . Separation of Hydrogen Gas from Coal Gas by Graphene Nanopores. The Journal of Physical Chemistry C 2015, 119 (45) , 25559-25565. https://doi.org/10.1021/acs.jpcc.5b06165
    24. Mahinder Ramdin, Sayee Prasaad Balaji, Ariana Torres-Knoop, David Dubbeldam, Theodoor Willem de Loos, and Thijs J. H. Vlugt . Solubility of Natural Gas Species in Ionic Liquids and Commercial Solvents: Experiments and Monte Carlo Simulations. Journal of Chemical & Engineering Data 2015, 60 (10) , 3039-3045. https://doi.org/10.1021/acs.jced.5b00469
    25. Samir Budhathoki, Jindal K. Shah, and Edward J. Maginn . Molecular Simulation Study of the Solubility, Diffusivity and Permselectivity of Pure and Binary Mixtures of CO2 and CH4 in the Ionic Liquid 1-n-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Industrial & Engineering Chemistry Research 2015, 54 (35) , 8821-8828. https://doi.org/10.1021/acs.iecr.5b02500
    26. Zhengjie Li, Yuanlong Xiao, Wenjuan Xue, Qingyuan Yang, and Chongli Zhong . Ionic Liquid/Metal–Organic Framework Composites for H2S Removal from Natural Gas: A Computational Exploration. The Journal of Physical Chemistry C 2015, 119 (7) , 3674-3683. https://doi.org/10.1021/acs.jpcc.5b00019
    27. Qu Chen, Mahinder Ramdin, Thijs J. H. Vlugt. Solubilities of CO 2 , CH 4 , C 2 H 6 , CO, H 2 , N 2 , N 2 O, and H 2 S in commercial physical solvents from Monte Carlo simulations. Molecular Simulation 2023, 49 (13-14) , 1341-1349. https://doi.org/10.1080/08927022.2023.2228918
    28. Yinxiang Xu, Yishu Yan, Shenglan Liu, Junbo Xu, Chao Yang. Electric field-facilitated dehumidification of natural gas through nanochannels. Chemical Engineering Science 2023, 277 , 118867. https://doi.org/10.1016/j.ces.2023.118867
    29. Samira Keshavarz Babaee Nejad, Javad Sayyad Amin, Ali Asghar Mohsenipour, Sohrab Zendehboudi. Hybrid smart model to determine concentration of acidic gases in absorption tower of sweetening process. The Canadian Journal of Chemical Engineering 2022, 1 https://doi.org/10.1002/cjce.24477
    30. Marion Breunig, Jian Zhu, Chenhui Ding, Renée Siegel, Seema Agarwal, Jürgen Senker. Electrospun, non-woven fiber membranes of porous polyimides with high carbon dioxide uptakes and selectivities. Microporous and Mesoporous Materials 2022, 329 , 111519. https://doi.org/10.1016/j.micromeso.2021.111519
    31. Mahdiyeh Azadpour, Zahra Jayhani, Saeed Pourmand, Ali Mohebbi. Molecular dynamic insight into solubility of H2S in ionic liquids [emim][BF4], [emim][OTf] and [emim][Tf2N]. Journal of Molecular Liquids 2021, 338 , 117114. https://doi.org/10.1016/j.molliq.2021.117114
    32. A. Rahbari, R. Hens, M. Ramdin, O. A. Moultos, D. Dubbeldam, T. J. H. Vlugt. Recent advances in the continuous fractional component Monte Carlo methodology. Molecular Simulation 2021, 47 (10-11) , 804-823. https://doi.org/10.1080/08927022.2020.1828585
    33. Ozge Yuksel Orhan. Effects of various anions and cations in ionic liquids on CO2 capture. Journal of Molecular Liquids 2021, 333 , 115981. https://doi.org/10.1016/j.molliq.2021.115981
    34. Taslim Ur Rashid. Ionic liquids: Innovative fluids for sustainable gas separation from industrial waste stream. Journal of Molecular Liquids 2021, 321 , 114916. https://doi.org/10.1016/j.molliq.2020.114916
    35. Hirad S. Salehi, Remco Hens, Othonas A. Moultos, Thijs J.H. Vlugt. Computation of gas solubilities in choline chloride urea and choline chloride ethylene glycol deep eutectic solvents using Monte Carlo simulations. Journal of Molecular Liquids 2020, 316 , 113729. https://doi.org/10.1016/j.molliq.2020.113729
    36. Jingwen Wang, Zhen Song, Hongye Cheng, Lifang Chen, Liyuan Deng, Zhiwen Qi. Multilevel screening of ionic liquid absorbents for simultaneous removal of CO2 and H2S from natural gas. Separation and Purification Technology 2020, 248 , 117053. https://doi.org/10.1016/j.seppur.2020.117053
    37. S. Ormazábal, E. Villarroel, R.A. Tapia, J. Romero, E. Quijada-Maldonado. Supercritical carbon dioxide solubility in hydrophobic ionic liquid mixtures: Experimental determination and thermodynamic modeling. Fluid Phase Equilibria 2020, 517 , 112616. https://doi.org/10.1016/j.fluid.2020.112616
    38. Junaid Haider, Saad Saeed, Muhammad Abdul Qyyum, Bilal Kazmi, Rizwan Ahmad, Ayyaz Muhammad, Moonyong Lee. Simultaneous capture of acid gases from natural gas adopting ionic liquids: Challenges, recent developments, and prospects. Renewable and Sustainable Energy Reviews 2020, 123 , 109771. https://doi.org/10.1016/j.rser.2020.109771
    39. Fitri Norizatie Mohd Salehin, Khairulazhar Jumbri, Anita Ramli, Shaari Daud, Mohd Basyaruddin Abdul Rahman. In silico solvation free energy and thermodynamics properties of H2S in cholinium-based amino acid ionic liquids. Journal of Molecular Liquids 2019, 294 , 111641. https://doi.org/10.1016/j.molliq.2019.111641
    40. Bartosz Dębski, Andreas Hänel, Robert Aranowski, Stefan Stolte, Marta Markiewicz, Thomas Veltzke, Iwona Cichowska-Kopczyńska. Thermodynamic interpretation and prediction of CO2 solubility in imidazolium ionic liquids based on regular solution theory. Journal of Molecular Liquids 2019, 291 , 110477. https://doi.org/10.1016/j.molliq.2019.02.076
    41. Utkarsh Kapoor, Atiya Banerjee, Jindal K. Shah. Evaluation of the predictive capability of ionic liquid force fields for CH4, CO2, NH3, and SO2 phase equilibria. Fluid Phase Equilibria 2019, 492 , 161-173. https://doi.org/10.1016/j.fluid.2019.03.013
    42. Eleonora Ricci, Maria De Angelis. Modelling Mixed-Gas Sorption in Glassy Polymers for CO2 Removal: A Sensitivity Analysis of the Dual Mode Sorption Model. Membranes 2019, 9 (1) , 8. https://doi.org/10.3390/membranes9010008
    43. Yingying Zhang, Xiaoyan Ji, Xiaohua Lu. Choline-based deep eutectic solvents for CO2 separation: Review and thermodynamic analysis. Renewable and Sustainable Energy Reviews 2018, 97 , 436-455. https://doi.org/10.1016/j.rser.2018.08.007
    44. Fu Wang, Jun Zhao, He Miao, Jiapei Zhao, Houcheng Zhang, Jinliang Yuan, Jinyue Yan. Current status and challenges of the ammonia escape inhibition technologies in ammonia-based CO2 capture process. Applied Energy 2018, 230 , 734-749. https://doi.org/10.1016/j.apenergy.2018.08.116
    45. Md Shamim Howlader, Shanmuga Venkatesan, Himanshu Goel, Md Masrul Huda, William Todd French, Neeraj Rai. Solubility of CO2 in triglycerides using Monte Carlo simulations. Fluid Phase Equilibria 2018, 476 , 39-47. https://doi.org/10.1016/j.fluid.2018.01.003
    46. Meng Wang, Tim M. Becker, Bob A. Schouten, Thijs J.H. Vlugt, Carlos A. Infante Ferreira. Ammonia/ionic liquid based double-effect vapor absorption refrigeration cycles driven by waste heat for cooling in fishing vessels. Energy Conversion and Management 2018, 174 , 824-843. https://doi.org/10.1016/j.enconman.2018.08.060
    47. Amro Mohamed, Panagiotis Krokidas, Ioannis G. Economou. CO2 selective metal organic framework ZIF-8 modified through ionic liquid encapsulation: A computational study. Journal of Computational Science 2018, 27 , 183-191. https://doi.org/10.1016/j.jocs.2018.05.010
    48. Ilya V. Popov, Andrei L. Tchougréeff. Applying group functions to description of ionic liquids. Computational and Theoretical Chemistry 2017, 1116 , 141-150. https://doi.org/10.1016/j.comptc.2017.04.001
    49. Ali Poursaeidesfahani, Ahmadreza Rahbari, Ariana Torres-Knoop, David Dubbeldam, Thijs J. H. Vlugt. Computation of thermodynamic properties in the continuous fractional component Monte Carlo Gibbs ensemble. Molecular Simulation 2017, 43 (3) , 189-195. https://doi.org/10.1080/08927022.2016.1244607
    50. Seyed Hossein Jamali, Mahinder Ramdin, Tim M. Becker, Ariana Torres-Knoop, David Dubbeldam, Wim Buijs, Thijs J.H. Vlugt. Solubility of sulfur compounds in commercial physical solvents and an ionic liquid from Monte Carlo simulations. Fluid Phase Equilibria 2017, 433 , 50-55. https://doi.org/10.1016/j.fluid.2016.11.015
    51. Marisa A.A. Rocha, Miguel Vilas, Ana S.M.C. Rodrigues, Emilia Tojo, Luís M.N.B.F. Santos. Physicochemical properties of 2-alkyl-1-ethylpyridinium based ionic liquids. Fluid Phase Equilibria 2016, 428 , 112-120. https://doi.org/10.1016/j.fluid.2016.05.030
    52. Mahinder Ramdin, Tim M. Becker, Seyed Hossein Jamali, Meng Wang, Thijs J.H. Vlugt. Computing equation of state parameters of gases from Monte Carlo simulations. Fluid Phase Equilibria 2016, 428 , 174-181. https://doi.org/10.1016/j.fluid.2016.06.012
    53. Marisa A.A. Rocha, Adriaan van den Bruinhorst, Wolffram Schröer, Bernd Rathke, Maaike C. Kroon. Physicochemical properties of fatty acid based ionic liquids. The Journal of Chemical Thermodynamics 2016, 100 , 156-164. https://doi.org/10.1016/j.jct.2016.04.021
    54. Mahinder Ramdin, Qu Chen, Sayee Prasaad Balaji, José Manuel Vicent-Luna, Ariana Torres-Knoop, David Dubbeldam, Sofía Calero, Theo W. de Loos, Thijs J.H. Vlugt. Solubilities of CO2, CH4, C2H6, and SO2 in ionic liquids and Selexol from Monte Carlo simulations. Journal of Computational Science 2016, 15 , 74-80. https://doi.org/10.1016/j.jocs.2015.09.002
    55. Mahinder Ramdin, Sayee Prasaad Balaji, José Manuel Vicent-Luna, Ariana Torres-Knoop, Qu Chen, David Dubbeldam, Sofía Calero, Theo W. de Loos, Thijs J.H. Vlugt. Computing bubble-points of CO2/CH4 gas mixtures in ionic liquids from Monte Carlo simulations. Fluid Phase Equilibria 2016, 418 , 100-107. https://doi.org/10.1016/j.fluid.2015.09.041
    56. Gigi George, Nidhika Bhoria, Sama AlHallaq, Ahmed Abdala, Vikas Mittal. Polymer membranes for acid gas removal from natural gas. Separation and Purification Technology 2016, 158 , 333-356. https://doi.org/10.1016/j.seppur.2015.12.033
    57. Jubao Gao, Yajing Xu, Xin Zhang, Xiangping Zhang. Solubility Measurement and Process Simulation of CO2/CH4 Gas Mixtures Using Ionic Liquids. 2015, 2525-2530. https://doi.org/10.1016/B978-0-444-63576-1.50115-1
    58. Lourdes del Olmo, Isabel Lage-Estebanez, Rafael López, José M. García de la Vega. Effect of dielectric constant on estimation of properties of ionic liquids: an analysis of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. RSC Advances 2015, 5 (89) , 72709-72715. https://doi.org/10.1039/C5RA11425J
    59. Zhijie Li, Xiangping Zhang, Haifeng Dong, Xiaochun Zhang, Hongshuai Gao, Suojiang Zhang, Jianwei Li, Congmin Wang. Efficient absorption of ammonia with hydroxyl-functionalized ionic liquids. RSC Advances 2015, 5 (99) , 81362-81370. https://doi.org/10.1039/C5RA13730F

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect