ACS Publications. Most Trusted. Most Cited. Most Read
Solubility of the Precombustion Gases CO2, CH4, CO, H2, N2, and H2S in the Ionic Liquid [bmim][Tf2N] from Monte Carlo Simulations
My Activity

Figure 1Loading Img
    Article

    Solubility of the Precombustion Gases CO2, CH4, CO, H2, N2, and H2S in the Ionic Liquid [bmim][Tf2N] from Monte Carlo Simulations
    Click to copy article linkArticle link copied!

    View Author Information
    Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
    Department of Physical, Chemical, and Natural Systems, University Pablo de Olavide, Carretera de Utrera km. 1, 41013 Seville, Spain
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2014, 118, 41, 23599–23604
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp5080434
    Published September 22, 2014
    Copyright © 2014 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Monte Carlo simulations were used to compute the solubility of the pure gases CO2, CH4, CO, H2, N2, and H2S in the ionic liquid (IL) 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [bmim][Tf2N]. Simulations in the osmotic ensemble were performed to compute absorption isotherms at a temperature of 333.15 K using the versatile continuous fractional component Monte Carlo (CFCMC) method. The predicted gas solubilities and Henry constants are in good agreement with the experimental data. The Monte Carlo simulations correctly predict the observed solubility trend, which obeys the following order: H2S > CO2 > CH4 > CO > N2 > H2. Relevant separation selectivities for the precombustion process are calculated from the pure gas Henry constants and a comparison with experimental data is provided.

    Copyright © 2014 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Force field parameters of all the studied components and details of the Peng–Robinson equation of state modeling can be found here. This material is available free of charge via the Internet at http://pubs.acs.org/.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 71 publications.

    1. Feranmi V. Olowookere, C. Heath Turner. Correlation-Based Predictions of Gas Solute Diffusivity in Ionic Liquid Solvents Based on Solvent-Accessible Surface Area. The Journal of Physical Chemistry B 2024, 128 (40) , 9837-9846. https://doi.org/10.1021/acs.jpcb.4c04830
    2. Ziqi Guo, Yang Lei, Yuming Chen, Xinyan Liu, Xiaoqin Wu, Yuqiu Chen. Industrial Byproduct Hydrogen Recovery: Mixed Solvent Design, Process Optimization, and Assessment. Energy & Fuels 2024, 38 (18) , 17855-17865. https://doi.org/10.1021/acs.energyfuels.4c03005
    3. Ehsan Chehrazi. Molecular Dynamics Simulations of Gas Transport Properties in Cross-Linked Polyamide Membranes: Tracing the Morphology and Addition of Silicate Nanotubes. ACS Omega 2024, 9 (31) , 33425-33436. https://doi.org/10.1021/acsomega.3c10108
    4. Yuki Suzuki, Masaki Watanabe, Daisuke Kodama, Takashi Makino, Mitsuhiro Kanakubo, Masakazu Sasaki. Density, Viscosity, CO2 and CH4 Solubility, and CO2/CH4 Selectivity of Protic and Aprotic Imidazolium and Ammonium Bis(trifluoromethanesulfonyl)amide and Tetrafluoroborate Ionic Liquids. Journal of Chemical & Engineering Data 2024, 69 (3) , 1013-1025. https://doi.org/10.1021/acs.jced.3c00574
    5. Alejandro Rivera-Pousa, Raúl Lois-Cuns, Martín Otero-Lema, Hadrián Montes-Campos, Trinidad Méndez-Morales, Luis Miguel Varela. Size Matters: A Computational Study of Hydrogen Absorption in Ionic Liquids. Journal of Chemical Information and Modeling 2024, 64 (1) , 164-177. https://doi.org/10.1021/acs.jcim.3c01688
    6. Kishant Kumar, Sonanki Keshri, Anand Bharti, Shailesh Kumar, Santosh Mogurampelly. Solubility of Gases in Choline Chloride-Based Deep Eutectic Solvents from Molecular Dynamics Simulation. Industrial & Engineering Chemistry Research 2022, 61 (13) , 4659-4671. https://doi.org/10.1021/acs.iecr.1c04923
    7. Xiaoyang Liu, Jason E. Bara, C. Heath Turner. Understanding Gas Solubility of Pure Component and Binary Mixtures within Multivalent Ionic Liquids from Molecular Simulations. The Journal of Physical Chemistry B 2021, 125 (29) , 8165-8174. https://doi.org/10.1021/acs.jpcb.1c04212
    8. Fernanda Paludetto Pelaquim, Antonio Marinho Barbosa Neto, Irede Angela Lucini Dalmolin, Mariana Conceição da Costa. Gas Solubility Using Deep Eutectic Solvents: Review and Analysis. Industrial & Engineering Chemistry Research 2021, 60 (24) , 8607-8620. https://doi.org/10.1021/acs.iecr.1c00947
    9. Noura Dawass, Ricardo R. Wanderley, Mahinder Ramdin, Othonas A. Moultos, Hanna K. Knuutila, Thijs J. H. Vlugt. Solubility of Carbon Dioxide, Hydrogen Sulfide, Methane, and Nitrogen in Monoethylene Glycol; Experiments and Molecular Simulation. Journal of Chemical & Engineering Data 2021, 66 (1) , 524-534. https://doi.org/10.1021/acs.jced.0c00771
    10. Koen Heijmans, Ionut C. Tranca, David M. J. Smeulders, Thijs J. H. Vlugt, Silvia V. Gaastra-Nedea. Gibbs Ensemble Monte Carlo for Reactive Force Fields to Determine the Vapor–Liquid Equilibrium of CO2 and H2O. Journal of Chemical Theory and Computation 2021, 17 (1) , 322-329. https://doi.org/10.1021/acs.jctc.0c00876
    11. Remco Hens, Ahmadreza Rahbari, Sebastián Caro-Ortiz, Noura Dawass, Máté Erdős, Ali Poursaeidesfahani, Hirad S. Salehi, Alper T. Celebi, Mahinder Ramdin, Othonas A. Moultos, David Dubbeldam, Thijs J. H. Vlugt. Brick-CFCMC: Open Source Software for Monte Carlo Simulations of Phase and Reaction Equilibria Using the Continuous Fractional Component Method. Journal of Chemical Information and Modeling 2020, 60 (6) , 2678-2682. https://doi.org/10.1021/acs.jcim.0c00334
    12. Shaoqi Yang, Guangming Cai, Xingmei Lu, Chenguang Wang, Mi Feng, Junli Xu, Qing Zhou, Jiayu Xin, Longlong Ma. Selective Deoxygenation of Lignin-Derived Phenols and Dimeric Ethers with Protic Ionic Liquids. Industrial & Engineering Chemistry Research 2020, 59 (11) , 4864-4871. https://doi.org/10.1021/acs.iecr.9b05984
    13. Utkarsh Kapoor, Jindal K. Shah. Monte Carlo Simulations of Pure and Mixed Gas Solubilities of CO2 and CH4 in Nonideal Ionic Liquid–Ionic Liquid Mixtures. Industrial & Engineering Chemistry Research 2019, 58 (50) , 22569-22578. https://doi.org/10.1021/acs.iecr.9b03384
    14. Min Yu, Shaojuan Zeng, Zongxu Wang, Zongyuan Hu, Haifeng Dong, Yi Nie, Baozeng Ren, Xiangping Zhang. Protic Ionic-Liquid-Supported Activated Carbon with Hierarchical Pores for Efficient NH3 Adsorption. ACS Sustainable Chemistry & Engineering 2019, 7 (13) , 11769-11777. https://doi.org/10.1021/acssuschemeng.9b02051
    15. Tausif Altamash, Abdulkarem I. Amhamed, Santiago Aparicio, Mert Atilhan. Combined Experimental and Theoretical Study on High Pressure Methane Solubility in Natural Deep Eutectic Solvents. Industrial & Engineering Chemistry Research 2019, 58 (19) , 8097-8111. https://doi.org/10.1021/acs.iecr.9b00702
    16. Qiao Shi, Pinqiang Cao, Zhengde Han, Fulong Ning, Hao Gong, Yue Xin, Zhisen Zhang, Jianyang Wu. Role of Guest Molecules in the Mechanical Properties of Clathrate Hydrates. Crystal Growth & Design 2018, 18 (11) , 6729-6741. https://doi.org/10.1021/acs.cgd.8b01017
    17. Jose Manuel Vicent-Luna, Juan Jose Gutiérrez-Sevillano, Said Hamad, Juan Anta, Sofia Calero. Role of Ionic Liquid [EMIM]+[SCN]− in the Adsorption and Diffusion of Gases in Metal–Organic Frameworks. ACS Applied Materials & Interfaces 2018, 10 (35) , 29694-29704. https://doi.org/10.1021/acsami.8b11842
    18. Tim M. Becker, Meng Wang, Abhishek Kabra, Seyed Hossein Jamali, Mahinder Ramdin, David Dubbeldam, Carlos A. Infante Ferreira, Thijs J. H. Vlugt. Absorption Refrigeration Cycles with Ammonia–Ionic Liquid Working Pairs Studied by Molecular Simulation. Industrial & Engineering Chemistry Research 2018, 57 (15) , 5442-5452. https://doi.org/10.1021/acs.iecr.8b00442
    19. Lan-yun Wang, Yong-liang Xu, Zhen-dong Li, Ya-nan Wei, and Jian-ping Wei . CO2/CH4 and H2S/CO2 Selectivity by Ionic Liquids in Natural Gas Sweetening. Energy & Fuels 2018, 32 (1) , 10-23. https://doi.org/10.1021/acs.energyfuels.7b02852
    20. Asghar Abedini, Ellis Crabtree, Jason E. Bara, and C. Heath Turner . Molecular Simulation of Ionic Polyimides and Composites with Ionic Liquids as Gas-Separation Membranes. Langmuir 2017, 33 (42) , 11377-11389. https://doi.org/10.1021/acs.langmuir.7b01977
    21. Ali Poursaeidesfahani, Remco Hens, Ahmadreza Rahbari, Mahinder Ramdin, David Dubbeldam, and Thijs J. H. Vlugt . Efficient Application of Continuous Fractional Component Monte Carlo in the Reaction Ensemble. Journal of Chemical Theory and Computation 2017, 13 (9) , 4452-4466. https://doi.org/10.1021/acs.jctc.7b00092
    22. Seyed Hossein Jamali, Mahinder Ramdin, Tim M. Becker, Shwet Kumar Rinwa, Wim Buijs, and Thijs J. H. Vlugt . Thermodynamic and Transport Properties of Crown-Ethers: Force Field Development and Molecular Simulations. The Journal of Physical Chemistry B 2017, 121 (35) , 8367-8376. https://doi.org/10.1021/acs.jpcb.7b06547
    23. Shaojuan Zeng, Xiangping Zhang, Lu Bai, Xiaochun Zhang, Hui Wang, Jianji Wang, Di Bao, Mengdie Li, Xinyan Liu, and Suojiang Zhang . Ionic-Liquid-Based CO2 Capture Systems: Structure, Interaction and Process. Chemical Reviews 2017, 117 (14) , 9625-9673. https://doi.org/10.1021/acs.chemrev.7b00072
    24. Mansi S. Shah, Michael Tsapatsis, and J. Ilja Siepmann . Hydrogen Sulfide Capture: From Absorption in Polar Liquids to Oxide, Zeolite, and Metal–Organic Framework Adsorbents and Membranes. Chemical Reviews 2017, 117 (14) , 9755-9803. https://doi.org/10.1021/acs.chemrev.7b00095
    25. J. M. Vicent-Luna, A. Luna-Triguero, and S. Calero . Storage and Separation of Carbon Dioxide and Methane in Hydrated Covalent Organic Frameworks. The Journal of Physical Chemistry C 2016, 120 (41) , 23756-23762. https://doi.org/10.1021/acs.jpcc.6b05233
    26. Xinyan Liu, Ying Huang, Yongsheng Zhao, Rafiqul Gani, Xiangping Zhang, and Suojiang Zhang . Ionic Liquid Design and Process Simulation for Decarbonization of Shale Gas. Industrial & Engineering Chemistry Research 2016, 55 (20) , 5931-5944. https://doi.org/10.1021/acs.iecr.6b00029
    27. Ali Poursaeidesfahani, Ariana Torres-Knoop, David Dubbeldam, and Thijs J. H. Vlugt . Direct Free Energy Calculation in the Continuous Fractional Component Gibbs Ensemble. Journal of Chemical Theory and Computation 2016, 12 (4) , 1481-1490. https://doi.org/10.1021/acs.jctc.5b01230
    28. Debing Li, Wei Hu, Junqiao Zhang, Hui Shi, Qu Chen, Tianyang Sun, Lijun Liang, and Qi Wang . Separation of Hydrogen Gas from Coal Gas by Graphene Nanopores. The Journal of Physical Chemistry C 2015, 119 (45) , 25559-25565. https://doi.org/10.1021/acs.jpcc.5b06165
    29. Mahinder Ramdin, Sayee Prasaad Balaji, Ariana Torres-Knoop, David Dubbeldam, Theodoor Willem de Loos, and Thijs J. H. Vlugt . Solubility of Natural Gas Species in Ionic Liquids and Commercial Solvents: Experiments and Monte Carlo Simulations. Journal of Chemical & Engineering Data 2015, 60 (10) , 3039-3045. https://doi.org/10.1021/acs.jced.5b00469
    30. Samir Budhathoki, Jindal K. Shah, and Edward J. Maginn . Molecular Simulation Study of the Solubility, Diffusivity and Permselectivity of Pure and Binary Mixtures of CO2 and CH4 in the Ionic Liquid 1-n-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Industrial & Engineering Chemistry Research 2015, 54 (35) , 8821-8828. https://doi.org/10.1021/acs.iecr.5b02500
    31. Zhengjie Li, Yuanlong Xiao, Wenjuan Xue, Qingyuan Yang, and Chongli Zhong . Ionic Liquid/Metal–Organic Framework Composites for H2S Removal from Natural Gas: A Computational Exploration. The Journal of Physical Chemistry C 2015, 119 (7) , 3674-3683. https://doi.org/10.1021/acs.jpcc.5b00019
    32. Manabu Tokushige, Ryota Fujisawa, Junichi Ryu. Pressure-swing absorption and desorption behaviours of ammonia in bis(trifluoromethylsulfonyl)amide salts. Sustainable Energy & Fuels 2024, 8 (23) , 5449-5457. https://doi.org/10.1039/D4SE00820K
    33. Xi Cheng, Lijun Han, Cong Zhang, Ke Wang, Miao Qi, Yanrong Liu. The application of ionic liquids in the electrocatalytic synthesis of ammonia. Chinese Science Bulletin 2024, 360 https://doi.org/10.1360/TB-2024-0858
    34. Hamid Reza Rahimpour, Jafar Zanganeh, Behdad Moghtaderi. Point Source Capture of Methane Using Ionic Liquids in Packed Bed Absorbers/Strippers: Experimental and Modelling. Processes 2024, 12 (3) , 596. https://doi.org/10.3390/pr12030596
    35. Claudio A. Faúndez, Luis A. Forero, José O. Valderrama. Use of Thermodynamically Consistent Phase Equilibrium Data to Obtain a Generalized Padé-Type Model for the Henry’s Constants of Gases in Ionic Liquids. Processes 2024, 12 (2) , 343. https://doi.org/10.3390/pr12020343
    36. Ryan W. Smith, Edward J. Maginn. Rapid screening of gas solubility in ionic liquids using biased particle insertions with pre-sampled liquid trajectories. Molecular Simulation 2024, 50 (1) , 26-42. https://doi.org/10.1080/08927022.2023.2268752
    37. Pietro Di Profio, Michele Ciulla, Stefano Di Giacomo, Nadia Barbacane, Rafal Damian Wolicki, Antonella Fontana, Samanta Moffa, Serena Pilato, Gabriella Siani. Emerging green strategies for biogas upgrading through CO2 capture: From unconventional organic solvents to clathrate and semi-clathrate hydrates. Journal of Molecular Liquids 2023, 391 , 123196. https://doi.org/10.1016/j.molliq.2023.123196
    38. Qu Chen, Mahinder Ramdin, Thijs J. H. Vlugt. Solubilities of CO 2 , CH 4 , C 2 H 6 , CO, H 2 , N 2 , N 2 O, and H 2 S in commercial physical solvents from Monte Carlo simulations. Molecular Simulation 2023, 49 (13-14) , 1341-1349. https://doi.org/10.1080/08927022.2023.2228918
    39. Yinxiang Xu, Yishu Yan, Shenglan Liu, Junbo Xu, Chao Yang. Electric field-facilitated dehumidification of natural gas through nanochannels. Chemical Engineering Science 2023, 277 , 118867. https://doi.org/10.1016/j.ces.2023.118867
    40. Hamid Reza Rahimpour, Jafar Zanganeh, Behdad Moghtaderi. Abatement of Greenhouse Gas Emissions from Ventilation Air Methane (VAM) Using Ionic Liquids: A Review of Experimental Methods and Modelling Approaches. Processes 2023, 11 (5) , 1496. https://doi.org/10.3390/pr11051496
    41. Samira Keshavarz Babaee Nejad, Javad Sayyad Amin, Ali Asghar Mohsenipour, Sohrab Zendehboudi. Hybrid smart model to determine concentration of acidic gases in absorption tower of sweetening process. The Canadian Journal of Chemical Engineering 2022, 100 (9) , 2355-2373. https://doi.org/10.1002/cjce.24477
    42. Marion Breunig, Jian Zhu, Chenhui Ding, Renée Siegel, Seema Agarwal, Jürgen Senker. Electrospun, non-woven fiber membranes of porous polyimides with high carbon dioxide uptakes and selectivities. Microporous and Mesoporous Materials 2022, 329 , 111519. https://doi.org/10.1016/j.micromeso.2021.111519
    43. Mahdiyeh Azadpour, Zahra Jayhani, Saeed Pourmand, Ali Mohebbi. Molecular dynamic insight into solubility of H2S in ionic liquids [emim][BF4], [emim][OTf] and [emim][Tf2N]. Journal of Molecular Liquids 2021, 338 , 117114. https://doi.org/10.1016/j.molliq.2021.117114
    44. A. Rahbari, R. Hens, M. Ramdin, O. A. Moultos, D. Dubbeldam, T. J. H. Vlugt. Recent advances in the continuous fractional component Monte Carlo methodology. Molecular Simulation 2021, 47 (10-11) , 804-823. https://doi.org/10.1080/08927022.2020.1828585
    45. Ozge Yuksel Orhan. Effects of various anions and cations in ionic liquids on CO2 capture. Journal of Molecular Liquids 2021, 333 , 115981. https://doi.org/10.1016/j.molliq.2021.115981
    46. Taslim Ur Rashid. Ionic liquids: Innovative fluids for sustainable gas separation from industrial waste stream. Journal of Molecular Liquids 2021, 321 , 114916. https://doi.org/10.1016/j.molliq.2020.114916
    47. Hirad S. Salehi, Remco Hens, Othonas A. Moultos, Thijs J.H. Vlugt. Computation of gas solubilities in choline chloride urea and choline chloride ethylene glycol deep eutectic solvents using Monte Carlo simulations. Journal of Molecular Liquids 2020, 316 , 113729. https://doi.org/10.1016/j.molliq.2020.113729
    48. Jingwen Wang, Zhen Song, Hongye Cheng, Lifang Chen, Liyuan Deng, Zhiwen Qi. Multilevel screening of ionic liquid absorbents for simultaneous removal of CO2 and H2S from natural gas. Separation and Purification Technology 2020, 248 , 117053. https://doi.org/10.1016/j.seppur.2020.117053
    49. S. Ormazábal, E. Villarroel, R.A. Tapia, J. Romero, E. Quijada-Maldonado. Supercritical carbon dioxide solubility in hydrophobic ionic liquid mixtures: Experimental determination and thermodynamic modeling. Fluid Phase Equilibria 2020, 517 , 112616. https://doi.org/10.1016/j.fluid.2020.112616
    50. Junaid Haider, Saad Saeed, Muhammad Abdul Qyyum, Bilal Kazmi, Rizwan Ahmad, Ayyaz Muhammad, Moonyong Lee. Simultaneous capture of acid gases from natural gas adopting ionic liquids: Challenges, recent developments, and prospects. Renewable and Sustainable Energy Reviews 2020, 123 , 109771. https://doi.org/10.1016/j.rser.2020.109771
    51. Fitri Norizatie Mohd Salehin, Khairulazhar Jumbri, Anita Ramli, Shaari Daud, Mohd Basyaruddin Abdul Rahman. In silico solvation free energy and thermodynamics properties of H2S in cholinium-based amino acid ionic liquids. Journal of Molecular Liquids 2019, 294 , 111641. https://doi.org/10.1016/j.molliq.2019.111641
    52. Bartosz Dębski, Andreas Hänel, Robert Aranowski, Stefan Stolte, Marta Markiewicz, Thomas Veltzke, Iwona Cichowska-Kopczyńska. Thermodynamic interpretation and prediction of CO2 solubility in imidazolium ionic liquids based on regular solution theory. Journal of Molecular Liquids 2019, 291 , 110477. https://doi.org/10.1016/j.molliq.2019.02.076
    53. Utkarsh Kapoor, Atiya Banerjee, Jindal K. Shah. Evaluation of the predictive capability of ionic liquid force fields for CH4, CO2, NH3, and SO2 phase equilibria. Fluid Phase Equilibria 2019, 492 , 161-173. https://doi.org/10.1016/j.fluid.2019.03.013
    54. Eleonora Ricci, Maria De Angelis. Modelling Mixed-Gas Sorption in Glassy Polymers for CO2 Removal: A Sensitivity Analysis of the Dual Mode Sorption Model. Membranes 2019, 9 (1) , 8. https://doi.org/10.3390/membranes9010008
    55. Yingying Zhang, Xiaoyan Ji, Xiaohua Lu. Choline-based deep eutectic solvents for CO2 separation: Review and thermodynamic analysis. Renewable and Sustainable Energy Reviews 2018, 97 , 436-455. https://doi.org/10.1016/j.rser.2018.08.007
    56. Fu Wang, Jun Zhao, He Miao, Jiapei Zhao, Houcheng Zhang, Jinliang Yuan, Jinyue Yan. Current status and challenges of the ammonia escape inhibition technologies in ammonia-based CO2 capture process. Applied Energy 2018, 230 , 734-749. https://doi.org/10.1016/j.apenergy.2018.08.116
    57. Md Shamim Howlader, Shanmuga Venkatesan, Himanshu Goel, Md Masrul Huda, William Todd French, Neeraj Rai. Solubility of CO2 in triglycerides using Monte Carlo simulations. Fluid Phase Equilibria 2018, 476 , 39-47. https://doi.org/10.1016/j.fluid.2018.01.003
    58. Meng Wang, Tim M. Becker, Bob A. Schouten, Thijs J.H. Vlugt, Carlos A. Infante Ferreira. Ammonia/ionic liquid based double-effect vapor absorption refrigeration cycles driven by waste heat for cooling in fishing vessels. Energy Conversion and Management 2018, 174 , 824-843. https://doi.org/10.1016/j.enconman.2018.08.060
    59. Amro Mohamed, Panagiotis Krokidas, Ioannis G. Economou. CO2 selective metal organic framework ZIF-8 modified through ionic liquid encapsulation: A computational study. Journal of Computational Science 2018, 27 , 183-191. https://doi.org/10.1016/j.jocs.2018.05.010
    60. Ilya V. Popov, Andrei L. Tchougréeff. Applying group functions to description of ionic liquids. Computational and Theoretical Chemistry 2017, 1116 , 141-150. https://doi.org/10.1016/j.comptc.2017.04.001
    61. Ali Poursaeidesfahani, Ahmadreza Rahbari, Ariana Torres-Knoop, David Dubbeldam, Thijs J. H. Vlugt. Computation of thermodynamic properties in the continuous fractional component Monte Carlo Gibbs ensemble. Molecular Simulation 2017, 43 (3) , 189-195. https://doi.org/10.1080/08927022.2016.1244607
    62. Seyed Hossein Jamali, Mahinder Ramdin, Tim M. Becker, Ariana Torres-Knoop, David Dubbeldam, Wim Buijs, Thijs J.H. Vlugt. Solubility of sulfur compounds in commercial physical solvents and an ionic liquid from Monte Carlo simulations. Fluid Phase Equilibria 2017, 433 , 50-55. https://doi.org/10.1016/j.fluid.2016.11.015
    63. Marisa A.A. Rocha, Miguel Vilas, Ana S.M.C. Rodrigues, Emilia Tojo, Luís M.N.B.F. Santos. Physicochemical properties of 2-alkyl-1-ethylpyridinium based ionic liquids. Fluid Phase Equilibria 2016, 428 , 112-120. https://doi.org/10.1016/j.fluid.2016.05.030
    64. Mahinder Ramdin, Tim M. Becker, Seyed Hossein Jamali, Meng Wang, Thijs J.H. Vlugt. Computing equation of state parameters of gases from Monte Carlo simulations. Fluid Phase Equilibria 2016, 428 , 174-181. https://doi.org/10.1016/j.fluid.2016.06.012
    65. Marisa A.A. Rocha, Adriaan van den Bruinhorst, Wolffram Schröer, Bernd Rathke, Maaike C. Kroon. Physicochemical properties of fatty acid based ionic liquids. The Journal of Chemical Thermodynamics 2016, 100 , 156-164. https://doi.org/10.1016/j.jct.2016.04.021
    66. Mahinder Ramdin, Qu Chen, Sayee Prasaad Balaji, José Manuel Vicent-Luna, Ariana Torres-Knoop, David Dubbeldam, Sofía Calero, Theo W. de Loos, Thijs J.H. Vlugt. Solubilities of CO2, CH4, C2H6, and SO2 in ionic liquids and Selexol from Monte Carlo simulations. Journal of Computational Science 2016, 15 , 74-80. https://doi.org/10.1016/j.jocs.2015.09.002
    67. Mahinder Ramdin, Sayee Prasaad Balaji, José Manuel Vicent-Luna, Ariana Torres-Knoop, Qu Chen, David Dubbeldam, Sofía Calero, Theo W. de Loos, Thijs J.H. Vlugt. Computing bubble-points of CO2/CH4 gas mixtures in ionic liquids from Monte Carlo simulations. Fluid Phase Equilibria 2016, 418 , 100-107. https://doi.org/10.1016/j.fluid.2015.09.041
    68. Gigi George, Nidhika Bhoria, Sama AlHallaq, Ahmed Abdala, Vikas Mittal. Polymer membranes for acid gas removal from natural gas. Separation and Purification Technology 2016, 158 , 333-356. https://doi.org/10.1016/j.seppur.2015.12.033
    69. Jubao Gao, Yajing Xu, Xin Zhang, Xiangping Zhang. Solubility Measurement and Process Simulation of CO2/CH4 Gas Mixtures Using Ionic Liquids. 2015, 2525-2530. https://doi.org/10.1016/B978-0-444-63576-1.50115-1
    70. Lourdes del Olmo, Isabel Lage-Estebanez, Rafael López, José M. García de la Vega. Effect of dielectric constant on estimation of properties of ionic liquids: an analysis of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. RSC Advances 2015, 5 (89) , 72709-72715. https://doi.org/10.1039/C5RA11425J
    71. Zhijie Li, Xiangping Zhang, Haifeng Dong, Xiaochun Zhang, Hongshuai Gao, Suojiang Zhang, Jianwei Li, Congmin Wang. Efficient absorption of ammonia with hydroxyl-functionalized ionic liquids. RSC Advances 2015, 5 (99) , 81362-81370. https://doi.org/10.1039/C5RA13730F

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2014, 118, 41, 23599–23604
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp5080434
    Published September 22, 2014
    Copyright © 2014 American Chemical Society

    Article Views

    2126

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.