ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Optical Properties of Spherical and Oblate Spheroidal Gold Shell Colloids

View Author Information
Center for Nanophotonics, FOM-Institute for Atomic and Molecular Physics (AMOLF), Kruislaan 407, 1098 SJ Amsterdam, The Netherlands, Wave-scattering.com, and Soft Condensed Matter, Debye Institute, Utrecht University, P.O. Box 80000, 3508 TA Utrecht, The Netherlands
Cite this: J. Phys. Chem. C 2008, 112, 11, 4146–4150
Publication Date (Web):February 23, 2008
https://doi.org/10.1021/jp710780j
Copyright © 2008 American Chemical Society

    Article Views

    989

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (186 KB)

    Abstract

    The surface plasmon modes of spherical and oblate spheroidal core−shell colloids composed of a 312 nm diameter silica core and a 20 nm thick Au shell are investigated. Large arrays of uniaxially aligned core−shell colloids with size aspect ratios ranging from 1.0 to 1.7 are fabricated using a novel ion irradiation technique. Angle- and polarization-resolved extinction spectroscopy is performed on the arrays. Extinction spectra on spherical particles reveal dipole, quadrupole, and octupole resonances in good agreement with calculations using Mie theory. Optical extinction measurements on oblate spheroidal core−shell show strong red- and blue-shifts for polarizations along major and minor axes, respectively, that increase with size anisotropy. The measured spectral shifts of the dipole, quadrupole, and octupole resonant modes with angle and anisotropy are in good agreement with T-matrix calculations. The data provide insight into the tunable resonant behavior of surface plasmons in oblate spheroidal core−shell particles.

    *

     Corresponding authors. E-mail:  [email protected]; a.vanblaaderen@ phys.uu.nl.

     FOM-Institute for Atomic and Molecular Physics.

     Wave-scattering.com.

     URL:  www.wave-scattering.com.

    §

     Debye Institute.

     URL:  www.colloid.nl.

    #

     URL:  www.erbium.nl.

    Cited By

    This article is cited by 38 publications.

    1. Gesuri Morales-Luna, Augusto García-Valenzuela, Rubén G. Barrera. Optical Coherent Reflection from a Confined Colloidal Film: Modeling and Experiment. The Journal of Physical Chemistry B 2018, 122 (36) , 8570-8581. https://doi.org/10.1021/acs.jpcb.8b03751
    2. Ezequiel R. Encina and Eduardo A. Coronado . Size Optimization of Iron Oxide@Noble Metal Core–Shell Nanohybrids for Photothermal Applications. The Journal of Physical Chemistry C 2016, 120 (10) , 5630-5639. https://doi.org/10.1021/acs.jpcc.5b11030
    3. Albert Polman . Solar Steam Nanobubbles. ACS Nano 2013, 7 (1) , 15-18. https://doi.org/10.1021/nn305869y
    4. Nikolay A. Mirin, Tamer A. Ali, Peter Nordlander and Naomi J. Halas . Perforated Semishells: Far-Field Directional Control and Optical Frequency Magnetic Response. ACS Nano 2010, 4 (5) , 2701-2712. https://doi.org/10.1021/nn100535m
    5. Feng Hao, Yannick Sonnefraud, Pol Van Dorpe, Stefan A. Maier, Naomi J. Halas and Peter Nordlander . Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance. Nano Letters 2008, 8 (11) , 3983-3988. https://doi.org/10.1021/nl802509r
    6. Jian Zhang, Yi Fu, Mustafa H. Chowdhury and Joseph R. Lakowicz. Plasmon-Coupled Fluorescence Probes: Effect of Emission Wavelength on Fluorophore-Labeled Silver Particles. The Journal of Physical Chemistry C 2008, 112 (25) , 9172-9180. https://doi.org/10.1021/jp8000493
    7. Radhika V. Nair, Anandajith T. S., Anagha Umesh Menon. Orientation-Specific Plasmonic Biosensor for Alzheimer’s Disease Detection Using Graphene-Wrapped Au Nano ellipsoids. Plasmonics 2023, 4 https://doi.org/10.1007/s11468-023-02006-5
    8. N. Yu. Kruchinin, M. G. Kucherenko. Rearrangements in the Conformational Structure of Polyelectrolytes on the Surface of a Flattened Metal Nanospheroid in an Alternating Electric Field. Colloid Journal 2023, 85 (1) , 44-58. https://doi.org/10.1134/S1061933X22600440
    9. N. Yu. Kruchinin, M. G. Kucherenko, P. P. Neyasov. Modeling Conformational Changes in Uniformly Charged Polyelectrolytes on the Surface of a Polarized Metallic Oblate Nanospheroid. Russian Journal of Physical Chemistry A 2022, 96 (12) , 2718-2728. https://doi.org/10.1134/S0036024422120184
    10. Valeria Lotito, Tomaso Zambelli. Manipulating the morphology of colloidal particles via ion beam irradiation: A route to anisotropic shaping. Advances in Colloid and Interface Science 2022, 304 , 102642. https://doi.org/10.1016/j.cis.2022.102642
    11. N. Yu. Kruchinin, M. G. Kucherenko. Statistical and Molecular-Dynamics Simulation of Electrically Induced Changes in the Conformational Structure of Polyampholytes on the Surface of a Flattened Metal Nanospheroid. Colloid Journal 2022, 84 (2) , 169-182. https://doi.org/10.1134/S1061933X22020077
    12. Gesuri Morales-Luna, Michael Morales-Luna. Effective medium theory to the description of plasmonic resonances: Role of Au and Ti nanoparticles embedded in MoO3 thin films. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-62706-4
    13. Gashaw Beyene, Teshome Senbeta, Belayneh Mesfin, Qinfang Zhang. Plasmonic properties of spheroidal spindle and disc shaped core–shell nanostructures embedded in passive host-matrices. Optical and Quantum Electronics 2020, 52 (3) https://doi.org/10.1007/s11082-020-2263-4
    14. Yulisha Byrow, Rosanna Pajak, Tadgh McMahon, Amitabh Rajouria, Angela Nickerson. Barriers to Mental Health Help-Seeking Amongst Refugee Men. International Journal of Environmental Research and Public Health 2019, 16 (15) , 2634. https://doi.org/10.3390/ijerph16152634
    15. T.H.Y. Vu, C. Dufour, V. Khomenkov, A.A. Leino, F. Djurabekova, K. Nordlund, P.-E. Coulon, G. Rizza, M. Hayoun. Elongation mechanism of the ion shaping of embedded gold nanoparticles under swift heavy ion irradiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2019, 451 , 42-48. https://doi.org/10.1016/j.nimb.2019.04.067
    16. P S Pankin, S Y Vetrov, I V Timofeev. Tamm plasmon in a structure with the nanocomposite containing spheroidal core–shell particles. Journal of Optics 2019, 21 (3) , 035103. https://doi.org/10.1088/2040-8986/ab04d8
    17. Cynthia Kembuan, Maysoon Saleh, Bastian Rühle, Ute Resch-Genger, Christina Graf. Coating of upconversion nanoparticles with silica nanoshells of 5–250 nm thickness. Beilstein Journal of Nanotechnology 2019, 10 , 2410-2421. https://doi.org/10.3762/bjnano.10.231
    18. Vadim I. Zakomirnyi, Ilia L. Rasskazov, Sergey V. Karpov, Sergey P. Polyutov. New ideally absorbing Au plasmonic nanostructures for biomedical applications. Journal of Quantitative Spectroscopy and Radiative Transfer 2017, 187 , 54-61. https://doi.org/10.1016/j.jqsrt.2016.08.015
    19. Giancarlo Rizza, Mark C. Ridgway. Ion-Shaping of Nanoparticles. 2016, 443-473. https://doi.org/10.1007/978-3-319-33561-2_11
    20. Cherinet Seboka Ambaye, Guoping Zhang. The enhancement of local electric field and farfield optical response of nanometallic shells. Optik - International Journal for Light and Electron Optics 2015, 126 (19) , 1894-1897. https://doi.org/10.1016/j.ijleo.2015.05.004
    21. Matthias Kraft, J. B. Pendry, S. A. Maier, Yu Luo. Transformation optics and hidden symmetries. Physical Review B 2014, 89 (24) https://doi.org/10.1103/PhysRevB.89.245125
    22. V S Lebedev, A S Medvedev. Optical properties of three-layer metal-organic nanoparticles with a molecular J-aggregate shell. Quantum Electronics 2013, 43 (11) , 1065-1077. https://doi.org/10.1070/QE2013v043n11ABEH015180
    23. Lutz Langguth, Deep Punj, Jérôme Wenger, A. Femius Koenderink. Plasmonic Band Structure Controls Single-Molecule Fluorescence. ACS Nano 2013, 7 (10) , 8840-8848. https://doi.org/10.1021/nn4033008
    24. Nikolai G. Khlebtsov. T-matrix method in plasmonics: An overview. Journal of Quantitative Spectroscopy and Radiative Transfer 2013, 123 , 184-217. https://doi.org/10.1016/j.jqsrt.2012.12.027
    25. Andrey B. Evlyukhin, Carsten Reinhardt, Urs Zywietz, Boris N. Chichkov. Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions. Physical Review B 2012, 85 (24) https://doi.org/10.1103/PhysRevB.85.245411
    26. Xin Zhou, Hongjian Li, Zhimin Liu, Zhihui He, Haiqing Xu, Xiao Peng. Adjustable plasmonic resonances of a gold nanotube array with a non-coaxial core. Journal of Modern Optics 2012, 59 (6) , 565-570. https://doi.org/10.1080/09500340.2011.644339
    27. A. B. Evlyukhin, A. I. Kuznetsov, S. M. Novikov, J. Beermann, C. Reinhardt, R. Kiyan, S. I. Bozhevolnyi, B. N. Chichkov. Optical properties of spherical gold mesoparticles. Applied Physics B 2012, 106 (4) , 841-848. https://doi.org/10.1007/s00340-011-4727-5
    28. Mohammed Alsawafta, Mamoun Wahbeh, Vo-Van Truong. Simulated Optical Properties of Gold Nanocubes and Nanobars by Discrete Dipole Approximation. Journal of Nanomaterials 2012, 2012 , 1-9. https://doi.org/10.1155/2012/283230
    29. Andrey B. Evlyukhin, Carsten Reinhardt, Boris N. Chichkov. Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation. Physical Review B 2011, 84 (23) https://doi.org/10.1103/PhysRevB.84.235429
    30. Xin Zhou, Hongjian Li, Suxia Xie, Shaoli Fu, Haiqing Xu, Zhimin Liu. Effects of dielectric core and embedding medium on plasmonic coupling of gold nanoshell arrays. Solid State Communications 2011, 151 (14-15) , 1049-1052. https://doi.org/10.1016/j.ssc.2011.04.014
    31. J.Y. Lu, Y.H. Chang. The lightning-rod mode in a core shell nanocylinder dimer. Optics Communications 2010, 283 (12) , 2627-2630. https://doi.org/10.1016/j.optcom.2010.02.025
    32. Michael I. Mishchenko, Nadia T. Zakharova, Gorden Videen, Nikolai G. Khlebtsov, Thomas Wriedt. Comprehensive T-matrix reference database: A 2007–2009 update. Journal of Quantitative Spectroscopy and Radiative Transfer 2010, 111 (4) , 650-658. https://doi.org/10.1016/j.jqsrt.2009.11.002
    33. J. Y. Lu, Y. H. Chang. Optical singularities associated with the energy flow of two closely spaced core-shell nanocylinders. Optics Express 2009, 17 (22) , 19451. https://doi.org/10.1364/OE.17.019451
    34. Alexander Moroz. Depolarization field of spheroidal particles. Journal of the Optical Society of America B 2009, 26 (3) , 517. https://doi.org/10.1364/JOSAB.26.000517
    35. Xinqing Guo, Matthew Churgin, Takashi Buma. Optoacoustic sensor based on self-assembled arrays of polystyrene microspheres. 2008, 887-890. https://doi.org/10.1109/ULTSYM.2008.0214
    36. Chizuko M. Dutta, Tamer A. Ali, Daniel W. Brandl, Tae-Ho Park, Peter Nordlander. Plasmonic properties of a metallic torus. The Journal of Chemical Physics 2008, 129 (8) https://doi.org/10.1063/1.2971192
    37. J. J. Penninkhof, L. A. Sweatlock, A. Moroz, H. A. Atwater, A. van Blaaderen, A. Polman. Optical cavity modes in gold shell colloids. Journal of Applied Physics 2008, 103 (12) , 123105. https://doi.org/10.1063/1.2939249
    38. Feng Hao, Elin M. Larsson, Tamer A. Ali, Duncan S. Sutherland, Peter Nordlander. Shedding light on dark plasmons in gold nanorings. Chemical Physics Letters 2008, 458 (4-6) , 262-266. https://doi.org/10.1016/j.cplett.2008.04.126

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect