ACS Publications. Most Trusted. Most Cited. Most Read
Cu-Doped ZnO Nanoneedles and Nanonails: Morphological Evolution and Physical Properties
My Activity

Figure 1Loading Img
    Article

    Cu-Doped ZnO Nanoneedles and Nanonails: Morphological Evolution and Physical Properties
    Click to copy article linkArticle link copied!

    View Author Information
    Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Department of Materials Science and Engineering, National University of Singapore, Singapore 119260, Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602
    * To whom correspondence should be addressed. E-mail: [email protected]
    †Nanyang Technological University.
    ‡National University of Singapore.
    §Institute of Materials Research and Engineering.
    Other Access OptionsSupporting Information ()

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2008, 112, 26, 9579–9585
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp710837h
    Published June 7, 2008
    Copyright © 2008 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Controlling novel morphologies and developing effective doping strategies are two important tasks for advancing ZnO-based nanomaterials. We have grown vertically aligned Cu-doped ZnO nanonails and nanoneedles and observed a continuous evolution between various morphologies. Selecting source compositions and regulating vapor and gas pressures modify the Ehrlich−Schwoebel energy barrier for the surface diffusion and determine the morphologies. X-ray diffraction study indicates a decrease in the lattice parameter after the Cu doping. Photoluminescence measurements taken on both doped and undoped samples show that, in the Cu-doped ZnO nanostructures, the band-edge UV emission and the broad green emission are red-shifted by ∼7 and 20 nm, respectively. X-ray photoelectron spectroscopy study revealed a higher level of oxygen vacancies in nanoneedles, which was found to enhance the green emission. Room-temperature ferromagnetism was also observed in Cu-doped ZnO nanomaterials. On the basis of the strong correlations between structures and properties, we demonstrate that the morphologies and the optical and magnetic characteristics can be tailored to a large degree in transition-metal-doped ZnO nanostructures.

    Copyright © 2008 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    A typical EDX spectrum of the nanoneedle sample, SEM pictures of Mn-doped ZnO nanoneedles and nanonails, decomposition of CuCl2 at the growth temperature. This information is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 184 publications.

    1. Sidra Kanwal, Muhammad Tahir Khan, Vineet Tirth, Ali Algahtani, Tawfiq Al-Mughanam, Abid Zaman. Room-Temperature Ferromagnetism in Mn-Doped ZnO Nanoparticles Synthesized by the Sol–Gel Method. ACS Omega 2023, 8 (31) , 28749-28757. https://doi.org/10.1021/acsomega.3c03418
    2. Mohamed Shaker S. Adam, Amel Taha, Mostafa M. Mostafa, Farman Ullah, Mohamed M. Makhlouf. ZnO–TiO2 Nanoparticles Coated by the Dioxomolybdenum (VI) bis-Schiff Base Complex for Catalytic Oxidation of Sulfides. ACS Applied Nano Materials 2023, 6 (10) , 8515-8528. https://doi.org/10.1021/acsanm.3c00885
    3. Jagriti Gupta and D. Bahadur . Visible Light Sensitive Mesoporous Cu-Substituted ZnO Nanoassembly for Enhanced Photocatalysis, Bacterial Inhibition, and Noninvasive Tumor Regression. ACS Sustainable Chemistry & Engineering 2017, 5 (10) , 8702-8709. https://doi.org/10.1021/acssuschemeng.7b01433
    4. D. H. Xu and W. Z. Shen . Cu-Doped ZnO Hemispherical Shell Structures: Synthesis and Room-Temperature Ferromagnetism Properties. The Journal of Physical Chemistry C 2012, 116 (24) , 13368-13373. https://doi.org/10.1021/jp3003849
    5. Hongjun Xu, Yumin Hou, Jingyun Gao, Huichao Zhu, Rui Zhu, Yanghui Sun, Xinli Zhu, Yazhou Wang, Xiaowei Wang, and Dapeng Yu . Regrowth of Template ZnO Nanowires for the Underlying Catalyst-Free Growth Mechanism. Crystal Growth & Design 2011, 11 (6) , 2135-2141. https://doi.org/10.1021/cg101391x
    6. Mohammed M. Rahman, Aslam Jamal, Sher Bahadar Khan, and Mohd Faisal . CuO Codoped ZnO Based Nanostructured Materials for Sensitive Chemical Sensor Applications. ACS Applied Materials & Interfaces 2011, 3 (4) , 1346-1351. https://doi.org/10.1021/am200151f
    7. Seid Jebril, Hanna Kuhlmann, Sven Müller, Carsten Ronning, Lorenz Kienle, Viola Duppel, Yogendra Kumar Mishra and Rainer Adelung . Epitactically Interpenetrated High Quality ZnO Nanostructured Junctions on Microchips Grown by the Vapor−Liquid−Solid Method. Crystal Growth & Design 2010, 10 (7) , 2842-2846. https://doi.org/10.1021/cg100538z
    8. Su Li, Xiaozhong Zhang and Lihuan Zhang. Sb2O3-Induced Tapered ZnO Nanowire Arrays: The Kinetics of Radial Growth and Morphology Control. The Journal of Physical Chemistry C 2010, 114 (23) , 10379-10385. https://doi.org/10.1021/jp1019125
    9. Tao Yao, Wensheng Yan, Zhihu Sun, Zhiyun Pan, Yi Xie, Yong Jiang, Jian Ye, Fengchun Hu and Shiqiang Wei . Magnetic Property and Spatial Occupation of Co Dopants in Zn0.98Co0.02O Nanowires. The Journal of Physical Chemistry C 2009, 113 (32) , 14114-14118. https://doi.org/10.1021/jp902685k
    10. Susie Eustis, Lawrence H. Robins and Babak Nikoobakht. Patterns of Ensemble Variation of the Optical Properties of ZnO Nanowires Grown with Copper and Gold Catalysts. The Journal of Physical Chemistry C 2009, 113 (6) , 2277-2285. https://doi.org/10.1021/jp808129j
    11. David Jereil S, Shankar S M, Sudhakar K, Ganeshkumar Arumugam, Padmanaban Annamalai, Radhalayam Dhanalakshmi, Sreekanth T.V.M., Abdullah Alarifi. Effect of Cu-ZnO nanoparticles on the photocatalytic degradation of reactive red 120. Surfaces and Interfaces 2025, 56 , 105579. https://doi.org/10.1016/j.surfin.2024.105579
    12. Fariba Amani, Hassan Bidadi, Mohammad Ali Mohammadi. Structural and optical studies of copper doped zinc oxide thin films synthesized by co-precipitation method. Optical Materials 2024, 156 , 115965. https://doi.org/10.1016/j.optmat.2024.115965
    13. Xiya Chen, Yudong Guo, Jiabin Li, Huakang Yang, Zhenjun Chen, Dongxiang Luo, Xiao Liu. Elemental doping tailoring photocatalytic hydrogen evolution of InP/ZnSeS/ZnS quantum dots. Chemical Engineering Journal 2024, 496 , 153947. https://doi.org/10.1016/j.cej.2024.153947
    14. Yuchen Li, Ming Yan, Xin Li, Jinxia Ma. Construction of Cu2O-ZnO/Cellulose Composites for Enhancing the Photocatalytic Performance. Catalysts 2024, 14 (8) , 476. https://doi.org/10.3390/catal14080476
    15. Swathi Yempally, Sumalatha Bonthula, Deepalekshmi Ponnamma. Triboelectric power generation performance of polyvinyl alcohol using ZnO–CuO–AgO trimetallic nanoparticles. Materials for Renewable and Sustainable Energy 2024, 13 (2) , 265-277. https://doi.org/10.1007/s40243-024-00264-9
    16. Mohamed Shaker S. Adam, Amel Taha, Abdelrahman T. Hereba, Mohamed M. Makhlouf, Hatem A. Mahmoud. Immobilized transition metal (II) bis –imine chelate on ZnO@TiO 2 nanoparticles as sufficient catalysts for alcohol oxidation and for α,β‐cinnamic acid decarboxylative bromination. Applied Organometallic Chemistry 2024, 38 (6) https://doi.org/10.1002/aoc.7438
    17. Yingzhou Hu, Dawei Chen, Hongjun Hei, Shengwang Yu, Jie Gao, Yong Ma, Ke Zheng, Yanxia Wu, Bing Zhou. Modification in structural, electrical and defect luminescence properties of ZnO nanorod films with Cu, Al and double-doping. Ceramics International 2023, 126 https://doi.org/10.1016/j.ceramint.2023.12.089
    18. Amitender Singh, Fayu Wan, Kavita Yadav, Anand Salvi, Preeti Thakur, Atul Thakur. Synergistic effect of ZnO nanoparticles with Cu2+ doping on antibacterial and photocatalytic activity. Inorganic Chemistry Communications 2023, 157 , 111425. https://doi.org/10.1016/j.inoche.2023.111425
    19. Yingzhou Hu, Hongjun Hei, Shengwang Yu, Dawei Chen, Yanan Su, Bing Zhou, Ke Zheng, Yanxia Wu. Defects luminescence enhancement in Cu doped ZnO nanorords. Ceramics International 2023, 691 https://doi.org/10.1016/j.ceramint.2023.10.271
    20. , S. Kanwal, M. T. Khan, , A. Zaman, , V. Tirth, , A. Algahtani, , T. Al-Mughanam, . Comparison the effect of co-precipitation and sol-gel techniques on the structural and magnetic attributes of ZnO and Zn(1-x)Fe0.05CoxO nanoparticles for attaining room temperature ferromagnetism (RTFM). Digest Journal of Nanomaterials and Biostructures 2023, 18 (3) , 1025-1037. https://doi.org/10.15251/DJNB.2023.183.1025
    21. Manh Trung Tran, Do Quang Trung, Nguyen Tri Tuan, Nguyen Trong Tuan, Nguyen Tu, Nguyen Van Du, Nguyen Duy Hung, Nguyen Van Quang, Tong Thi Hao Tam, Nguyen Duc Trung Kien, Nguyen Minh Hieu, Pham Thanh Huy. Highly efficient green-emitting ZnO:Cu 2+ phosphors for NUV-pumped white-emitting diodes. Dalton Transactions 2023, 52 (36) , 12704-12716. https://doi.org/10.1039/D3DT01663C
    22. Mahendra Kumar Gora, Arvind Kumar, Sanjay Kumar, Pankaj Kumar Maheshwari, Dinesh patidar, Satya Narain Dolia, Rishi Kumar Singhal. Electronic, optical and magnetic properties of Cu-doped ZnO, a possible system for eco-friendly and energy-efficient spintronic applications. Environmental Science and Pollution Research 2023, 30 (44) , 98632-98646. https://doi.org/10.1007/s11356-022-22767-6
    23. K Rudresha, A Zahir Hussain, C R Ravikumar, Mir Waqas Alam, M A Shilpa Amulya, A Naveen Kumar, Defaru Negera Duke, H C Ananda Murthy. Structural, electrochemical sensor and photocatalytic activity of combustion synthesized of novel ZnO doped CuO NPs. Materials Research Express 2023, 10 (7) , 075005. https://doi.org/10.1088/2053-1591/ace879
    24. Mohamed Shaker S. Adam, Ahmed Khalil, Amel Taha, Mostafa M. Mostafa, Mohamed M. Makhlouf, Hatem A. Mahmoud. Facile synthetic route of TiO2–ZnO heteronanostructure coated by oxovanadium (IV) bis-Schiff base complex as a potential effective homogeneous/heterogeneous catalysts for alcohols redox systems. Surfaces and Interfaces 2023, 39 , 102914. https://doi.org/10.1016/j.surfin.2023.102914
    25. N. M. A. Hadia, Meshal Alzaid, Bandar Alqahtani, Mohammed Al-Shaghdali, W. S. Mohamed, Mohammed Ezzeldien, Mohamed Shaban, Ashour M. Ahmed, Mohamed Rabia, S. H. Mohamed, M. A. Awad. Enhancement of optical, electrical and sensing characteristics of ZnO nanowires for optoelectronic applications. Journal of Materials Science: Materials in Electronics 2023, 34 (5) https://doi.org/10.1007/s10854-023-09905-7
    26. Parker Blount, Lauren Marder, Jamal Oyegoke, Tarek Trad. The effects of copper doping on morphology and room-temperature photoluminescence of ZnO nanocolumns. RSC Advances 2022, 12 (50) , 32667-32672. https://doi.org/10.1039/D2RA05278D
    27. Yirui Lv, Xian Song, Ting Lei, Ping Yin. Structural and antibacterial properties of doped zinc oxide and their composites with hydroxyapatite. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 651 , 129706. https://doi.org/10.1016/j.colsurfa.2022.129706
    28. Sathi Chatterjee, Asit Kumar Kar. Synergistic influence of FRET, bulk recombination centers, and charge separation in enhancing the visible-light-driven photocatalytic activity of Cu 2+ -ion-doped ZnO nanoflowers. Physical Chemistry Chemical Physics 2022, 24 (26) , 16281-16299. https://doi.org/10.1039/D2CP01298G
    29. Awais Khalid, Pervaiz Ahmad, Abdulhameed Khan, Saleh Muhammad, Mayeen Uddin Khandaker, Md. Mottahir Alam, Mohd Asim, Israf Ud Din, Ratiram G. Chaudhary, Dileep Kumar, Rohit Sharma, Mohammad Rashed Iqbal Faruque, Talha Bin Emran, . Effect of Cu Doping on ZnO Nanoparticles as a Photocatalyst for the Removal of Organic Wastewater. Bioinorganic Chemistry and Applications 2022, 2022 , 1-12. https://doi.org/10.1155/2022/9459886
    30. Ganesha Krishna V S, Mahesha M G. Analysis of the effect of copper concentration on the structural, spectroscopic, and electrical properties of Cu:ZnO thin films. Journal of Alloys and Compounds 2022, 899 , 163357. https://doi.org/10.1016/j.jallcom.2021.163357
    31. Govinda Dharmana, Thirumala Rao Gurugubelli, Prabhakara Srinivasa Rao Masabattula, Bathula Babu, Kisoo Yoo. Facile Synthesis, Characterization, and Photocatalytic Activity of Hydrothermally Grown Cu2+-Doped ZnO–SnS Nanocomposites for MB Dye Degradation. Catalysts 2022, 12 (3) , 328. https://doi.org/10.3390/catal12030328
    32. M. Azizar Rahman, Sajid Ali, Matthew R. Phillips, Cuong Ton-That. Multi-wavelength emission through self-induced defects in GaZnO microrods. Journal of Alloys and Compounds 2022, 895 , 162693. https://doi.org/10.1016/j.jallcom.2021.162693
    33. N. M. A. Hadia, Mathir Aljudai, Meshal Alzaid, S. H. Mohamed, W. S. Mohamed. Synthesis and characterization of undoped and copper-doped zinc oxide nanowires for optoelectronic and solar cells applications. Applied Physics A 2022, 128 (1) https://doi.org/10.1007/s00339-021-05155-8
    34. Ranvijay Kumar, Rupinder Singh, Vinay Kumar, Nishant Ranjan, Pawan Kumar. 3D Printing of ABS-Cu-ZnO Based Composite Structures: Mechanical and Morphological Investigations. 2022, 1-9. https://doi.org/10.1016/B978-0-12-820352-1.00250-9
    35. Fouaz Lekoui, Rachid Amrani, Walid Filali, Elyes Garoudja, Lyes Sebih, Imad Eddine Bakouk, Hocine Akkari, Salim Hassani, Nadia Saoula, Slimane Oussalah, Hind Albalawi, Nourah Alwadai, Mohamed Henini. Investigation of the effects of thermal annealing on the structural, morphological and optical properties of nanostructured Mn doped ZnO thin films. Optical Materials 2021, 118 , 111236. https://doi.org/10.1016/j.optmat.2021.111236
    36. Abdelkader Mohammedi, Miloud Ibrir, Omar Meglali, Saadi Berri. Influence of Cu‐Doping on Linear and Nonlinear Optical Properties of High‐Quality ZnO Thin Films Obtained by Spin‐Coating Technique. physica status solidi (b) 2021, 258 (5) https://doi.org/10.1002/pssb.202000472
    37. C. Prabakar, S. Muthukumaran, V. Raja. Investigation on microstructure, energy gap, photoluminescence and magnetic studies of Co and Cu in situ doped ZnO nanostructures. Journal of Materials Science: Materials in Electronics 2021, 32 (7) , 9702-9720. https://doi.org/10.1007/s10854-021-05632-z
    38. S.K. Singh, Puneeta Tripathi, I. Sulania, V.V. Siva Kumar, Pravin Kumar. Tuning the optical and electrical properties of magnetron-sputtered Cu–ZnO thin films using low energy Ar ion irradiation. Optical Materials 2021, 114 , 110985. https://doi.org/10.1016/j.optmat.2021.110985
    39. Ritu Mathur, Khushal Singh Negi, Rahul Shrivastava, Rashmy Nair. Recent developments in the nanomaterial-catalyzed green synthesis of structurally diverse 1,4-dihydropyridines. RSC Advances 2021, 11 (3) , 1376-1393. https://doi.org/10.1039/D0RA07807G
    40. Irmak Karaduman Er, Ali Orkun Çağırtekin, Tuğba Çorlu, Memet Ali Yıldırım, Aytunç Ateş, Selim Acar. Enhancement of the NO Gas Sensitivity by UV Light in Sn-Doped ZnO Nanostructures. 2021, 97-124. https://doi.org/10.1007/978-3-030-57737-7_4
    41. Shaila Thakur, Sudarsan Neogi. Effect of doped ZnO nanoparticles on bacterial cell morphology and biochemical composition. Applied Nanoscience 2021, 11 (1) , 159-171. https://doi.org/10.1007/s13204-020-01592-8
    42. Manish Baboo Agarwal, M. Malaidurai, Sumit Sahoo, R. Thangavel. Fabrication and characterization of Mn doped ZnO nanoarrays prepared by two step process. 2021, 020010. https://doi.org/10.1063/5.0040024
    43. Bhawna Sarwan, Brijesh Pare, A. D. Acharya. Synthesis of Mn/NiO and Mn/BiOCl nanoparticles for degradation of Nile blue dye contaminated water under visible light illumination. Particulate Science and Technology 2020, 38 (6) , 659-666. https://doi.org/10.1080/02726351.2019.1570991
    44. Kamlesh V. Chandekar, Mohd. Shkir, Badria M. Al-Shehri, S. AlFaify, Rajendra G. Halor, Aslam Khan, Khadijah S. Al-Namshah, Mohamed S. Hamdy. Visible light sensitive Cu doped ZnO: Facile synthesis, characterization and high photocatalytic response. Materials Characterization 2020, 165 , 110387. https://doi.org/10.1016/j.matchar.2020.110387
    45. S. Anitha, S. Muthukumaran. Structural, optical and antibacterial investigation of La, Cu dual doped ZnO nanoparticles prepared by co-precipitation method. Materials Science and Engineering: C 2020, 108 , 110387. https://doi.org/10.1016/j.msec.2019.110387
    46. Sabrina Roguai, Abdelkader Djelloul. A structural and optical properties of Cu-doped ZnO films prepared by spray pyrolysis. Applied Physics A 2020, 126 (2) https://doi.org/10.1007/s00339-020-3301-6
    47. Derya Tekin, Taner Tekin, Hakan Kiziltas. Photocatalytic degradation kinetics of Orange G dye over ZnO and Ag/ZnO thin film catalysts. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-54142-w
    48. Ozlem Altintas Yildirim. Efficient vapor-liquid-solid synthesis of copper doped zinc oxide (Cu:ZnO) nanonails with highly homogeneous dopant distribution. Materials Science in Semiconductor Processing 2019, 101 , 238-246. https://doi.org/10.1016/j.mssp.2019.06.014
    49. S. Iwan, Vivi Fauzia, R.A. Azeti, M.L. Maharani, Riser Fahdiran, Esmar Budi. Morphology and optical properties of Cu–Al co-doped ZnO nanostructures. Surfaces and Interfaces 2019, 16 , 147-151. https://doi.org/10.1016/j.surfin.2019.05.009
    50. Andrey P. Tarasov, Charus M. Briskina, Valery M. Markushev, Ludmila A. Zadorozhnaya, Ivan S. Volchkov, Anton M. Opolchentsev. Effect of Ag, Cu, and Co Underlayers on Luminescence and Lasing of Vapor-Phase-Grown ZnO Microcrystals. 2019, 212-215. https://doi.org/10.1109/CAOL46282.2019.9019436
    51. Alok Gaurav, Rosalin Beura, J. Santhosh Kumar, P. Thangadurai. Study on the effect of copper ion doping in zinc oxide nanomaterials for photocatalytic applications. Materials Chemistry and Physics 2019, 230 , 162-171. https://doi.org/10.1016/j.matchemphys.2019.03.056
    52. Qun Ma, Xudong Yang, Xiangzhou Lv, Hanxiang Jia, Yongqian Wang. Cu doped ZnO hierarchical nanostructures: morphological evolution and photocatalytic property. Journal of Materials Science: Materials in Electronics 2019, 30 (3) , 2309-2315. https://doi.org/10.1007/s10854-018-0503-1
    53. Pallavi G. Undre, Prashant B. Kharat, R. V. Kathare, K. M. Jadhav. Ferromagnetism in Cu2+ doped ZnO nanoparticles and their physical properties. Journal of Materials Science: Materials in Electronics 2019, 30 (4) , 4014-4025. https://doi.org/10.1007/s10854-019-00688-4
    54. Irmak Karaduman Er, Ali Orkun Çağirtekin, Tuğba Çorlu, Memet Ali Yildirim, Aytunç Ateş, Selim Acar. Low-level NO gas sensing properties of $$\hbox {Zn}_{1-x}\hbox {Sn}_{x}\hbox {O}$$ Zn 1 - x Sn x O nanostructure sensors under UV light irradiation at room temperature. Bulletin of Materials Science 2019, 42 (1) https://doi.org/10.1007/s12034-018-1714-z
    55. Bhawna Sarwan, Indervir Singh Chander, Aman Deep Acharya. Effect of transition metal dopant on the physical and photocatalytic properties of BiOCl. 2019, 020001. https://doi.org/10.1063/1.5098555
    56. Albin Antony, P. Poornesh, I. V. Kityk, K. Ozga, Ganesh Sanjeev, Vikash Chandra Petwal, Vijay Pal Verma, Jishnu Dwivedi. A novel approach for tailoring structural, morphological, photoluminescence and nonlinear optical features in spray coated Cu:ZnO nanostructures via e-beam. CrystEngComm 2018, 20 (41) , 6502-6518. https://doi.org/10.1039/C8CE01147H
    57. A. M. Opolchentsev, L. A. Zadorozhnaya, Ch. M. Briskina, V. M. Markushev, A. P. Tarasov, A. E. Muslimov, V. M. Kanevskii. UV Luminescence and Lasing in Ensembles of Zinc-Oxide Microcrystals with Copper. Optics and Spectroscopy 2018, 125 (4) , 522-527. https://doi.org/10.1134/S0030400X1810017X
    58. Faisal K. Algethami, Hadi M. Marwani, Abdullah M. Asiri, Mohammed M. Rahman. Comparative performances of phenolic sensors based on various CeO 2 -carbon material nanocomposites for environmental safety. Sensor Review 2018, 38 (4) , 467-477. https://doi.org/10.1108/SR-11-2017-0235
    59. Albin Antony, P Poornesh, I V Kityk, K Ozga, J Jedryka, P Rakus, A Wojciehcowski. X-ray photoelectron spectroscopy, Raman and photoluminescence studies on formation of defects in Cu:ZnO thin films and its role in nonlinear optical features. Laser Physics 2018, 28 (9) , 095405. https://doi.org/10.1088/1555-6611/aacd93
    60. Chedia Belkhaoui, Ramzi Lefi, Nissaf Mzabi, Hichem Smaoui. Synthesis, optical and electrical properties of Mn doped ZnO nanoparticles. Journal of Materials Science: Materials in Electronics 2018, 29 (8) , 7020-7031. https://doi.org/10.1007/s10854-018-8689-9
    61. Ouidette Slimi, Djamel Djouadi, Laid Hammiche, Azeddine Chelouche, Tahar Touam. Structural and optical properties of Cu doped ZnO aerogels synthesized in supercritical ethanol. Journal of Porous Materials 2018, 25 (2) , 595-601. https://doi.org/10.1007/s10934-017-0472-4
    62. P Rajagopalan, Vipul Singh, I A Palani. Enhancement of ZnO-based flexible nano generators via a sol–gel technique for sensing and energy harvesting applications. Nanotechnology 2018, 29 (10) , 105406. https://doi.org/10.1088/1361-6528/aaa6bd
    63. V. Ganesh, G. F. Salem, I. S. Yahia, F. Yakuphanoglu. Synthesis, Optical and Photoluminescence Properties of Cu-Doped Zno Nano-Fibers Thin Films: Nonlinear Optics. Journal of Electronic Materials 2018, 47 (3) , 1798-1805. https://doi.org/10.1007/s11664-017-5950-6
    64. A. Modwi, L. Khezami, Kamal K. Taha, Ammar Houas. Structural, surface area and FTIR characterization of Zn0.95−xCu0.05 Fe0.0xO nanocomposites prepared via sol–gel method. Journal of Materials Science: Materials in Electronics 2018, 29 (3) , 2184-2192. https://doi.org/10.1007/s10854-017-8131-8
    65. M. Fang, C. M. Tang, Z. W. Liu. Microwave-Assisted Hydrothermal Synthesis of Cu-Doped ZnO Single Crystal Nanoparticles with Modified Photoluminescence and Confirmed Ferromagnetism. Journal of Electronic Materials 2018, 47 (2) , 1390-1396. https://doi.org/10.1007/s11664-017-5928-4
    66. Sezin Galioglu, Irmak Karaduman, Tuğba Çorlu, Burcu Akata, Memet Ali Yıldırım, Aytunç Ateş, Selim Acar. Zeolite A coated Zn1−XCuXO MOS sensors for NO gas detection. Journal of Materials Science: Materials in Electronics 2018, 29 (2) , 1356-1368. https://doi.org/10.1007/s10854-017-8042-8
    67. M. Vishnu Chittan, C. Mani Kumar, D. Sailaja, B. Rajesh Kumar. X-ray Peak Profile Analysis of Nanostructured (ZnO)1-x(CuO)x Composite Semiconductor. Materials Today: Proceedings 2018, 5 (10) , 21098-21106. https://doi.org/10.1016/j.matpr.2018.06.505
    68. C.C. Vidyasagar, Gururaj Hosamani, Prakash Kariyajjanavar, R.O. Yathisha, Y. Arthoba Nayaka. One-pot Microwave Synthesis and Effect of Cu2+ ions on Structural Properties of Cu-ZnO Nano Crystals. Materials Today: Proceedings 2018, 5 (10) , 22171-22180. https://doi.org/10.1016/j.matpr.2018.06.582
    69. Shu-Han Hsieh, Jyh-Ming Ting. Characterization and photocatalytic performance of ternary Cu-doped ZnO/Graphene materials. Applied Surface Science 2018, 427 , 465-475. https://doi.org/10.1016/j.apsusc.2017.06.176
    70. Kezhen Qi, Bei Cheng, Jiaguo Yu, Wingkei Ho. Review on the improvement of the photocatalytic and antibacterial activities of ZnO. Journal of Alloys and Compounds 2017, 727 , 792-820. https://doi.org/10.1016/j.jallcom.2017.08.142
    71. A Hassanpour, P Guo, S Shen, P Bianucci. The effect of cation doping on the morphology, optical and structural properties of highly oriented wurtzite ZnO-nanorod arrays grown by a hydrothermal method. Nanotechnology 2017, 28 (43) , 435707. https://doi.org/10.1088/1361-6528/aa849d
    72. M. Salem, I. Massoudi, S. Akir, Y. Litaiem, M. Gaidi, K. Khirouni. Photoelectrochemical and opto-electronic properties tuning of ZnO films: Effect of Cu doping content. Journal of Alloys and Compounds 2017, 722 , 313-320. https://doi.org/10.1016/j.jallcom.2017.06.113
    73. Chia-Man Chou, Yu-Cheng Chang, Pei-Shih Lin, Fu-Ken Liu. Cu-doped ZnO nanowires as highly efficient continuous-flow photocatalysts for dynamic degradation of organic pollutants. Journal of Photochemistry and Photobiology A: Chemistry 2017, 347 , 1-8. https://doi.org/10.1016/j.jphotochem.2017.07.010
    74. A. Modwi, L. Khezami, Kamal Taha, O.K. Al-Duaij, Ammar Houas. Fast and high efficiency adsorption of Pb(II) ions by Cu/ZnO composite. Materials Letters 2017, 195 , 41-44. https://doi.org/10.1016/j.matlet.2017.02.089
    75. Mohammed M. Rahman, Faisal K. Algethami, Abdullah M. Asiri, Hadi M. Marwani, Basma Alhogbi. A comparative study on 4-aminophenol sensor development with various CdO nanocomposites. Nano-Structures & Nano-Objects 2017, 10 , 141-150. https://doi.org/10.1016/j.nanoso.2017.04.003
    76. D. Theyvaraju, S. Muthukumaran. Tuning of energy gap and photoluminescence behaviour of Zn0.96Ni0.04O nanostructure by Cr substitution. Journal of Materials Science: Materials in Electronics 2017, 28 (3) , 3098-3107. https://doi.org/10.1007/s10854-016-5898-y
    77. R Raji, K G Gopchandran. ZnO:Cu nanorods with visible luminescence: copper induced defect levels and its luminescence dynamics. Materials Research Express 2017, 4 (2) , 025002. https://doi.org/10.1088/2053-1591/aa5762
    78. Thanh-Dong Pham, Byeong- Kyu Lee. Novel capture and photocatalytic conversion of CO 2 into solar fuels by metals co-doped TiO 2 deposited on PU under visible light. Applied Catalysis A: General 2017, 529 , 40-48. https://doi.org/10.1016/j.apcata.2016.10.019
    79. G. Merhan Muğlu, S. Sarıtaş, T. Çakıcı, B. Şakar, M. Yıldırım. Effect of copper and nickel doping on the optical and structural properties of ZnO. 2017, 050008. https://doi.org/10.1063/1.4976386
    80. Maruthanayagam Jay Chithra, Kuppusamy Pushpanathan. Thermal, structural and optical investigation of Cu-doped ZnO nanoparticles. Modern Physics Letters B 2016, 30 (34) , 1650406. https://doi.org/10.1142/S0217984916504066
    81. V. P. Deshpande, A. U. Ubale. Effect of copper inclusion on structural, optical and electrical properties of ZnO thin films. Journal of Materials Science: Materials in Electronics 2016, 27 (12) , 12826-12833. https://doi.org/10.1007/s10854-016-5416-2
    82. Marilena Carbone. Cu Zn Co nanosized mixed oxides prepared from hydroxycarbonate precursors. Journal of Alloys and Compounds 2016, 688 , 202-209. https://doi.org/10.1016/j.jallcom.2016.07.175
    83. Yu-Cheng Chang, Pei-Shih Lin, Fu-Ken Liu, Jin-You Guo, Chien-Ming Chen. One-step and single source synthesis of Cu-doped ZnO nanowires on flexible brass foil for highly efficient field emission and photocatalytic applications. Journal of Alloys and Compounds 2016, 688 , 242-251. https://doi.org/10.1016/j.jallcom.2016.07.193
    84. C. Abinaya, M. Marikkannan, M. Manikandan, J. Mayandi, P. Suresh, V. Shanmugaiah, C. Ekstrum, J.M. Pearce. Structural and optical characterization and efficacy of hydrothermal synthesized Cu and Ag doped zinc oxide nanoplate bactericides. Materials Chemistry and Physics 2016, 184 , 172-182. https://doi.org/10.1016/j.matchemphys.2016.09.039
    85. Jinfang Kong, Donghua Fan, Canyun Zhang, Jiayue Xu. Quadrangular ZnO:Cu nanocombs: mechanism and optical properties. Journal of Materials Science: Materials in Electronics 2016, 27 (11) , 11879-11884. https://doi.org/10.1007/s10854-016-5332-5
    86. K.G. Girija, K. Somasundaram, Anita Topkar, R.K. Vatsa. Highly selective H2S gas sensor based on Cu-doped ZnO nanocrystalline films deposited by RF magnetron sputtering of powder target. Journal of Alloys and Compounds 2016, 684 , 15-20. https://doi.org/10.1016/j.jallcom.2016.05.125
    87. A.A. Othman, Manar A. Ali, E.M.M. Ibrahim, M.A. Osman. Influence of Cu doping on structural, morphological, photoluminescence, and electrical properties of ZnO nanostructures synthesized by ice-bath assisted sonochemical method. Journal of Alloys and Compounds 2016, 683 , 399-411. https://doi.org/10.1016/j.jallcom.2016.05.131
    88. S. Sivaselvan, S. Muthukumaran. Microstructure, Tuning of Band Gap, Enhanced Green Band Emission and Antibacterial Studies of Cu, Cr Dual Doped ZnO Nanoparticles by Annealing Temperature. Journal of Inorganic and Organometallic Polymers and Materials 2016, 26 (5) , 950-961. https://doi.org/10.1007/s10904-016-0420-9
    89. Rongxiang Zhao, Xiuping Li, Kehong Lin, Xiaohan Gao. Preparation and photocatalytic performance of the Mn/BiOCl albizia flower. Research on Chemical Intermediates 2016, 42 (9) , 7031-7043. https://doi.org/10.1007/s11164-016-2514-y
    90. Kanchan Joshi, Mukesh Rawat, Subodh K. Gautam, R.G. Singh, R.C. Ramola, Fouran Singh. Band gap widening and narrowing in Cu-doped ZnO thin films. Journal of Alloys and Compounds 2016, 680 , 252-258. https://doi.org/10.1016/j.jallcom.2016.04.093
    91. C.C. Vidyasagar, Y. Arthoba Naik. Surfactant (PEG 400) effects on crystallinity of ZnO nanoparticles. Arabian Journal of Chemistry 2016, 9 (4) , 507-510. https://doi.org/10.1016/j.arabjc.2012.08.002
    92. Neena Prasad, Saipavitra V. M. M, Hariharan Swaminathan, Pandiyarajan Thangaraj, Mangalaraja Ramalinga Viswanathan, Karthikeyan Balasubramanian. Microstress, strain, band gap tuning and photocatalytic properties of thermally annealed and Cu-doped ZnO nanoparticles. Applied Physics A 2016, 122 (6) https://doi.org/10.1007/s00339-016-0121-9
    93. Thanh-Dong Pham, Byeong-Kyu Lee, Chi-Hyeon Lee. The advanced removal of benzene from aerosols by photocatalytic oxidation and adsorption of Cu–TiO 2 /PU under visible light irradiation. Applied Catalysis B: Environmental 2016, 182 , 172-183. https://doi.org/10.1016/j.apcatb.2015.09.023
    94. A. N. Mallika, A. Ramachandra Reddy, K. Venugopal Reddy. Structural and optical characterization of Zn0.95−xMg0.05CuxO nanoparticles. Journal of Materials Science: Materials in Electronics 2016, 27 (2) , 1528-1534. https://doi.org/10.1007/s10854-015-3920-4
    95. Thanh-Dong Pham, Byeong-Kyu Lee. Advanced removal of C. famata in bioaerosols by simultaneous adsorption and photocatalytic oxidation of Cu-doped TiO 2 /PU under visible irradiation. Chemical Engineering Journal 2016, 286 , 377-386. https://doi.org/10.1016/j.cej.2015.10.100
    96. Özlem Altıntaş Yıldırım, Caner Durucan. Room temperature synthesis of Cu incorporated ZnO nanoparticles with room temperature ferromagnetic activity: Structural, optical and magnetic characterization. Ceramics International 2016, 42 (2) , 3229-3238. https://doi.org/10.1016/j.ceramint.2015.10.113
    97. G. Kumaravel Dinesh, T. Sivasankar, Sambandam Anandan. Metals Oxides and Doped Metal Oxides for Ultrasound and Ultrasound-Assisted Advanced Oxidation Processes for the Degradation of Textile Organic Pollutants. 2016, 733-759. https://doi.org/10.1007/978-981-287-278-4_54
    98. Y.S. Tamgadge, A.L. Sunatkari, S.S. Talwatkar, V.G. Pahurkar, G.G. Muley. Passive optical limiting studies of nanostructured Cu doped ZnO–PVA composite thin films. Optical Materials 2016, 51 , 175-184. https://doi.org/10.1016/j.optmat.2015.11.037
    99. Thanh-Dong Pham, Byeong-Kyu Lee, De Pham-Cong. Advanced removal of toluene in aerosol by adsorption and photocatalytic degradation of silver-doped TiO 2 /PU under visible light irradiation. RSC Advances 2016, 6 (30) , 25346-25358. https://doi.org/10.1039/C5RA23786F
    100. Ping Zhu, Zhengyang Weng, Xia Li, Xiangmei Liu, Shuilin Wu, K. W. K. Yeung, Xianbao Wang, Zhenduo Cui, Xianjin Yang, Paul. K. Chu. Biomedical Applications of Functionalized ZnO Nanomaterials: from Biosensors to Bioimaging. Advanced Materials Interfaces 2016, 3 (1) https://doi.org/10.1002/admi.201500494
    Load all citations

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2008, 112, 26, 9579–9585
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp710837h
    Published June 7, 2008
    Copyright © 2008 American Chemical Society

    Article Views

    2803

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.