ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Unique Cellular Interaction of Silver Nanoparticles: Size-Dependent Generation of Reactive Oxygen Species

View Author Information
Applied Biotechnology Branch, Human Effectiveness Directorate, and Science Applications International Corporation, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433
* Address for correspondence: Saber Hussain, Ph.D., Research Toxicologist, Applied Biotechnology Branch, Air Force Research Laboratory/711th Human Systems Wing, AFRL/RHPB, Area B, R ST, BLDG 837, Wright Patterson Air Force Base, AFB, Dayton, OH 45433-5707. Tel.: 937-904-9517. Fax: 937-904-9610. E-mail: [email protected]
†Applied Biotechnology Branch, Human Effectiveness Directorate.
‡Science Applications International Corporation, Air Force Research Laboratory.
Cite this: J. Phys. Chem. B 2008, 112, 43, 13608–13619
Publication Date (Web):October 3, 2008
https://doi.org/10.1021/jp712087m
Copyright © 2008 American Chemical Society

    Article Views

    14009

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    The rapid advancement of nanotechnology has created a vast array of engineered nanomaterials (ENMs) which have unique physical (size, shape, crystallinity, surface charge) and chemical (surface coating, elemental composition and solubility) attributes. These physicochemical properties of ENMs can produce chemical conditions to induce a pro-oxidant environment in the cells, causing an imbalanced cellular energy system dependent on redox potential and thereby leading to adverse biological consequences, ranging from the initiation of inflammatory pathways through to cell death. The present study was designed to evaluate size-dependent cellular interactions of known biologically active silver nanoparticles (NPs, Ag-15nm, Ag-30nm, and Ag-55nm). Alveolar macrophages provide the first defense and were studied for their potential role in initiating oxidative stress. Cell exposure produced morphologically abnormal sizes and adherence characteristics with significant NP uptake at high doses after 24 h. Toxicity evaluations using mitochondrial and cell membrane viability along with reactive oxygen species (ROS) were performed. After 24 h of exposure, viability metrics significantly decreased with increasing dose (10−75 μg/mL) of Ag-15nm and Ag-30nm NPs. A more than 10-fold increase of ROS levels in cells exposed to 50 μg/mL Ag-15nm suggests that the cytotoxicity of Ag-15nm is likely to be mediated through oxidative stress. In addition, activation of the release of traditional inflammatory mediators were examined by measuring levels of cytokines/chemokines, including tumor necrosis factor (TNF-α), macrophage inhibitory protein (MIP-2), and interleukin-6 (IL-6), released into the culture media. After 24 h of exposure to Ag-15nm nanoparticles, a significant inflammatory response was observed by the release of TNF-α, MIP-2, and IL-1β. However, there was no detectable level of IL-6 upon exposure to silver nanoparticles. In summary, a size-dependent toxicity was produced by silver nanoparticles, and one predominant mechanism of toxicity was found to be largely mediated through oxidative stress.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 1407 publications.

    1. Dezhen Kong, Yumeng Zhao, Runzhi Wang, Jiaxuan Li, Jinkuo Li, Jun Ma. Inorganic Electrified Membrane: From Basic Science to Performance Translation. ACS ES&T Engineering 2023, 3 (12) , 2123-2146. https://doi.org/10.1021/acsestengg.3c00173
    2. Chi Xu, Subhajyoti Chaudhuri, Julian Held, Himashi P. Andaraarachchi, George C. Schatz, Uwe R. Kortshagen. Silver Nanoparticle Synthesis in Glycerol by Low-Pressure Plasma-Driven Electrolysis: The Roles of Free Electrons and Photons. The Journal of Physical Chemistry Letters 2023, 14 (44) , 9960-9968. https://doi.org/10.1021/acs.jpclett.3c02342
    3. Masayuki Ono, Hui Zhang, Hayato Sone, Makoto Itonaga. Multiplex Quantification of Exosomes via Multiple Types of Nanobeads Labeling Combined with Laser Scanning Detection. Analytical Chemistry 2023, 95 (42) , 15577-15584. https://doi.org/10.1021/acs.analchem.3c02374
    4. Abida Abida, Mikhlid H. Almutairi, Nadia Mushtaq, Mushtaq Ahmed, Naila Sher, Fozia Fozia, Ijaz Ahmad, Bader O. Almutairi, Zia Ullah. Revolutionizing Nanotechnology with Filago desertorum Extracts: Biogenic Synthesis of Silver Nanoparticles Exhibiting Potent Antioxidant and Antibacterial Activities. ACS Omega 2023, 8 (38) , 35140-35151. https://doi.org/10.1021/acsomega.3c04373
    5. Bao-Xuan Xie, Hai-Shuang Wang, Hui-Qian Zheng, Jin Xu, Li Chen, Fang-Zhong Zhang, Yu-Lin Wang, Zu-Jin Lin, Rong-Guang Lin. Boosting Antibacterial Photodynamic Therapy in a Nanosized Zr MOF by the Combination of Ag NP Encapsulation and Porphyrin Doping. Inorganic Chemistry 2023, 62 (34) , 13892-13901. https://doi.org/10.1021/acs.inorgchem.3c01785
    6. Jian Zhang, Nisha Neupane, Puspa Raj Dahal, Shadi Rahimi, Zhejian Cao, Santosh Pandit, Ivan Mijakovic. Antibiotic-Loaded Boron Nitride Nanoconjugate with Strong Performance against Planktonic Bacteria and Biofilms. ACS Applied Bio Materials 2023, 6 (8) , 3131-3142. https://doi.org/10.1021/acsabm.3c00247
    7. Pradip Maiti, Swarupa Sarkar, Tanmoy Singha, Sannak Dutta Roy, Mrityunjoy Mahato, Parimal Karmakar, Sharmistha Paul, Pabitra Kumar Paul. Enhancement of Fluorescence Mediated by Silver Nanoparticles: Implications for Cell Imaging. Langmuir 2023, 39 (19) , 6713-6729. https://doi.org/10.1021/acs.langmuir.3c00204
    8. Chihiro Mochizuki, Junna Nakamura, Michihiro Nakamura. Effects of Au States in Thiol-Organosilica Nanoparticles on Enzyme-like Activity for X-ray Sensitizer Application: Focus on Reactive Oxygen Species Generation in Radiotherapy. ACS Omega 2023, 8 (10) , 9569-9582. https://doi.org/10.1021/acsomega.3c00096
    9. Preeti Singh, S. Wazed Ali, Ravindra D. Kale. Antimicrobial Nanomaterials as Advanced Coatings for Self-Sanitizing of Textile Clothing and Personal Protective Equipment. ACS Omega 2023, 8 (9) , 8159-8171. https://doi.org/10.1021/acsomega.2c06343
    10. Pia Ramos, Einat Chetrit, Nofar Yehuda, David Kogan, Yu Miao, Einat Nativ-Roth, Ariel Kushmaro, Ronen Berkovich, Shaily Mahendra, Moshe Gottlieb. Physical and Antimicrobial Properties of Chitosan/Silver Nanoparticle Composite Hydrogels: Role of the Crosslinker. ACS Sustainable Chemistry & Engineering 2023, 11 (1) , 133-143. https://doi.org/10.1021/acssuschemeng.2c04784
    11. Abdullah A. A. Ahmed, Thana S. Aldeen, Samar A. Al-Aqil, ZabnAllah M. Alaizeri, Saad Megahed. Synthesis of Trimetallic (Ni-Cu)@Ag Core@Shell Nanoparticles without Stabilizing Materials for Antibacterial Applications. ACS Omega 2022, 7 (42) , 37340-37350. https://doi.org/10.1021/acsomega.2c03943
    12. Neetu Tripathi, Manoj Kumar Goshisht. Recent Advances and Mechanistic Insights into Antibacterial Activity, Antibiofilm Activity, and Cytotoxicity of Silver Nanoparticles. ACS Applied Bio Materials 2022, 5 (4) , 1391-1463. https://doi.org/10.1021/acsabm.2c00014
    13. John Ndayishimiye, Tushar Kumeria, Amirali Popat, James Robert Falconer, Mark A. T. Blaskovich. Nanomaterials: The New Antimicrobial Magic Bullet. ACS Infectious Diseases 2022, 8 (4) , 693-712. https://doi.org/10.1021/acsinfecdis.1c00660
    14. Sunghyun Nam, Gordon W. Selling, Matthew B. Hillyer, Brian D. Condon, Md. Saifur Rahman, SeChin Chang. Brown Cotton Fibers Self-Produce Ag Nanoparticles for Regenerating Their Antimicrobial Surfaces. ACS Applied Nano Materials 2021, 4 (12) , 13112-13122. https://doi.org/10.1021/acsanm.1c02640
    15. Thanusu Parandhaman, Priyadarshani Choudhary, Baskaran Ramalingam, Michael Schmidt, Sridevi Janardhanam, Sujoy K. Das. Antibacterial and Antibiofouling Activities of Antimicrobial Peptide-Functionalized Graphene–Silver Nanocomposites for the Inhibition and Disruption of Staphylococcus aureus Biofilms. ACS Biomaterials Science & Engineering 2021, 7 (12) , 5899-5917. https://doi.org/10.1021/acsbiomaterials.1c01253
    16. Lu Wang, Danielle F. Mello, Robert M. Zucker, Nelson A. Rivera, Nicholas M. K. Rogers, Nicholas K. Geitner, William K. Boyes, Mark R. Wiesner, Heileen Hsu-Kim, Joel N. Meyer. Lack of Detectable Direct Effects of Silver and Silver Nanoparticles on Mitochondria in Mouse Hepatocytes. Environmental Science & Technology 2021, 55 (16) , 11166-11175. https://doi.org/10.1021/acs.est.1c02295
    17. Mohamed Elsamadony, Ahmed Elreedy, Alsayed Mostafa, Manabu Fujii, Johannes Gescher, Sepehr Shakeri Yekta, Anna Schnürer, Jean-François Gaillard, Deepak Pant. Perspectives on Potential Applications of Nanometal Derivatives in Gaseous Bioenergy Pathways: Mechanisms, Life Cycle, and Toxicity. ACS Sustainable Chemistry & Engineering 2021, 9 (29) , 9563-9589. https://doi.org/10.1021/acssuschemeng.1c02260
    18. Haifeng Wang, Mingyue Lin, Toru Murayama, Shixiang Feng, Masatake Haruta, Hiroki Miura, Tetsuya Shishido. Ag Size/Structure-Dependent Effect on Low-Temperature Selective Catalytic Oxidation of NH3 over Ag/MnO2. ACS Catalysis 2021, 11 (14) , 8576-8584. https://doi.org/10.1021/acscatal.1c01130
    19. Wen-Xia Fang, Shu-Hua Ma, Hui Dong, Xiao-Wei Jin, Ya-Chen Zou, Ke-Xin Xu, Lan Zhang, Yang-Hui Luo. Squarelike AgCl Nanoparticles Grown Using NiCl2(Pyz)2-Based Metal–Organic Framework Nanosheet Templates for Antibacterial Applications. ACS Applied Nano Materials 2021, 4 (5) , 5541-5547. https://doi.org/10.1021/acsanm.1c01015
    20. Xun Liu, Zihan Cheng, Hui Wen, Shangqing Zhang, Mingli Chen, Jianhua Wang. Hybrids of Upconversion Nanoparticles and Silver Nanoclusters Ensure Superior Bactericidal Capability via Combined Sterilization. ACS Applied Materials & Interfaces 2020, 12 (46) , 51285-51292. https://doi.org/10.1021/acsami.0c15710
    21. Jia H. Shi, Jessica L. Axson, Ingrid L. Bergin, Andrew P. Ault. Nanoparticle Digestion Simulator Reveals pH-Dependent Aggregation in the Gastrointestinal Tract. Analytical Chemistry 2020, 92 (18) , 12257-12264. https://doi.org/10.1021/acs.analchem.0c01844
    22. Mousumi Mukherjee, Kaustav Gangopadhyay, Rahul Das, Pradipta Purkayastha. Development of Non-ionic Surfactant and Protein-Coated Ultrasmall Silver Nanoparticles: Increased Viscoelasticity Enables Potency in Biological Applications. ACS Omega 2020, 5 (15) , 8999-9006. https://doi.org/10.1021/acsomega.0c00825
    23. Marcos Arribas Perez, Oscar H. Moriones, Neus G. Bastús, Victor Puntes, Andrew Nelson, Paul A. Beales. Mechanomodulation of Lipid Membranes by Weakly Aggregating Silver Nanoparticles. Biochemistry 2019, 58 (47) , 4761-4773. https://doi.org/10.1021/acs.biochem.9b00390
    24. Qianqian Guo, Tianyu Lan, Guoping Wu, Yi Chen, Ting Xiao, Yini Xu, Zhaoxiong Ma, Mingsong Liao, Xiangchun Shen. Acidity-Activated Charge-Convertible Silver Nanocomposites for Enhanced Bacteria-Specific Aggregation and Antibacterial Activity. Biomacromolecules 2019, 20 (8) , 3031-3040. https://doi.org/10.1021/acs.biomac.9b00598
    25. Tyler P. Nicholas, Terrance J. Kavanagh, Elaine M. Faustman, William A. Altemeier. The Effects of Gene × Environment Interactions on Silver Nanoparticle Toxicity in the Respiratory System. Chemical Research in Toxicology 2019, 32 (6) , 952-968. https://doi.org/10.1021/acs.chemrestox.8b00234
    26. Morteza Hasanzadeh Kafshgari, Anca Mazare, Monica Distaso, Wolfgang H. Goldmann, Wolfgang Peukert, Ben Fabry, Patrik Schmuki. Intracellular Drug Delivery with Anodic Titanium Dioxide Nanotubes and Nanocylinders. ACS Applied Materials & Interfaces 2019, 11 (16) , 14980-14985. https://doi.org/10.1021/acsami.9b01211
    27. Shuping Zhang, Quanzhong Ren, Hui Qi, Sijin Liu, Yajun Liu. Adverse Effects of Fine-Particle Exposure on Joints and Their Surrounding Cells and Microenvironment. ACS Nano 2019, 13 (3) , 2729-2748. https://doi.org/10.1021/acsnano.8b08517
    28. Antonio Francesko, Kristina Ivanova, Javier Hoyo, Sílvia Pérez-Rafael, Petya Petkova, Margarida M Fernandes, Thomas Heinze, Ernest Mendoza, Tzanko Tzanov. Bottom-up Layer-by-Layer Assembling of Antibacterial Freestanding Nanobiocomposite Films. Biomacromolecules 2018, 19 (9) , 3628-3636. https://doi.org/10.1021/acs.biomac.8b00626
    29. Huiling Zhang, Wenchao Du, Jose R. Peralta-Videa, Jorge L. Gardea-Torresdey, Jason C. White, Arturo Keller, Hongyan Guo, Rong Ji, Lijuan Zhao. Metabolomics Reveals How Cucumber (Cucumis sativus) Reprograms Metabolites To Cope with Silver Ions and Silver Nanoparticle-Induced Oxidative Stress. Environmental Science & Technology 2018, 52 (14) , 8016-8026. https://doi.org/10.1021/acs.est.8b02440
    30. Rinat Ankri, Ruchira Chakraborty, Menachem Motiei, Dror Fixler. Three-Dimensional Highly Sensitive Diffusion Reflection-Based Imaging Method for the in Vivo Localization of Atherosclerosis Plaques Following Gold Nanorods Accumulation. ACS Omega 2018, 3 (6) , 6134-6142. https://doi.org/10.1021/acsomega.8b00750
    31. Md Nazir Hossen, Brennah Murphy, Lorena Garcı́a-Hevia, Resham Bhattacharya, Priyabrata Mukherjee. Probing Cellular Processes Using Engineered Nanoparticles. Bioconjugate Chemistry 2018, 29 (6) , 1793-1808. https://doi.org/10.1021/acs.bioconjchem.8b00026
    32. Xiaoqi Liu, Jiang Chen, Chao Qu, Gong Bo, Lang Jiang, Hui Zhao, Jing Zhang, Yin Lin, Yu Hua, Ping Yang, Nan Huang, Zhenglin Yang. A Mussel-Inspired Facile Method to Prepare Multilayer-AgNP-Loaded Contact Lens for Early Treatment of Bacterial and Fungal Keratitis. ACS Biomaterials Science & Engineering 2018, 4 (5) , 1568-1579. https://doi.org/10.1021/acsbiomaterials.7b00977
    33. Yang Li, Jian Zhao, Enxiang Shang, Xinghui Xia, Junfeng Niu, John Crittenden. Effects of Chloride Ions on Dissolution, ROS Generation, and Toxicity of Silver Nanoparticles under UV Irradiation. Environmental Science & Technology 2018, 52 (8) , 4842-4849. https://doi.org/10.1021/acs.est.7b04547
    34. Kiran Jadhav, Sharada Deore, Dinesh Dhamecha, Rajeshwari H R, Satveer Jagwani, Sunil Jalalpure, Raghvendra Bohara. Phytosynthesis of Silver Nanoparticles: Characterization, Biocompatibility Studies, and Anticancer Activity. ACS Biomaterials Science & Engineering 2018, 4 (3) , 892-899. https://doi.org/10.1021/acsbiomaterials.7b00707
    35. Berengere Villeret, Alexandra Dieu, Marjolene Straube, Brigitte Solhonne, Pika Miklavc, Sena Hamadi, Rémi Le Borgne, Arnaud Mailleux, Xavier Norel, Joel Aerts, Devy Diallo, Francois Rouzet, Paul Dietl, Jean-Michel Sallenave, and Ignacio Garcia-Verdugo . Silver Nanoparticles Impair Retinoic Acid-Inducible Gene I-Mediated Mitochondrial Antiviral Immunity by Blocking the Autophagic Flux in Lung Epithelial Cells. ACS Nano 2018, 12 (2) , 1188-1202. https://doi.org/10.1021/acsnano.7b06934
    36. Lei Mei, Zi Teng, Guizhi Zhu, Yijing Liu, Fuwu Zhang, Jinglin Zhang, Ying Li, Yongguang Guan, Yaguang Luo, Xianggui Chen, and Qin Wang . Silver Nanocluster-Embedded Zein Films as Antimicrobial Coating Materials for Food Packaging. ACS Applied Materials & Interfaces 2017, 9 (40) , 35297-35304. https://doi.org/10.1021/acsami.7b08152
    37. Xiang Ran, Ye Du, Zhenzhen Wang, Huan Wang, Fang Pu, Jinsong Ren, and Xiaogang Qu . Hyaluronic Acid-Templated Ag Nanoparticles/Graphene Oxide Composites for Synergistic Therapy of Bacteria Infection. ACS Applied Materials & Interfaces 2017, 9 (23) , 19717-19724. https://doi.org/10.1021/acsami.7b05584
    38. Reshma Lali Raveendran, Nishanth Kumar Sasidharan, and Sudha J. Devaki . Design of Macroscopically Ordered Liquid Crystalline Hydrogel Columns Knitted with Nanosilver for Topical Applications. Bioconjugate Chemistry 2017, 28 (4) , 1005-1015. https://doi.org/10.1021/acs.bioconjchem.6b00706
    39. Ning Wang, Xing Wei, An-Qi Zheng, Ting Yang, Ming-Li Chen, and Jian-Hua Wang . Dual Functional Core–Shell Fluorescent Ag2S@Carbon Nanostructure for Selective Assay of E. coli O157:H7 and Bactericidal Treatment. ACS Sensors 2017, 2 (3) , 371-378. https://doi.org/10.1021/acssensors.6b00688
    40. Mehrnoosh Azodi, Yasir Sultan, and Subhasis Ghoshal . Dissolution Behavior of Silver Nanoparticles and Formation of Secondary Silver Nanoparticles in Municipal Wastewater by Single-Particle ICP-MS. Environmental Science & Technology 2016, 50 (24) , 13318-13327. https://doi.org/10.1021/acs.est.6b03957
    41. Divya Arumugam, Mathavan Thangapandian, Archana Jayaram, Gunadhor Singh Okram, Niranjan Prasad Lalla, and Milton Franklin Benial Amirtham . Induced Aggregation of Steric Stabilizing Anionic-Rich 2-Amino-3-chloro-5-trifluoromethylpyridine on CeO2 QDs: Surface Charge and Electro-Osmotic Flow Analysis. The Journal of Physical Chemistry C 2016, 120 (46) , 26544-26555. https://doi.org/10.1021/acs.jpcc.6b09082
    42. Zhiyun Zhang, Huiyuan Guo, Thomas Carlisle, Arnab Mukherjee, Amanda Kinchla, Jason C. White, Baoshan Xing, and Lili He . Evaluation of Postharvest Washing on Removal of Silver Nanoparticles (AgNPs) from Spinach Leaves. Journal of Agricultural and Food Chemistry 2016, 64 (37) , 6916-6922. https://doi.org/10.1021/acs.jafc.6b02705
    43. Amaresh Kumar Sahoo, Upashi Goswami, Deepanjalee Dutta, Subhamoy Banerjee, Arun Chattopadhyay, and Siddhartha Sankar Ghosh . Silver Nanocluster Embedded Composite Nanoparticles for Targeted Prodrug Delivery in Cancer Theranostics. ACS Biomaterials Science & Engineering 2016, 2 (8) , 1395-1402. https://doi.org/10.1021/acsbiomaterials.6b00334
    44. Qiang Cui, Rigoberto Hernandez, Sara E. Mason, Thomas Frauenheim, Joel A. Pedersen, and Franz Geiger . Sustainable Nanotechnology: Opportunities and Challenges for Theoretical/Computational Studies. The Journal of Physical Chemistry B 2016, 120 (30) , 7297-7306. https://doi.org/10.1021/acs.jpcb.6b03976
    45. Baskaran Ramalingam, Thanusu Parandhaman, and Sujoy K. Das . Antibacterial Effects of Biosynthesized Silver Nanoparticles on Surface Ultrastructure and Nanomechanical Properties of Gram-Negative Bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Applied Materials & Interfaces 2016, 8 (7) , 4963-4976. https://doi.org/10.1021/acsami.6b00161
    46. Ian L. Gunsolus and Christy L. Haynes . Analytical Aspects of Nanotoxicology. Analytical Chemistry 2016, 88 (1) , 451-479. https://doi.org/10.1021/acs.analchem.5b04221
    47. Ying X. Liu, Arpad Karsai, Donald S. Anderson, Rona M. Silva, Dale L. Uyeminami, Laura S. Van Winkle, Kent E. Pinkerton, and Gang-yu Liu . Single-Cell Mechanics Provides an Effective Means To Probe in Vivo Interactions between Alveolar Macrophages and Silver Nanoparticles. The Journal of Physical Chemistry B 2015, 119 (49) , 15118-15129. https://doi.org/10.1021/acs.jpcb.5b07656
    48. Mafalda S. Baptista, Robert J. Miller, Elisa R. Halewood, Shannon K. Hanna, C. Marisa R. Almeida, Vitor M. Vasconcelos, Arturo A. Keller, and Hunter S. Lenihan . Impacts of Silver Nanoparticles on a Natural Estuarine Plankton Community. Environmental Science & Technology 2015, 49 (21) , 12968-12974. https://doi.org/10.1021/acs.est.5b03285
    49. Lucas A. Lane, Ximei Qian, and Shuming Nie . SERS Nanoparticles in Medicine: From Label-Free Detection to Spectroscopic Tagging. Chemical Reviews 2015, 115 (19) , 10489-10529. https://doi.org/10.1021/acs.chemrev.5b00265
    50. Ioannis G. Theodorou, Danielle Botelho, Stephan Schwander, Junfeng Zhang, Kian Fan Chung, Teresa D. Tetley, Milo S. P. Shaffer, Andrew Gow, Mary P. Ryan, and Alexandra E. Porter . Static and Dynamic Microscopy of the Chemical Stability and Aggregation State of Silver Nanowires in Components of Murine Pulmonary Surfactant. Environmental Science & Technology 2015, 49 (13) , 8048-8056. https://doi.org/10.1021/acs.est.5b01214
    51. J. Daniel Padmos, Robert T. M. Boudreau, Donald F. Weaver, and Peng Zhang . Impact of Protecting Ligands on Surface Structure and Antibacterial Activity of Silver Nanoparticles. Langmuir 2015, 31 (12) , 3745-3752. https://doi.org/10.1021/acs.langmuir.5b00049
    52. Li Qiang Chen, Li Fang, Jian Ling, Cheng Zhi Ding, Bin Kang, and Cheng Zhi Huang . Nanotoxicity of Silver Nanoparticles to Red Blood Cells: Size Dependent Adsorption, Uptake, and Hemolytic Activity. Chemical Research in Toxicology 2015, 28 (3) , 501-509. https://doi.org/10.1021/tx500479m
    53. Una Bogdanović, Vesna Vodnik, Miodrag Mitrić, Suzana Dimitrijević, Srečo D. Škapin, Vojka Žunič, Milica Budimir, and Milovan Stoiljković . Nanomaterial with High Antimicrobial Efficacy—Copper/Polyaniline Nanocomposite. ACS Applied Materials & Interfaces 2015, 7 (3) , 1955-1966. https://doi.org/10.1021/am507746m
    54. Mei Zhang, Ping Wang, Hongyan Sun, and Zuankai Wang . Superhydrophobic Surface with Hierarchical Architecture and Bimetallic Composition for Enhanced Antibacterial Activity. ACS Applied Materials & Interfaces 2014, 6 (24) , 22108-22115. https://doi.org/10.1021/am505490w
    55. Laura K. Braydich-Stolle, Emily K. Breitner, Kristen K. Comfort, John J. Schlager, and Saber M. Hussain . Dynamic Characteristics of Silver Nanoparticles in Physiological Fluids: Toxicological Implications. Langmuir 2014, 30 (50) , 15309-15316. https://doi.org/10.1021/la5036079
    56. Valeria V. Kleandrova, Feng Luan, Humberto González-Díaz, Juan M. Ruso, Alejandro Speck-Planche, and M. Natália D. S. Cordeiro . Computational Tool for Risk Assessment of Nanomaterials: Novel QSTR-Perturbation Model for Simultaneous Prediction of Ecotoxicity and Cytotoxicity of Uncoated and Coated Nanoparticles under Multiple Experimental Conditions. Environmental Science & Technology 2014, 48 (24) , 14686-14694. https://doi.org/10.1021/es503861x
    57. Yue Tian, Juanjuan Qi, Wei Zhang, Qiang Cai, and Xingyu Jiang . Facile, One-Pot Synthesis, and Antibacterial Activity of Mesoporous Silica Nanoparticles Decorated with Well-Dispersed Silver Nanoparticles. ACS Applied Materials & Interfaces 2014, 6 (15) , 12038-12045. https://doi.org/10.1021/am5026424
    58. Anna Fendyur, Sarvesh Varma, Catherine T. Lo, and Joel Voldman . Cell-Based Biosensor to Report DNA Damage in Micro- and Nanosystems. Analytical Chemistry 2014, 86 (15) , 7598-7605. https://doi.org/10.1021/ac501412c
    59. Bellina Veronesi, Brian Chorley, William Ward, Steven O. Simmons, Alan Tennant, and Beena Vallanat . The Physicochemistry of Capped Nanosilver Predicts Its Biological Activity in Rat Brain Endothelial Cells (RBEC4). ACS Sustainable Chemistry & Engineering 2014, 2 (7) , 1566-1573. https://doi.org/10.1021/sc5000896
    60. Yue Chen, Zhe Wang, Ming Xu, Xiang Wang, Rui Liu, Qian Liu, Zhihong Zhang, Tian Xia, Jincai Zhao, Guibin Jiang, Yong Xu, and Sijin Liu . Nanosilver Incurs an Adaptive Shunt of Energy Metabolism Mode to Glycolysis in Tumor and Nontumor Cells. ACS Nano 2014, 8 (6) , 5813-5825. https://doi.org/10.1021/nn500719m
    61. Rinat Ankri, Dorit Leshem-Lev, Dror Fixler, Rachela Popovtzer, Menachem Motiei, Ran Kornowski, Edith Hochhauser, and Eli I. Lev . Gold Nanorods as Absorption Contrast Agents for the Noninvasive Detection of Arterial Vascular Disorders Based on Diffusion Reflection Measurements. Nano Letters 2014, 14 (5) , 2681-2687. https://doi.org/10.1021/nl500573d
    62. Kristen K. Comfort, Laura K. Braydich-Stolle, Elizabeth I. Maurer, and Saber M. Hussain . Less Is More: Long-Term in Vitro Exposure to Low Levels of Silver Nanoparticles Provides New Insights for Nanomaterial Evaluation. ACS Nano 2014, 8 (4) , 3260-3271. https://doi.org/10.1021/nn5009116
    63. Thiago Verano-Braga, Rona Miethling-Graff, Katarzyna Wojdyla, Adelina Rogowska-Wrzesinska, Jonathan R. Brewer, Helmut Erdmann, and Frank Kjeldsen . Insights into the Cellular Response Triggered by Silver Nanoparticles Using Quantitative Proteomics. ACS Nano 2014, 8 (3) , 2161-2175. https://doi.org/10.1021/nn4050744
    64. Xinyu Yang, Chuanjia Jiang, Heileen Hsu-Kim, Appala Raju Badireddy, Michael Dykstra, Mark Wiesner, David E. Hinton, and Joel N. Meyer . Silver Nanoparticle Behavior, Uptake, and Toxicity in Caenorhabditis elegans: Effects of Natural Organic Matter. Environmental Science & Technology 2014, 48 (6) , 3486-3495. https://doi.org/10.1021/es404444n
    65. Angela Ivask, Amro ElBadawy, Chitrada Kaweeteerawat, David Boren, Heidi Fischer, Zhaoxia Ji, Chong Hyun Chang, Rong Liu, Thabet Tolaymat, Donatello Telesca, Jeffrey I. Zink, Yoram Cohen, Patricia Ann Holden, and Hilary A. Godwin . Toxicity Mechanisms in Escherichia coli Vary for Silver Nanoparticles and Differ from Ionic Silver. ACS Nano 2014, 8 (1) , 374-386. https://doi.org/10.1021/nn4044047
    66. Christina L. Alito and Claudia K. Gunsch . Assessing the Effects of Silver Nanoparticles on Biological Nutrient Removal in Bench-Scale Activated Sludge Sequencing Batch Reactors. Environmental Science & Technology 2014, 48 (2) , 970-976. https://doi.org/10.1021/es403640j
    67. Shu Chen, Ioannis G. Theodorou, Angela E. Goode, Andrew Gow, Stephan Schwander, Junfeng (Jim) Zhang, Kian Fan Chung, Teresa D. Tetley, Milo S. Shaffer, Mary P. Ryan, and Alexandra E. Porter . High-Resolution Analytical Electron Microscopy Reveals Cell Culture Media-Induced Changes to the Chemistry of Silver Nanowires. Environmental Science & Technology 2013, 47 (23) , 13813-13821. https://doi.org/10.1021/es403264d
    68. Jooyoung Song, Hyunyoung Kim, Yoonsun Jang, and Jyongsik Jang . Enhanced Antibacterial Activity of Silver/Polyrhodanine-Composite-Decorated Silica Nanoparticles. ACS Applied Materials & Interfaces 2013, 5 (22) , 11563-11568. https://doi.org/10.1021/am402310u
    69. Seung Soo Lee, Wensi Song, Minjung Cho, Hema L. Puppala, Phuc Nguyen, Huiguang Zhu, Laura Segatori, and Vicki L. Colvin . Antioxidant Properties of Cerium Oxide Nanocrystals as a Function of Nanocrystal Diameter and Surface Coating. ACS Nano 2013, 7 (11) , 9693-9703. https://doi.org/10.1021/nn4026806
    70. Yang Li, Wen Zhang, Junfeng Niu, and Yongsheng Chen . Surface-Coating-Dependent Dissolution, Aggregation, and Reactive Oxygen Species (ROS) Generation of Silver Nanoparticles under Different Irradiation Conditions. Environmental Science & Technology 2013, 47 (18) , 10293-10301. https://doi.org/10.1021/es400945v
    71. Susan A. Cumberland and Jamie R. Lead . Synthesis of NOM-Capped Silver Nanoparticles: Size, Morphology, Stability, and NOM Binding Characteristics. ACS Sustainable Chemistry & Engineering 2013, 1 (7) , 817-825. https://doi.org/10.1021/sc400063r
    72. Zhe Wang, Sijin Liu, Juan Ma, Guangbo Qu, Xiaoyan Wang, Sujuan Yu, Jiuyang He, Jingfu Liu, Tian Xia, and Gui-Bin Jiang . Silver Nanoparticles Induced RNA Polymerase-Silver Binding and RNA Transcription Inhibition in Erythroid Progenitor Cells. ACS Nano 2013, 7 (5) , 4171-4186. https://doi.org/10.1021/nn400594s
    73. Jens Rauch, Walter Kolch, Sophie Laurent, and Morteza Mahmoudi . Big Signals from Small Particles: Regulation of Cell Signaling Pathways by Nanoparticles. Chemical Reviews 2013, 113 (5) , 3391-3406. https://doi.org/10.1021/cr3002627
    74. Constanza Y. Flores, Alejandro G. Miñán, Claudia A. Grillo, Roberto C. Salvarezza, Carolina Vericat, and Patricia L. Schilardi . Citrate-Capped Silver Nanoparticles Showing Good Bactericidal Effect against Both Planktonic and Sessile Bacteria and a Low Cytotoxicity to Osteoblastic Cells. ACS Applied Materials & Interfaces 2013, 5 (8) , 3149-3159. https://doi.org/10.1021/am400044e
    75. Pilar Rivera-Gil, Dorleta Jimenez De Aberasturi, Verena Wulf, Beatriz Pelaz, Pablo Del Pino, Yuanyuan Zhao, Jesus M. De La Fuente, Idoia Ruiz De Larramendi, Teófilo Rojo, Xing-Jie Liang, and Wolfgang J. Parak . The Challenge To Relate the Physicochemical Properties of Colloidal Nanoparticles to Their Cytotoxicity. Accounts of Chemical Research 2013, 46 (3) , 743-749. https://doi.org/10.1021/ar300039j
    76. Yunqing Wang, Bing Yan, and Lingxin Chen . SERS Tags: Novel Optical Nanoprobes for Bioanalysis. Chemical Reviews 2013, 113 (3) , 1391-1428. https://doi.org/10.1021/cr300120g
    77. Jiang-Jen Lin, Wen-Chun Lin, Shing-Da Li, Cheng-Yen Lin, and Shan-hui Hsu . Evaluation of the Antibacterial Activity and Biocompatibility for Silver Nanoparticles Immobilized on Nano Silicate Platelets. ACS Applied Materials & Interfaces 2013, 5 (2) , 433-443. https://doi.org/10.1021/am302534k
    78. Daniela Drescher, Charlotte Giesen, Heike Traub, Ulrich Panne, Janina Kneipp, and Norbert Jakubowski . Quantitative Imaging of Gold and Silver Nanoparticles in Single Eukaryotic Cells by Laser Ablation ICP-MS. Analytical Chemistry 2012, 84 (22) , 9684-9688. https://doi.org/10.1021/ac302639c
    79. Georgios A. Sotiriou, Andreas Meyer, Jesper T. N. Knijnenburg, Sven Panke, and Sotiris E. Pratsinis . Quantifying the Origin of Released Ag+ Ions from Nanosilver. Langmuir 2012, 28 (45) , 15929-15936. https://doi.org/10.1021/la303370d
    80. Alina D. Burchardt, Raquel N. Carvalho, Angelica Valente, Paola Nativo, Douglas Gilliland, Cesar P. Garcìa, Rosanna Passarella, Valerio Pedroni, François Rossi, and Teresa Lettieri . Effects of Silver Nanoparticles in Diatom Thalassiosira pseudonana and Cyanobacterium Synechococcus sp.. Environmental Science & Technology 2012, 46 (20) , 11336-11344. https://doi.org/10.1021/es300989e
    81. Markus Valtiner, Xavier Banquy, Kai Kristiansen, George W. Greene, and Jacob N. Israelachvili . The Electrochemical Surface Forces Apparatus: The Effect of Surface Roughness, Electrostatic Surface Potentials, and Anodic Oxide Growth on Interaction Forces, and Friction between Dissimilar Surfaces in Aqueous Solutions. Langmuir 2012, 28 (36) , 13080-13093. https://doi.org/10.1021/la3018216
    82. Hongyun Wang, Linxi Wu, and Björn M. Reinhard . Scavenger Receptor Mediated Endocytosis of Silver Nanoparticles into J774A.1 Macrophages Is Heterogeneous. ACS Nano 2012, 6 (8) , 7122-7132. https://doi.org/10.1021/nn302186n
    83. Zong-ming Xiu, Qing-bo Zhang, Hema L. Puppala, Vicki L. Colvin, and Pedro J. J. Alvarez . Negligible Particle-Specific Antibacterial Activity of Silver Nanoparticles. Nano Letters 2012, 12 (8) , 4271-4275. https://doi.org/10.1021/nl301934w
    84. B. C. Reinsch, C. Levard, Z. Li, R. Ma, A. Wise, K. B. Gregory, G. E. Brown, Jr., and G. V. Lowry . Sulfidation of Silver Nanoparticles Decreases Escherichia coli Growth Inhibition. Environmental Science & Technology 2012, 46 (13) , 6992-7000. https://doi.org/10.1021/es203732x
    85. Clément Levard, E. Matt Hotze, Gregory V. Lowry, and Gordon E. Brown, Jr. . Environmental Transformations of Silver Nanoparticles: Impact on Stability and Toxicity. Environmental Science & Technology 2012, 46 (13) , 6900-6914. https://doi.org/10.1021/es2037405
    86. Andrew J. Martinolich, Grace Park, Meagan Y. Nakamoto, Rachel E. Gate, and Korin E. Wheeler . Structural and Functional Effects of Cu Metalloprotein-Driven Silver Nanoparticle Dissolution. Environmental Science & Technology 2012, 46 (11) , 6355-6362. https://doi.org/10.1021/es300901h
    87. Christina L. Arnaout and Claudia K. Gunsch . Impacts of Silver Nanoparticle Coating on the Nitrification Potential of Nitrosomonas europaea. Environmental Science & Technology 2012, 46 (10) , 5387-5395. https://doi.org/10.1021/es204540z
    88. Morteza Mahmoudi and Vahid Serpooshan . Silver-Coated Engineered Magnetic Nanoparticles Are Promising for the Success in the Fight against Antibacterial Resistance Threat. ACS Nano 2012, 6 (3) , 2656-2664. https://doi.org/10.1021/nn300042m
    89. Nicole M. Schaeublin, Laura K. Braydich-Stolle, Elizabeth I. Maurer, Kyoungweon Park, Robert I. MacCuspie, A. R. M. Nabiul Afrooz, Richard A. Vaia, Navid B. Saleh, and Saber M. Hussain . Does Shape Matter? Bioeffects of Gold Nanomaterials in a Human Skin Cell Model. Langmuir 2012, 28 (6) , 3248-3258. https://doi.org/10.1021/la204081m
    90. Anil K. Suresh, Dale A. Pelletier, Wei Wang, Jennifer L. Morrell-Falvey, Baohua Gu, and Mitchel J. Doktycz . Cytotoxicity Induced by Engineered Silver Nanocrystallites Is Dependent on Surface Coatings and Cell Types. Langmuir 2012, 28 (5) , 2727-2735. https://doi.org/10.1021/la2042058
    91. Xinyu Yang, Andreas P. Gondikas, Stella M. Marinakos, Melanie Auffan, Jie Liu, Heileen Hsu-Kim, and Joel N. Meyer . Mechanism of Silver Nanoparticle Toxicity Is Dependent on Dissolved Silver and Surface Coating in Caenorhabditis elegans. Environmental Science & Technology 2012, 46 (2) , 1119-1127. https://doi.org/10.1021/es202417t
    92. Amit Singh Tatyana Chernenko Mansoor Amiji . Theranostic Applications of Plasmonic Nanosystems. 2012, 383-413. https://doi.org/10.1021/bk-2012-1113.ch015
    93. Kristen K. Comfort, Elizabeth I. Maurer, Laura K. Braydich-Stolle, and Saber M. Hussain . Interference of Silver, Gold, and Iron Oxide Nanoparticles on Epidermal Growth Factor Signal Transduction in Epithelial Cells. ACS Nano 2011, 5 (12) , 10000-10008. https://doi.org/10.1021/nn203785a
    94. Lauren A. Austin, Bin Kang, Chun-Wan Yen, and Mostafa A. El-Sayed . Nuclear Targeted Silver Nanospheres Perturb the Cancer Cell Cycle Differently than Those of Nanogold. Bioconjugate Chemistry 2011, 22 (11) , 2324-2331. https://doi.org/10.1021/bc200386m
    95. Zong-Ming Xiu, Jie Ma, and Pedro J. J. Alvarez . Differential Effect of Common Ligands and Molecular Oxygen on Antimicrobial Activity of Silver Nanoparticles versus Silver Ions. Environmental Science & Technology 2011, 45 (20) , 9003-9008. https://doi.org/10.1021/es201918f
    96. Jed Costanza, Amro M. El Badawy, and Thabet M. Tolaymat . Comment on “120 Years of Nanosilver History: Implications for Policy Makers”. Environmental Science & Technology 2011, 45 (17) , 7591-7592. https://doi.org/10.1021/es200666n
    97. Na Gou and April Z. Gu . A New Transcriptional Effect Level Index (TELI) for Toxicogenomics-based Toxicity Assessment. Environmental Science & Technology 2011, 45 (12) , 5410-5417. https://doi.org/10.1021/es200455p
    98. Morteza Mahmoudi, Kayhan Azadmanesh, Mohammad A. Shokrgozar, W. Shane Journeay, and Sophie Laurent . Effect of Nanoparticles on the Cell Life Cycle. Chemical Reviews 2011, 111 (5) , 3407-3432. https://doi.org/10.1021/cr1003166
    99. Christin Grabinski, Nicole Schaeublin, Andy Wijaya, Helen D’Couto, Salmaan H. Baxamusa, Kimberly Hamad-Schifferli, and Saber M. Hussain . Effect of Gold Nanorod Surface Chemistry on Cellular Response. ACS Nano 2011, 5 (4) , 2870-2879. https://doi.org/10.1021/nn103476x
    100. Alicia B. Castle, Eduardo Gracia-Espino, César Nieto-Delgado, Humberto Terrones, Mauricio Terrones, and Saber Hussain . Hydroxyl-Functionalized and N-Doped Multiwalled Carbon Nanotubes Decorated with Silver Nanoparticles Preserve Cellular Function. ACS Nano 2011, 5 (4) , 2458-2466. https://doi.org/10.1021/nn200178c
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect