ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Fabrication of a SnO2 Nanowire Gas Sensor and Sensor Performance for Hydrogen

View Author Information
State Key Laboratory of Optoelectronic Materials and Technologies, Institute of Optoelectronic and Functional Composite Materials, School of Physics Science & Engineering, Zhongshan University, Guangzhou 510275, P. R. China, and School of Electronic Science and Technology, Shenzhen University, Guangdong 518060, P. R. China.
Cite this: J. Phys. Chem. C 2008, 112, 17, 6643–6647
Publication Date (Web):April 5, 2008
https://doi.org/10.1021/jp8003147
Copyright © 2008 American Chemical Society

    Article Views

    8593

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (405 KB)

    Abstract

    SnO2 nanowire gas sensors have been fabricated on Cd−Au comb-shaped interdigitating electrodes using thermal evaporation of the mixed powders of SnO2 and active carbon. The self-assembly grown sensors have excellent performance in sensor response to hydrogen concentration in the range of 10 to 1000 ppm. This high response is attributed to the large portion of undercoordinated atoms on the surface of the SnO2 nanowires. The influence of the Debye length of the nanowires and the gap between electrodes in the gas sensor response is examined and discussed.

     Zhongshan University.

     Shenzhen University.

    *

     Corresponding author. E-mail:  [email protected].

    Cited By

    This article is cited by 382 publications.

    1. Doowon Lee, Min Ju Yun, Kyeong Heon Kim, Sungho kim, Hee-Dong Kim. Advanced Recovery and High-Sensitive Properties of Memristor-Based Gas Sensor Devices Operated at Room Temperature. ACS Sensors 2021, 6 (11) , 4217-4224. https://doi.org/10.1021/acssensors.1c01840
    2. Won-Tae Koo, Hee-Jin Cho, Dong-Ha Kim, Yoon Hwa Kim, Hamin Shin, Reginald M. Penner, Il-Doo Kim. Chemiresistive Hydrogen Sensors: Fundamentals, Recent Advances, and Challenges. ACS Nano 2020, 14 (11) , 14284-14322. https://doi.org/10.1021/acsnano.0c05307
    3. Xiang Tao, Hao Jin, Mona Mintken, Niklas Wolff, Yong Wang, Ran Tao, Yifan Li, Hamdi Torun, Jin Xie, Jingting Luo, Jian Zhou, Qiang Wu, Shurong Dong, Jikui Luo, Lorenz Kienle, Rainer Adelung, Yogendra Kumar Mishra, Yong Qing Fu. Three-Dimensional Tetrapodal ZnO Microstructured Network Based Flexible Surface Acoustic Wave Device for Ultraviolet and Respiration Monitoring Applications. ACS Applied Nano Materials 2020, 3 (2) , 1468-1478. https://doi.org/10.1021/acsanm.9b02300
    4. Muhammad Hamid Raza, Navpreet Kaur, Elisabetta Comini, Nicola Pinna. Toward Optimized Radial Modulation of the Space-Charge Region in One-Dimensional SnO2–NiO Core–Shell Nanowires for Hydrogen Sensing. ACS Applied Materials & Interfaces 2020, 12 (4) , 4594-4606. https://doi.org/10.1021/acsami.9b19442
    5. Colin McConnell, Sathya Narayan Kanakaraj, Joshua Dugre, Rachit Malik, Guangqi Zhang, Mark R. Haase, Yu-Yun Hsieh, Yanbo Fang, David Mast, Vesselin Shanov. Hydrogen Sensors Based on Flexible Carbon Nanotube-Palladium Composite Sheets Integrated with Ripstop Fabric. ACS Omega 2020, 5 (1) , 487-497. https://doi.org/10.1021/acsomega.9b03023
    6. Anupam Nandi, Pratanu Nag, Dipankar Panda, Sukanta Dhar, Syed Minhaz Hossain, Hiranmay Saha, Sanhita Majumdar. Outstanding Room-Temperature Hydrogen Gas Detection by Plasma-Assisted and Graphene-Functionalized Core–Shell Assembly of SnO2 Nanoburflower. ACS Omega 2019, 4 (6) , 11053-11065. https://doi.org/10.1021/acsomega.9b01372
    7. Takamune Yokoyama, Takahisa Tanaka, Yoshihiko Shimokawa, Ryosuke Yamachi, Yuta Saito, Ken Uchida. Pd-Functionalized, Suspended Graphene Nanosheet for Fast, Low-Energy Multimolecular Sensors. ACS Applied Nano Materials 2018, 1 (8) , 3886-3894. https://doi.org/10.1021/acsanm.8b00667
    8. Giordano Mattoni, Bas de Jong, Nicola Manca, Massimo Tomellini, Andrea D. Caviglia. Single-Crystal Pt-Decorated WO3 Ultrathin Films: A Platform for Sub-ppm Hydrogen Sensing at Room Temperature. ACS Applied Nano Materials 2018, 1 (7) , 3446-3452. https://doi.org/10.1021/acsanm.8b00627
    9. Peresi Majura Bulemo, Hee-Jin Cho, Nam-Hoon Kim, and Il-Doo Kim . Mesoporous SnO2 Nanotubes via Electrospinning–Etching Route: Highly Sensitive and Selective Detection of H2S Molecule. ACS Applied Materials & Interfaces 2017, 9 (31) , 26304-26313. https://doi.org/10.1021/acsami.7b05241
    10. Alireza Nikfarjam, Seyedsina Hosseini, and Nahideh Salehifar . Fabrication of a Highly Sensitive Single Aligned TiO2 and Gold Nanoparticle Embedded TiO2 Nano-Fiber Gas Sensor. ACS Applied Materials & Interfaces 2017, 9 (18) , 15662-15671. https://doi.org/10.1021/acsami.6b15554
    11. Ha Minh Tan, Chu Manh Hung, Trinh Minh Ngoc, Hugo Nguyen, Nguyen Duc Hoa, Nguyen Van Duy, and Nguyen Van Hieu . Novel Self-Heated Gas Sensors Using on-Chip Networked Nanowires with Ultralow Power Consumption. ACS Applied Materials & Interfaces 2017, 9 (7) , 6153-6162. https://doi.org/10.1021/acsami.6b14516
    12. Priyanka Das, Biswanath Mondal, and Kalisadhan Mukherjee . Simultaneous Adsorption–Desorption Processes in the Conductance Transient of Anatase Titania for Sensing Ethanol: A Distinctive Feature with Kinetic Perception. The Journal of Physical Chemistry C 2017, 121 (2) , 1146-1152. https://doi.org/10.1021/acs.jpcc.6b10041
    13. Tetsuya Kida, Koichi Suematsu, Kazuyoshi Hara, Kiyoshi Kanie, and Atsushi Muramatsu . Ultrasensitive Detection of Volatile Organic Compounds by a Pore Tuning Approach Using Anisotropically Shaped SnO2 Nanocrystals. ACS Applied Materials & Interfaces 2016, 8 (51) , 35485-35495. https://doi.org/10.1021/acsami.6b13006
    14. Kui Niu, Liman Liang, Fei Peng, Fan Zhang, Yao Gu, and Hongyan Tian . Chelating-Template-Assisted in Situ Encapsulation of Zinc Ferrite Inside Silica Mesopores for Enhanced Gas-Sensing Characteristics. ACS Applied Materials & Interfaces 2016, 8 (37) , 24682-24691. https://doi.org/10.1021/acsami.6b06689
    15. Avinash Patsha, Prasana Sahoo, S. Amirthapandian, Arun K. Prasad, A. Das, A. K. Tyagi, Monica A. Cotta, and Sandip Dhara . Localized Charge Transfer Process and Surface Band Bending in Methane Sensing by GaN Nanowires. The Journal of Physical Chemistry C 2015, 119 (36) , 21251-21260. https://doi.org/10.1021/acs.jpcc.5b06971
    16. Jae-Hun Kim, Akash Katoch, Soo-Hyun Kim, and Sang Sub Kim . Chemiresistive Sensing Behavior of SnO2 (n)–Cu2O (p) Core–Shell Nanowires. ACS Applied Materials & Interfaces 2015, 7 (28) , 15351-15358. https://doi.org/10.1021/acsami.5b03224
    17. Shulin Yang, Zhao Wang, Yongming Hu, Xiantao Luo, Jinmei Lei, Di Zhou, Linfeng Fei, Yu Wang, and Haoshuang Gu . Highly Responsive Room-Temperature Hydrogen Sensing of α-MoO3 Nanoribbon Membranes. ACS Applied Materials & Interfaces 2015, 7 (17) , 9247-9253. https://doi.org/10.1021/acsami.5b01858
    18. Ying-Ting Wang, Wha-Tzong Whang, and Chun-Hua Chen . Hollow V2O5 Nanoassemblies for High-Performance Room-Temperature Hydrogen Sensors. ACS Applied Materials & Interfaces 2015, 7 (16) , 8480-8487. https://doi.org/10.1021/am509182s
    19. Nasser L. Hadipour, Ali Ahmadi Peyghan, and Hamed Soleymanabadi . Theoretical Study on the Al-Doped ZnO Nanoclusters for CO Chemical Sensors. The Journal of Physical Chemistry C 2015, 119 (11) , 6398-6404. https://doi.org/10.1021/jp513019z
    20. Juree Hong, Sanggeun Lee, Jungmok Seo, Soonjae Pyo, Jongbaeg Kim, and Taeyoon Lee . A Highly Sensitive Hydrogen Sensor with Gas Selectivity Using a PMMA Membrane-Coated Pd Nanoparticle/Single-Layer Graphene Hybrid. ACS Applied Materials & Interfaces 2015, 7 (6) , 3554-3561. https://doi.org/10.1021/am5073645
    21. Sang Ho Lee, Eun Ja Lim, Yong-Ryun Jo, Bong-Joong Kim, and Won Bae Kim . Directly-Grown and Square-Patterned Arrays of Metal Oxide Nanowires for High-Performance Catalyst Support Platforms. ACS Applied Materials & Interfaces 2014, 6 (23) , 20634-20642. https://doi.org/10.1021/am5067089
    22. Laetitia Renard, Joachim Brötz, Hartmut Fuess, Aleksander Gurlo, Ralf Riedel, and Thierry Toupance . Hybrid Organotin and Tin Oxide-based Thin Films Processed from Alkynylorganotins: Synthesis, Characterization, and Gas Sensing Properties.. ACS Applied Materials & Interfaces 2014, 6 (19) , 17093-17101. https://doi.org/10.1021/am504723t
    23. Yusin Pak, Sang-Mook Kim, Huisu Jeong, Chang Goo Kang, Jung Su Park, Hui Song, Ryeri Lee, NoSoung Myoung, Byoung Hun Lee, Sunae Seo, Jin Tae Kim, and Gun-Young Jung . Palladium-Decorated Hydrogen-Gas Sensors Using Periodically Aligned Graphene Nanoribbons. ACS Applied Materials & Interfaces 2014, 6 (15) , 13293-13298. https://doi.org/10.1021/am503105s
    24. Zhiwen Chen, Dengyu Pan, Zhen Li, Zheng Jiao, Minghong Wu, Chan-Hung Shek, C. M. Lawrence Wu, and Joseph K. L. Lai . Recent Advances in Tin Dioxide Materials: Some Developments in Thin Films, Nanowires, and Nanorods. Chemical Reviews 2014, 114 (15) , 7442-7486. https://doi.org/10.1021/cr4007335
    25. Rosmalini Ab Kadir, Zhenyu Li, Abu Z. Sadek, Rozina Abdul Rani, Ahmad Sabirin Zoolfakar, Matthew R. Field, Jian Zhen Ou, Adam F. Chrimes, and Kourosh Kalantar-zadeh . Electrospun Granular Hollow SnO2 Nanofibers Hydrogen Gas Sensors Operating at Low Temperatures. The Journal of Physical Chemistry C 2014, 118 (6) , 3129-3139. https://doi.org/10.1021/jp411552z
    26. Miluo Zhang, Lauren L. Brooks, Nicha Chartuprayoon, Wayne Bosze, Yong-ho Choa, and Nosang V. Myung . Palladium/Single-Walled Carbon Nanotube Back-to-Back Schottky Contact-Based Hydrogen Sensors and Their Sensing Mechanism. ACS Applied Materials & Interfaces 2014, 6 (1) , 319-326. https://doi.org/10.1021/am404328g
    27. Sunglyul Maeng, Sang-Woo Kim, Deuk-Hee Lee, Seung-Eon Moon, Ki-Chul Kim, and Amitesh Maiti . SnO2 Nanoslab as NO2 Sensor: Identification of the NO2 Sensing Mechanism on a SnO2 Surface. ACS Applied Materials & Interfaces 2014, 6 (1) , 357-363. https://doi.org/10.1021/am404397f
    28. Tetsuya Kida, Shuhei Fujiyama, Koichi Suematsu, Masayoshi Yuasa, and Kengo Shimanoe . Pore and Particle Size Control of Gas Sensing Films Using SnO2 Nanoparticles Synthesized by Seed-Mediated Growth: Design of Highly Sensitive Gas Sensors. The Journal of Physical Chemistry C 2013, 117 (34) , 17574-17582. https://doi.org/10.1021/jp4045226
    29. Juan Su, Xiao-Xin Zou, Yong-Cun Zou, Guo-Dong Li, Pei-Pei Wang, and Jie-Sheng Chen . Porous Titania with Heavily Self-Doped Ti3+ for Specific Sensing of CO at Room Temperature. Inorganic Chemistry 2013, 52 (10) , 5924-5930. https://doi.org/10.1021/ic400109j
    30. Xiao-Bo Li, Xue-Wen Wang, Qiong Shen, Jie Zheng, Wei-Hua Liu, Hua Zhao, Fan Yang, and He-Qing Yang . Controllable Low-Temperature Chemical Vapor Deposition Growth and Morphology Dependent Field Emission Property of SnO2 Nanocone Arrays with Different Morphologies. ACS Applied Materials & Interfaces 2013, 5 (8) , 3033-3041. https://doi.org/10.1021/am303012u
    31. Zhaojie Wang, Zhenyu Li, Tingting Jiang, Xiuru Xu, and Ce Wang . Ultrasensitive Hydrogen Sensor Based on Pd0-Loaded SnO2 Electrospun Nanofibers at Room Temperature. ACS Applied Materials & Interfaces 2013, 5 (6) , 2013-2021. https://doi.org/10.1021/am3028553
    32. P. Manjula, Ramireddy Boppella, and Sunkara V. Manorama . A Facile and Green Approach for the Controlled Synthesis of Porous SnO2 Nanospheres: Application as an Efficient Photocatalyst and an Excellent Gas Sensing Material. ACS Applied Materials & Interfaces 2012, 4 (11) , 6252-6260. https://doi.org/10.1021/am301840s
    33. Jun Seop Lee, Oh Seok Kwon, Seon Joo Park, Eun Yu Park, Sun Ah You, Hyeonseok Yoon, and Jyongsik Jang . Fabrication of Ultrafine Metal-Oxide-Decorated Carbon Nanofibers for DMMP Sensor Application. ACS Nano 2011, 5 (10) , 7992-8001. https://doi.org/10.1021/nn202471f
    34. Jae Young Park, Sun-Woo Choi, and Sang Sub Kim . Junction-Tuned SnO2 Nanowires and Their Sensing Properties. The Journal of Physical Chemistry C 2011, 115 (26) , 12774-12781. https://doi.org/10.1021/jp202113x
    35. Feng Zhang, Anwei Zhu, Yongping Luo, Yang Tian, Jinhu Yang, and Yao Qin . CuO Nanosheets for Sensitive and Selective Determination of H2S with High Recovery Ability. The Journal of Physical Chemistry C 2010, 114 (45) , 19214-19219. https://doi.org/10.1021/jp106098z
    36. Sang Ho Lee, Gunho Jo, Woojin Park, Seungkyo Lee, Youn-Su Kim, Beong Ki Cho, Takhee Lee and Won Bae Kim. Diameter-Engineered SnO2 Nanowires over Contact-Printed Gold Nanodots Using Size-Controlled Carbon Nanopost Array Stamps. ACS Nano 2010, 4 (4) , 1829-1836. https://doi.org/10.1021/nn100197u
    37. Zhaojie Wang, Zhenyu Li, Jinghui Sun, Hongnan Zhang, Wei Wang, Wei Zheng and Ce Wang . Improved Hydrogen Monitoring Properties Based on p-NiO/n-SnO2 Heterojunction Composite Nanofibers. The Journal of Physical Chemistry C 2010, 114 (13) , 6100-6105. https://doi.org/10.1021/jp9100202
    38. Alexander Birkel, Niklas Loges, Enrico Mugnaioli, Robert Branscheid, Dominik Koll, Stefan Frank, Martin Panthöfer and Wolfgang Tremel . Interaction of Alkaline Metal Cations with Oxidic Surfaces: Effect on the Morphology of SnO2 Nanoparticles. Langmuir 2010, 26 (5) , 3590-3595. https://doi.org/10.1021/la902994r
    39. Cheng Sun, Nripan Mathews, Minrui Zheng, Chorng Haur Sow, Lydia Helena Wong and Subodh G. Mhaisalkar . Aligned Tin Oxide Nanonets for High-Performance Transistors. The Journal of Physical Chemistry C 2010, 114 (2) , 1331-1336. https://doi.org/10.1021/jp909673j
    40. Te-Yu Wei, Ping-Hung Yeh, Shih-Yuan Lu and Zhong Lin Wang. Gigantic Enhancement in Sensitivity Using Schottky Contacted Nanowire Nanosensor. Journal of the American Chemical Society 2009, 131 (48) , 17690-17695. https://doi.org/10.1021/ja907585c
    41. Yong Jia, Xing Chen, Zheng Guo, Jinyun Liu, Fanli Meng, Tao Luo, Minqiang Li and Jinhuai Liu . In Situ Growth of Tin Oxide Nanowires, Nanobelts, and Nanodendrites On the Surface of Iron-Doped Tin Oxide/Multiwalled Carbon Nanotube Nanocomposites. The Journal of Physical Chemistry C 2009, 113 (48) , 20583-20588. https://doi.org/10.1021/jp904798v
    42. Yong Jia, Lifang He, Zheng Guo, Xing Chen, Fanli Meng, Tao Luo, Minqiang Li and Jinhuai Liu . Preparation of Porous Tin Oxide Nanotubes Using Carbon Nanotubes as Templates and Their Gas-Sensing Properties. The Journal of Physical Chemistry C 2009, 113 (22) , 9581-9587. https://doi.org/10.1021/jp9001719
    43. Guang Jia, Yuhua Zheng, Kai Liu, Yanhua Song, Hongpeng You and Hongjie Zhang. Facile Surfactant- and Template-Free Synthesis and Luminescent Properties of One-Dimensional Lu2O3:Eu3+ Phosphors. The Journal of Physical Chemistry C 2009, 113 (1) , 153-158. https://doi.org/10.1021/jp808446m
    44. Jinmin Wang, Eugene Khoo, Pooi See Lee and Jan Ma. Synthesis, Assembly, and Electrochromic Properties of Uniform Crystalline WO3 Nanorods. The Journal of Physical Chemistry C 2008, 112 (37) , 14306-14312. https://doi.org/10.1021/jp804035r
    45. Bom Lee, Sooheon Cho, Byung Joo Jeong, Sang Hoon Lee, Dahoon Kim, Sang Hyuk Kim, Jae-Hyuk Park, Hak Ki Yu, Jae-Young Choi. Highly responsive hydrogen sensor based on Pd nanoparticle-decorated transfer-free 3D graphene. Sensors and Actuators B: Chemical 2024, 401 , 134913. https://doi.org/10.1016/j.snb.2023.134913
    46. Nicoletta Capuano, Alessandra Amato, Federica Dell’Annunziata, Francesco Giordano, Veronica Folliero, Federica Di Spirito, Pragati Rajendra More, Anna De Filippis, Stefano Martina, Massimo Amato, Massimiliano Galdiero, Alfredo Iandolo, Gianluigi Franci. Nanoparticles and Their Antibacterial Application in Endodontics. Antibiotics 2023, 12 (12) , 1690. https://doi.org/10.3390/antibiotics12121690
    47. Lun Tan, Xianzhen Liu, Piaoyun Yang, Wei Li, Weijia Yang, Ang Li, Haoshuang Gu, Zhao Wang. The n-p tunable room-temperature hydrogen response of SnO2-modified MoS2 thin films and its in-situ SKPM study. Science China Materials 2023, 66 (11) , 4427-4436. https://doi.org/10.1007/s40843-023-2624-5
    48. Beixi An, Yibing Luo, Yanrong Wang, Yifan Yang, Jinglong Bai, Xu Cheng, Jianpeng Li, Qiao Wang, Zhengkun Wu, Erqing Xie. Photothermally-assisted Pt-modified WO 3 nanosphere structures for highly efficient H 2 sensing. CrystEngComm 2023, 25 (42) , 5900-5909. https://doi.org/10.1039/D3CE00658A
    49. Manan Mehta, Deepti, A.K. Sinha, Shikha Wadhwa, Arvind Kumar, D.K. Avasthi. Change in the gas sensing mechanism and improved sensing response on ion-irradiated palladium-graphene oxide nanocomposite. International Journal of Hydrogen Energy 2023, 48 (85) , 33372-33381. https://doi.org/10.1016/j.ijhydene.2023.05.071
    50. Piaoyun Yang, Qinyuan Gao, Sha Li, Chunya Luo, Zhao Wang, Haoshuang Gu. Structure-dependent room-temperature hydrogen sensing of Nb2O5 nanorods prepared by topological transformation process. International Journal of Hydrogen Energy 2023, 48 (76) , 29808-29819. https://doi.org/10.1016/j.ijhydene.2023.04.155
    51. Yasushi Ishiguro, Taira Nishitani, Can Li, Kenji Hirakuri. A graphitic carbon nitride-coated quartz crystal microbalance gas sensor for H 2 detection. Journal of Materials Chemistry C 2023, 11 (30) , 10178-10184. https://doi.org/10.1039/D3TC00870C
    52. Taposhree Dutta, Tanzila Noushin, Shawana Tabassum, Satyendra K. Mishra. Road Map of Semiconductor Metal-Oxide-Based Sensors: A Review. Sensors 2023, 23 (15) , 6849. https://doi.org/10.3390/s23156849
    53. Sangmi Gu, Chan-Mi Cho, Hae Sun Kim, Seung Uk Son, Taek-Mo Chung, Bo Keun Park. Synthesis and characterization of Sn complexes containing aminoalkoxide ligands for solution process. Molecular Crystals and Liquid Crystals 2023, 760 (1) , 44-50. https://doi.org/10.1080/15421406.2023.2165340
    54. Yumin Yang, Shun Lin, Junhui Hu. An ultrasonically catalyzed conductometric metal oxide gas sensor system with machine learning-based ambient temperature compensation. Sensors and Actuators B: Chemical 2023, 385 , 133721. https://doi.org/10.1016/j.snb.2023.133721
    55. Kurmendra. Nanomaterial Gas Sensors for Biosensing Applications: A Review. Recent Patents on Nanotechnology 2023, 17 (2) , 104-118. https://doi.org/10.2174/1872210515666211129115229
    56. Weiming Wang, Ji Li, Bo Hu, Shiqiang Zhou, Yong Cai, Ming Zhang. Ag 2 SO 4 -Ag 2 S transformation in SnO 2 -based nanofibers for high selectivity and response H 2 S sensors. Nanotechnology 2023, 34 (21) , 215501. https://doi.org/10.1088/1361-6528/acbb7e
    57. Ruiqin Peng, Xuzhen Zhuang, Yuanyuan Li, Zhiguo Yu, Lijie Ci. High Gas Response Performance Based on Reduced Graphene Oxide/SnO2 Nanowires Heterostructure for Triethylamine Detection. Coatings 2023, 13 (5) , 849. https://doi.org/10.3390/coatings13050849
    58. Abiral Regmi, Dongwoon Shin, Noori Na, Jiyoung Chang. Suspended Graphene/PEDOT: PSS‐PEO Channel for H 2 Gas Sensing Fabricated Using Direct‐Write Functional Fibers. Advanced Materials Technologies 2023, 8 (7) https://doi.org/10.1002/admt.202201505
    59. Guangyao Li, Xitong Zhu, Junlong Liu, Shuyang Li, Xiaolong Liu. Metal Oxide Semiconductor Gas Sensors for Lung Cancer Diagnosis. Chemosensors 2023, 11 (4) , 251. https://doi.org/10.3390/chemosensors11040251
    60. Nguyen D. Cuong, Nguyen Van Hieu. Synthesis and Gas‐Sensing Application of 1D Semiconducting Hybrid Nanostructures. 2023, 27-55. https://doi.org/10.1002/9783527837649.ch2
    61. Meihua Li, Yunfan Zhang, Xiaodong Gao, Yunlong Gu, Chao Mou, Guangfen Wei. Self-assembled 3D hierarchical S-doped SnO2 nanoflowers based room temperature ammonia sensor. Journal of Materials Science: Materials in Electronics 2023, 34 (6) https://doi.org/10.1007/s10854-023-09954-y
    62. Ujjaval Kerketta, Thomas T. Daniel, Vimal Kumar Singh Yadav, Roy P. Paily. Room Temperature Hydrogen Gas Sensing Using Zn 2 TiO 4 Thin Film. IEEE Sensors Letters 2023, 7 (2) , 1-4. https://doi.org/10.1109/LSENS.2023.3241312
    63. Nirav Joshi, Deepak K. Pandey, Bhavita G. Mistry, Dheeraj K. Singh. Metal Oxide Nanoparticles: Synthesis, Properties, Characterization, and Applications. 2023, 103-144. https://doi.org/10.1007/978-981-19-7963-7_5
    64. Savita Chowdhury, Anirban Mitra. Metal Oxides-Based Photodetectors and Sensors. 2023, 457-485. https://doi.org/10.1007/978-981-99-5640-1_15
    65. Surbhi A. Shinde, Pragati R. More, Avinash P. Ingle. Hazardous effects of nanomaterials on aquatic life. 2023, 423-450. https://doi.org/10.1016/B978-0-323-99446-0.00012-X
    66. Yulin Kong, Yuxiu Li, Xiuxiu Cui, Linfeng Su, Dian Ma, Tingrun Lai, Lijia Yao, Xuechun Xiao, Yude Wang. SnO2 nanostructured materials used as gas sensors for the detection of hazardous and flammable gases: A review. Nano Materials Science 2022, 4 (4) , 339-350. https://doi.org/10.1016/j.nanoms.2021.05.006
    67. Qinkai Feng, Xiuhuai Xie, Miao Zhang, Ningbo Liao. First principles study of Rh-doped SnO2 for highly sensitive and selective hydrogen detection. Sensors and Actuators A: Physical 2022, 345 , 113788. https://doi.org/10.1016/j.sna.2022.113788
    68. Zdeněk Biolek, Viera Biolková, Dalibor Biolek, Zdeněk Kolka. Extended and Generic Higher-Order Elements for MEMS Modeling. Sensors 2022, 22 (20) , 8007. https://doi.org/10.3390/s22208007
    69. Jamil A. Buledi, Amber R. Solangi, Ali Hyder, Nadir H. Khand, Saba A. Memon, Arfana Mallah, Nasrullah Mahar, Elena Niculina Dragoi, Pau Show, Marzyeh Behzadpour, Hassan Karimi-Maleh. Selective oxidation of amaranth dye in soft drinks through tin oxide decorated reduced graphene oxide nanocomposite based electrochemical sensor. Food and Chemical Toxicology 2022, 165 , 113177. https://doi.org/10.1016/j.fct.2022.113177
    70. Ali Mirzaei, Hamid Reza Ansari, Mehrdad Shahbaz, Jin-Young Kim, Hyoun Woo Kim, Sang Sub Kim. Metal Oxide Semiconductor Nanostructure Gas Sensors with Different Morphologies. Chemosensors 2022, 10 (7) , 289. https://doi.org/10.3390/chemosensors10070289
    71. Hiroshi Kakinuma, Saya Ajito, Tomohiko Hojo, Motomichi Koyama, Eiji Akiyama. Real‐Time Visualization of Hydrogen Distribution in Metals Using Polyaniline: An Ultrasensitive Hydrogenochromic Sensor. Advanced Materials Interfaces 2022, 9 (18) https://doi.org/10.1002/admi.202101984
    72. Payal Patial, Manish Deshwal, Naveen Kumar. Physicochemical investigations of Pd2+ substituted ZnO nanoflowers for liquefied petroleum gas sensing. Journal of Materials Science: Materials in Electronics 2022, 33 (15) , 11768-11782. https://doi.org/10.1007/s10854-022-08141-9
    73. Boyi Wang, Takeshi Hashishin, Dzung Viet Dao, Yong Zhu. Low-Dimensional Palladium on Graphite-on-Paper Substrate for Hydrogen Sensing. Sensors 2022, 22 (10) , 3926. https://doi.org/10.3390/s22103926
    74. Vraj Shah, Jaydip Bhaliya, Gautam M. Patel, Priyanka Joshi. Room-Temperature Chemiresistive Gas Sensing of SnO2 Nanowires: A Review. Journal of Inorganic and Organometallic Polymers and Materials 2022, 32 (3) , 741-772. https://doi.org/10.1007/s10904-021-02198-5
    75. Julia E. Huddy, Md Saifur Rahman, Andrew B. Hamlin, Youxiong Ye, William J. Scheideler. Transforming 3D-printed mesostructures into multimodal sensors with nanoscale conductive metal oxides. Cell Reports Physical Science 2022, 3 (3) , 100786. https://doi.org/10.1016/j.xcrp.2022.100786
    76. V. M. Aroutiounian. Gas- and Biosensors Made from Metal Oxides Doped with Carbon Nanotubes. Journal of Contemporary Physics (Armenian Academy of Sciences) 2022, 57 (1) , 54-75. https://doi.org/10.3103/S1068337222010054
    77. Sumaya Tarannum Nipa, Rumana Akter, Al Raihan, Shahriar bin Rasul, Uday Som, Shafi Ahmed, Jahangir Alam, Maksudur Rahman Khan, Stefano Enzo, Wasikur Rahman. State-of-the-art biosynthesis of tin oxide nanoparticles by chemical precipitation method towards photocatalytic application. Environmental Science and Pollution Research 2022, 29 (8) , 10871-10893. https://doi.org/10.1007/s11356-021-17933-1
    78. Chuang Shi, Xiaodong Wang, Yan Wang, Tielang Wang, Huimin Li, Guiyun Yi, Guang Sun, Zhanying Zhang. Synthesis, characterization, and gas-sensing properties of macroporous Ag/SnO2 composite by a template method. Materials Science in Semiconductor Processing 2022, 138 , 106256. https://doi.org/10.1016/j.mssp.2021.106256
    79. В. М. Арутюнян. Газовые и био-сенсоры из оксидов металлов, легированных углеродными нанотрубками. Proceedings of NAS RA. Physics 2022, , 76-108. https://doi.org/10.54503/0002-3035-2022-57.1-76
    80. Vijaykiran N. Narwade, Hanuma Reddy Tiyyagura, Yasir Beeran Pottathara, Madhuri A. Lakhane, Indrani Banerjee, Vipul V. Kusumkar, Eva Viglašová, Michal Galamboš, Ravindra U. Mene, Kashinath A. Bogle. Nanocellulose for Gas Sensor Applications. 2022, 169-185. https://doi.org/10.1007/978-981-16-6022-1_9
    81. 楠楠 刘. Preparation, Characterization and NO2 Gas Sensing Property of SnO2 Hollow Spheres. Applied Physics 2022, 12 (03) , 119-125. https://doi.org/10.12677/APP.2022.123014
    82. Gung-Hwa Hong, Thi-Cuc Le, Guan-Yu Lin, Hung-Wen Cheng, Jhih-Yuan Yu, Perapong Tekasakul, Chuen-Jinn Tsai. Field Calibration of Low-Cost Mos Voc Sensors and Application for Source Characterization. SSRN Electronic Journal 2022, 22 https://doi.org/10.2139/ssrn.4198986
    83. Miranda Martinez, Anil R. Chourasia. Characterization of Ti/SnO2 Interface by X-ray Photoelectron Spectroscopy. Nanomaterials 2022, 12 (2) , 202. https://doi.org/10.3390/nano12020202
    84. Guozhu Zhang, Hao Zeng, Jiangyang Liu, Kazuki Nagashima, Tsunaki Takahashi, Takuro Hosomi, Wataru Tanaka, Takeshi Yanagida. Nanowire-based sensor electronics for chemical and biological applications. The Analyst 2021, 146 (22) , 6684-6725. https://doi.org/10.1039/D1AN01096D
    85. Jin Zhao, Xiaotian Xi, Hongyan Ouyang, Jiyu Yang, Yi Wang, Longfei Yi, Dayu Song, Yongjiao Song, Lijuan Zhao. Acidic and alkaline gas sensitive and self-healing chitosan aerogel based on electrostatic interaction. Carbohydrate Polymers 2021, 272 , 118445. https://doi.org/10.1016/j.carbpol.2021.118445
    86. Z. Masoumi Dehaghi, M. Ranjbar, M. Torabi Goodarzi. Hydrogen sensing by RGB investigation of gasochromic coloration of MoO3/Pd-coated polyester fabrics. International Journal of Hydrogen Energy 2021, 46 (80) , 40185-40195. https://doi.org/10.1016/j.ijhydene.2021.09.195
    87. Bingxin Yang, Nosang V. Myung, Thien‐Toan Tran. 1D Metal Oxide Semiconductor Materials for Chemiresistive Gas Sensors: A Review. Advanced Electronic Materials 2021, 7 (9) https://doi.org/10.1002/aelm.202100271
    88. Morvarid Najjar, Hasan Ali Hosseini, Abdolhossein Masoudi, Zahra Sabouri, Asma Mostafapour, Mehrdad Khatami, Majid Darroudi. Green chemical approach for the synthesis of SnO2 nanoparticles and its application in photocatalytic degradation of Eriochrome Black T dye. Optik 2021, 242 , 167152. https://doi.org/10.1016/j.ijleo.2021.167152
    89. Jae-Hun Kim, Hyoungwon Park, Ali Mirzaei, Myung Gwan Hahm, Sanghoon Ahn, Marcus Halik, Changkyoo Park, Sang Sub Kim. How femtosecond laser irradiation can affect the gas sensing behavior of SnO2 nanowires toward reducing and oxidizing gases. Sensors and Actuators B: Chemical 2021, 342 , 130036. https://doi.org/10.1016/j.snb.2021.130036
    90. Kyungtaek Lee, Jeonhyeong Park, Soon In Jung, Sugato Hajra, Hoe Joon Kim. Direct integration of carbon nanotubes on a suspended Pt microheater for hydrogen gas sensing. Journal of Materials Science: Materials in Electronics 2021, 32 (14) , 19626-19634. https://doi.org/10.1007/s10854-021-06484-3
    91. Thakshila Liyanage, Ahmad Zaman Qamar, Gymama Slaughter. Application of Nanomaterials for Chemical and Biological Sensors: A Review. IEEE Sensors Journal 2021, 21 (11) , 12407-12425. https://doi.org/10.1109/JSEN.2020.3032952
    92. Daejeong Yang, Adam Gopal Ramu, Youngjin Lee, Sungjin Kim, Heungwoo Jeon, Sathishkumar V E, Amal M. Al-Mohaimeed, Wedad A. Al-onazi, Tahani saad Algarni, Dongjin Choi. Fabrication of ZnO nanorods based gas sensor pattern by photolithography and lift off techniques. Journal of King Saud University - Science 2021, 33 (3) , 101397. https://doi.org/10.1016/j.jksus.2021.101397
    93. Beixi An, Yibing Luo, Jinglong Bai, Yanrong Wang, Xu Cheng, Jianpeng Li, Qiao Wang, Yifan Yang, Erqing Xie. Bimetal Pd/Ni functionalized WO 3 nanospheres for sensitive low-concentration hydrogen detection. CrystEngComm 2021, 23 (15) , 2897-2904. https://doi.org/10.1039/D1CE00017A
    94. Z. N. Adamyan, A. G. Sayunts, E. A. Khachaturyan, V. M. Aroutiounian. Study of MWCNT / SnO2/Ru thick-film sensors for detecting the presence of certain harmful gases in air. Armenian Journal of Physics 2021, , 49-73. https://doi.org/10.52853/18291171-2021.14.1-49
    95. Sahar Foorginezhad, Masoud Mohseni-Dargah, Zahra Falahati, Rouzbeh Abbassi, Amir Razmjou, Mohsen Asadnia. Sensing advancement towards safety assessment of hydrogen fuel cell vehicles. Journal of Power Sources 2021, 489 , 229450. https://doi.org/10.1016/j.jpowsour.2021.229450
    96. Bharat Sharma, Ashutosh Sharma, Jae-ha Myung. Selective ppb-level NO2 gas sensor based on SnO2-boron nitride nanotubes. Sensors and Actuators B: Chemical 2021, 331 , 129464. https://doi.org/10.1016/j.snb.2021.129464
    97. Irmaizatussyehdany Buniyamin, Rabiatuladawiyah Md Akhir, Noor Asnida Asli, Zuraida Khusaimi, Mohamad Rusop Mahmood. Biosynthesis of SnO 2 nanoparticles by aqueous leaves extract of Aquilaria malaccensis (agarwood). IOP Conference Series: Materials Science and Engineering 2021, 1092 (1) , 012070. https://doi.org/10.1088/1757-899X/1092/1/012070
    98. Fereshteh Vajhadin, Mohammad Mazloum‐Ardakani, Abbas Amini. Metal oxide‐based gas sensors for the detection of exhaled breath markers. MEDICAL DEVICES & SENSORS 2021, 4 (1) https://doi.org/10.1002/mds3.10161
    99. Juliandi Siregar, Ni Luh Wulan Septiani, Syauqi Abdurrahman Abrori, Kerista Sebayang, Irzaman, Mochammad Zakki Fahmi, Syahrul Humaidi, Timbangen Sembiring, Kurnia Sembiring, Brian Yuliarto. Review—A Pollutant Gas Sensor Based On Fe 3 O 4 Nanostructures: A Review. Journal of The Electrochemical Society 2021, 168 (2) , 027510. https://doi.org/10.1149/1945-7111/abd928
    100. Hao Zeng, Guozhu Zhang, Kazuki Nagashima, Tsunaki Takahashi, Takuro Hosomi, Takeshi Yanagida. Metal–Oxide Nanowire Molecular Sensors and Their Promises. Chemosensors 2021, 9 (2) , 41. https://doi.org/10.3390/chemosensors9020041
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect