ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Direct Spectroscopic Observation of Fe(III)−Phenolate Complex Formed From the Reaction of Benzene With Peroxide Species on Fe/ZSM-5 At Room Temperature

View Author Information
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
* To whom correspondence should be addressed. Tel: 86-411-84379070 . Fax: +86-411-84694447. E-mail: [email protected]
†Present address: Innovative Catalysis Program, Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China.
Cite this: J. Phys. Chem. C 2008, 112, 24, 9001–9005
Publication Date (Web):May 27, 2008
https://doi.org/10.1021/jp800455x
Copyright © 2008 American Chemical Society

    Article Views

    864

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    The reaction of benzene with the active oxygen species was studied by UV−visible diffuse reflectance and Raman spectroscopies. For the first time, the intermediate Fe(III)−phenolate complex was evidenced by a UV−visible absorption band at 690 nm and the Raman bands at 643, 896, 990, 1149, 1228, 1475, 1580, and 1607 cm−1. The Raman bands of the Fe(III)−phenolate complex were also confirmed by density functional theory calculations.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 47 publications.

    1. Bojana Ginovska, Oliver Y. Gutiérrez, Abhi Karkamkar, Mal-Soon Lee, Johannes A. Lercher, Yue Liu, Simone Raugei, Roger Rousseau, Wendy J. Shaw. Bioinspired Catalyst Design Principles: Progress in Emulating Properties of Enzymes in Synthetic Catalysts. ACS Catalysis 2023, 13 (18) , 11883-11901. https://doi.org/10.1021/acscatal.3c00320
    2. Yongjie Wang, Shengshuo Xu, Jinling Wang, Yanghua Duan, Yuanyuan Qian, Hualin Wang, Yanjing Xu, Xuejing Yang. Ferryl-Involved Oxidation Coupling Processes over KxFeOCl Enzyme-Mimetic Catalysis: Mechanistic Insights and Kinetic Modeling. ACS ES&T Water 2023, 3 (9) , 2978-2988. https://doi.org/10.1021/acsestwater.3c00208
    3. Benjamin E. R. Snyder, Max L. Bols, Robert A. Schoonheydt, Bert F. Sels, Edward I. Solomon. Iron and Copper Active Sites in Zeolites and Their Correlation to Metalloenzymes. Chemical Reviews 2018, 118 (5) , 2718-2768. https://doi.org/10.1021/acs.chemrev.7b00344
    4. Lingqian Meng, Xiaochun Zhu, and Emiel J. M. Hensen . Stable Fe/ZSM-5 Nanosheet Zeolite Catalysts for the Oxidation of Benzene to Phenol. ACS Catalysis 2017, 7 (4) , 2709-2719. https://doi.org/10.1021/acscatal.6b03512
    5. Michael M. Forde, Robert D. Armstrong, Ceri Hammond, Qian He, Robert L. Jenkins, Simon A. Kondrat, Nikolaos Dimitratos, Jose Antonio Lopez-Sanchez, Stuart H. Taylor, David Willock, Christopher J. Kiely, and Graham John Hutchings . Partial Oxidation of Ethane to Oxygenates Using Fe- and Cu-Containing ZSM-5. Journal of the American Chemical Society 2013, 135 (30) , 11087-11099. https://doi.org/10.1021/ja403060n
    6. Guanna Li, Evgeny A. Pidko, Rutger A. van Santen, Can Li, and Emiel J. M. Hensen . Stability of Extraframework Iron-Containing Complexes in ZSM-5 Zeolite. The Journal of Physical Chemistry C 2013, 117 (1) , 413-426. https://doi.org/10.1021/jp310374k
    7. Xiaofan Yang, Zili Wu, Melanie Moses-Debusk, David R. Mullins, Shannon M. Mahurin, Robert A. Geiger, Michelle Kidder, and Chaitanya K. Narula . Heterometal Incorporation in Metal-Exchanged Zeolites Enables Low-Temperature Catalytic Activity of NOx Reduction. The Journal of Physical Chemistry C 2012, 116 (44) , 23322-23331. https://doi.org/10.1021/jp3056043
    8. Mehmet Ferdi Fellah, Evgeny A. Pidko, Rutger A. van Santen, and Isik Onal . A DFT Study of Direct Oxidation of Benzene to Phenol by N2O over [Fe(μ-O)Fe]2+ Complexes in ZSM-5 Zeolite. The Journal of Physical Chemistry C 2011, 115 (19) , 9668-9680. https://doi.org/10.1021/jp201582s
    9. Haian Xia, Samuel D. Fleischman, Can Li, and Susannah L. Scott . Spectroscopic Evidence of Extra-Framework Heterometallic Oxo-Clusters in Fe/Ga-ZSM-5 Catalysts. The Journal of Physical Chemistry Letters 2011, 2 (3) , 190-195. https://doi.org/10.1021/jz101507s
    10. Haian Xia, Keqiang Sun, Zhaochi Feng, and Can Li. Effect of Water on Active Iron Sites for N2O Decomposition over Fe/ZSM-5 Catalyst. The Journal of Physical Chemistry C 2011, 115 (2) , 542-548. https://doi.org/10.1021/jp1094917
    11. Mehmet Ferdi Fellah, Isik Onal and Rutger A. van Santen . A Density Functional Theory Study of Direct Oxidation of Benzene to Phenol by N2O on a [FeO]1+-ZSM-5 Cluster. The Journal of Physical Chemistry C 2010, 114 (29) , 12580-12589. https://doi.org/10.1021/jp1023247
    12. Pieter J. Smeets, Julia S. Woertink, Bert F. Sels, Edward I. Solomon and Robert A. Schoonheydt . Transition-Metal Ions in Zeolites: Coordination and Activation of Oxygen. Inorganic Chemistry 2010, 49 (8) , 3573-3583. https://doi.org/10.1021/ic901814f
    13. Yongjie Wang, Jinling Wang, Jie Wei, Chenglong Wang, Hualin Wang, Xuejing Yang. Catalytic Mechanisms and Active Species of Benzene Hydroxylation Reaction System Based on Fe-Based Enzyme-Mimetic Structure. Catalysis Letters 2023, 153 (11) , 3311-3332. https://doi.org/10.1007/s10562-022-04238-2
    14. Dieter Plessers, Max L. Bols, Hannah M. Rhoda, Alexander J. Heyer, Edward I. Solomon, Bert F. Sels, Robert A. Schoonheydt. Single site spectroscopy of transition metal ions and reactive oxygen complexes in zeolites. 2023, 148-164. https://doi.org/10.1016/B978-0-12-823144-9.00008-X
    15. Zhiping Lyu, Menglu Xu, Jinnan Wang, Aimin Li, Philippe François-Xavier Corvini. Hierarchical nano-vesicles with bimetal-encapsulated for peroxymonosulfate activation: Singlet oxygen-dominated oxidation process. Chemical Engineering Journal 2022, 433 , 133581. https://doi.org/10.1016/j.cej.2021.133581
    16. Lizhi Wu, Zhiyuan Fu, Zhuangzhuang Ren, Jinhe Wei, Xinhua Gao, Li Tan, Yu Tang. Enhanced Catalytic Performance of Fe‐containing HZSM‐5 for Ethane Non‐Oxidative Dehydrogenation via Hydrothermal Post‐Treatment. ChemCatChem 2021, 13 (18) , 4019-4028. https://doi.org/10.1002/cctc.202100752
    17. Yuebing Xu, Xiao Yuan, Mengyao Chen, Anliang Dong, Bing Liu, Feng Jiang, Shijian Yang, Xiaohao Liu. Identification of atomically dispersed Fe-oxo species as new active sites in HZSM-5 for efficient non-oxidative methane dehydroaromatization. Journal of Catalysis 2021, 396 , 224-241. https://doi.org/10.1016/j.jcat.2021.02.028
    18. Christian Hess. New advances in using Raman spectroscopy for the characterization of catalysts and catalytic reactions. Chemical Society Reviews 2021, 50 (5) , 3519-3564. https://doi.org/10.1039/D0CS01059F
    19. Antonietta Mancuso, Olga Sacco, Diana Sannino, Vincenzo Venditto, Vincenzo Vaiano. One-Step Catalytic or Photocatalytic Oxidation of Benzene to Phenol: Possible Alternative Routes for Phenol Synthesis?. Catalysts 2020, 10 (12) , 1424. https://doi.org/10.3390/catal10121424
    20. Max L. Bols, Hannah M. Rhoda, Benjamin E. R. Snyder, Edward I. Solomon, Kristine Pierloot, Robert A. Schoonheydt, Bert F. Sels. Advances in the synthesis, characterisation, and mechanistic understanding of active sites in Fe-zeolites for redox catalysts. Dalton Transactions 2020, 49 (42) , 14749-14757. https://doi.org/10.1039/D0DT01857K
    21. A. A. Shteinman. Bioinspired Oxidation of Methane: From Academic Models of Methane Monooxygenases to Direct Conversion of Methane to Methanol. Kinetics and Catalysis 2020, 61 (3) , 339-359. https://doi.org/10.1134/S0023158420030180
    22. Yifan Zhang, Soo-Jin Park. Stabilizing CuPd bimetallic alloy nanoparticles deposited on holey carbon nitride for selective hydroxylation of benzene to phenol. Journal of Catalysis 2019, 379 , 154-163. https://doi.org/10.1016/j.jcat.2019.09.032
    23. Muhammad Haris Mahyuddin, Yoshihito Shiota, Kazunari Yoshizawa. Methane selective oxidation to methanol by metal-exchanged zeolites: a review of active sites and their reactivity. Catalysis Science & Technology 2019, 9 (8) , 1744-1768. https://doi.org/10.1039/C8CY02414F
    24. Cui Ouyang, Yingxia Li, Jianwei Li. The ZSM-5-Catalyzed Oxidation of Benzene to Phenol with N2O: Effect of Lewis Acid Sites. Catalysts 2019, 9 (1) , 44. https://doi.org/10.3390/catal9010044
    25. Benjamin E. R. Snyder, Max L. Bols, Hannah M. Rhoda, Pieter Vanelderen, Lars H. Böttger, Augustin Braun, James J. Yan, Ryan G. Hadt, Jeffrey T. Babicz, Michael Y. Hu, Jiyong Zhao, E. Ercan Alp, Britt Hedman, Keith O. Hodgson, Robert A. Schoonheydt, Bert F. Sels, Edward I. Solomon. Mechanism of selective benzene hydroxylation catalyzed by iron-containing zeolites. Proceedings of the National Academy of Sciences 2018, 115 (48) , 12124-12129. https://doi.org/10.1073/pnas.1813849115
    26. Haian Xia, Hong Hu, Siquan Xu, Kehao Xiao, Songlin Zuo. Catalytic conversion of glucose to 5-hydroxymethyfural over Fe/β zeolites with extra-framework isolated Fe species in a biphasic reaction system. Biomass and Bioenergy 2018, 108 , 426-432. https://doi.org/10.1016/j.biombioe.2017.12.007
    27. Jay A. Labinger. Elusive active site in focus. Nature 2016, 536 (7616) , 280-281. https://doi.org/10.1038/536280a
    28. Benjamin E. R. Snyder, Pieter Vanelderen, Max L. Bols, Simon D. Hallaert, Lars H. Böttger, Liviu Ungur, Kristine Pierloot, Robert A. Schoonheydt, Bert F. Sels, Edward I. Solomon. The active site of low-temperature methane hydroxylation in iron-containing zeolites. Nature 2016, 536 (7616) , 317-321. https://doi.org/10.1038/nature19059
    29. Yangmin Ma, Xiying Ren, Weitao Wang, Ping Lu, Leilei Shi. Hydroxylation of benzene to phenol on Cu x O y @C with hydrogen peroxide. Reaction Kinetics, Mechanisms and Catalysis 2016, 117 (2) , 693-704. https://doi.org/10.1007/s11144-015-0950-0
    30. Frank Leung‐Yuk Lam, Michael C.L. Li, Rock S.L. Chau, Rick A.D. Arancon, Xijun Hu, Rafael Luque. Catalysis at Room Temperature: Perspectives for Future Green Chemical Processes. 2016, 209-231. https://doi.org/10.1002/9781118957844.ch14
    31. Maddalena Bronzato, Alfonso Zoleo, Barbara Biondi, Silvia A. Centeno. An insight into the metal coordination and spectroscopic properties of artistic Fe and Fe/Cu logwood inks. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2016, 153 , 522-529. https://doi.org/10.1016/j.saa.2015.08.042
    32. Frank Leung‐Yuk Lam, Michael C.L. Li, Rock S.L. Chau, Rick A.D. Arancon, Xijun Hu, Rafael Luque. Catalysis at room temperature: perspectives for future green chemical processes. WIREs Energy and Environment 2015, 4 (4) , 316-338. https://doi.org/10.1002/wene.141
    33. Shaoqing Jin, Zhaochi Feng, Fengtao Fan, Can Li. UV Raman Spectroscopic Characterization of Catalysts and Catalytic Active Sites. Catalysis Letters 2015, 145 (1) , 468-481. https://doi.org/10.1007/s10562-014-1416-0
    34. Masaoki Iwasaki. Mechanistic Aspect of NO–NH3–O2 Reacting System. 2014, 221-246. https://doi.org/10.1007/978-1-4899-8071-7_8
    35. Guanna Li, Evgeny A. Pidko, Ivo A.W. Filot, Rutger A. van Santen, Can Li, Emiel J.M. Hensen. Catalytic properties of extraframework iron-containing species in ZSM-5 for N2O decomposition. Journal of Catalysis 2013, 308 , 386-397. https://doi.org/10.1016/j.jcat.2013.08.010
    36. Junying WANG, Haian XIA, Xiaohua JU, Fengtao FAN, Zhaochi FENG, Can LI. Catalytic performance of different types of iron zeolites in N2O decomposition. Chinese Journal of Catalysis 2013, 34 (5) , 876-888. https://doi.org/10.1016/S1872-2067(12)60555-5
    37. A.J.J. Koekkoek, W. Kim, V. Degirmenci, H. Xin, R. Ryoo, E.J.M. Hensen. Catalytic performance of sheet-like Fe/ZSM-5 zeolites for the selective oxidation of benzene with nitrous oxide. Journal of Catalysis 2013, 299 , 81-89. https://doi.org/10.1016/j.jcat.2012.12.002
    38. Zory Vlad Todres. Pore Effects. 2013, 143-167. https://doi.org/10.1007/978-3-319-00158-6_9
    39. Robert A. Schoonheydt, Pieter Vanelderen, Bert F. Sels. Direct Catalytic Decomposition of N2O over Cu- and Fe-Zeolites. 2013, 399-419. https://doi.org/10.1016/B978-0-444-53870-3.00013-7
    40. Weitao Wang, Guodong Ding, Tao Jiang, Peng Zhang, Tianbin Wu, Buxing Han. Facile one-pot synthesis of VxOy@C catalysts using sucrose for the direct hydroxylation of benzene to phenol. Green Chemistry 2013, 15 (5) , 1150. https://doi.org/10.1039/c3gc00084b
    41. Fengtao Fan, Zhaochi Feng, Can Li. Raman and UV‐Raman Spectroscopies. 2012, 49-87. https://doi.org/10.1002/9783527645329.ch2
    42. Guanna Li, Evgeny A. Pidko, Rutger A. van Santen, Zhaochi Feng, Can Li, Emiel J.M. Hensen. Stability and reactivity of active sites for direct benzene oxidation to phenol in Fe/ZSM-5: A comprehensive periodic DFT study. Journal of Catalysis 2011, 284 (2) , 194-206. https://doi.org/10.1016/j.jcat.2011.07.008
    43. Linfei Lai, Guoming Huang, Xiaofeng Wang, Jian Weng. Solvothermal syntheses of hollow carbon microspheres modified with –NH2 and –OH groups in one-step process. Carbon 2010, 48 (11) , 3145-3156. https://doi.org/10.1016/j.carbon.2010.04.053
    44. Masaoki Iwasaki, Hirofumi Shinjoh. NO evolution reaction with NO2 adsorption over Fe/ZSM-5: In situ FT-IR observation and relationships with Fe sites. Journal of Catalysis 2010, 273 (1) , 29-38. https://doi.org/10.1016/j.jcat.2010.04.023
    45. Gang Yang, Jing Guan, Lijun Zhou, Xiuwen Han, Xinhe Bao. Active Sites in Fe/ZSM-5 Zeolite. Catalysis Surveys from Asia 2010, 14 (2) , 85-94. https://doi.org/10.1007/s10563-010-9090-8
    46. Haian Xia, Keqiang Sun, Zhimin Liu, Zhaochi Feng, Pinliang Ying, Can Li. The promotional effect of NO on N2O decomposition over the bi-nuclear Fe sites in Fe/ZSM-5. Journal of Catalysis 2010, 270 (1) , 103-109. https://doi.org/10.1016/j.jcat.2009.12.014
    47. Christopher J. Rhodes. Spectroscopic characterisation of molecules adsorbed at zeolite surfaces. Annual Reports Section "C" (Physical Chemistry) 2010, 106 , 36. https://doi.org/10.1039/b903505m

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect