ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Water Structuring and Hydroxide Ion Binding at the Interface between Water and Hydrophobic Walls of Varying Rigidity and van der Waals Interactions

View Author Information
Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, Flemingovo nám. 2, 16610 Prague 6, Czech Republic, Contribution from the GBB Institute, Department of Biophysical Chemistry, and Stratingh Institute, Physical Organic Chemistry Unit, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
* Corresponding author. E-mail: [email protected]; FAX: +420-220 410 320.
†Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems.
‡University of Groningen.
Cite this: J. Phys. Chem. C 2008, 112, 20, 7689–7692
Publication Date (Web):April 30, 2008
https://doi.org/10.1021/jp800888b
Copyright © 2008 American Chemical Society

    Article Views

    943

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (1022 KB)

    Abstract

    The interfacial behavior of hydroxide ions has been investigated by means of molecular dynamics simulations of aqueous KOH solutions between hydrophobic carbon-like walls. In agreement with previous calculations, we show that a rigid, attractive wall strongly structures water molecules in neighboring hydration layers, leading to a concentration peak of hydrated OH ions located about 5 Å from the wall. However, allowing for thermal motion of the wall atoms, as well as suppressing the van der Waals interactions between the wall and water hydrogen atoms, strongly reduces both water structuring and the anionic peak in the interfacial region. We infer that soft hydrophobic environments with weak dispersion interactions with water are not expected to exhibit an appreciable structuring effect on interfacial water molecules. Hence, the mechanism for OH adsorption operative near a hard attractive wall may not be applicable to soft aqueous interfaces, including the limiting case of the water/air interface.

    Cited By

    This article is cited by 52 publications.

    1. Zhen Tang, Shiquan Lin, Zhong Lin Wang. Effect of Surface Pre-Charging and Electric Field on the Contact Electrification between Liquid and Solid. The Journal of Physical Chemistry C 2022, 126 (20) , 8897-8905. https://doi.org/10.1021/acs.jpcc.2c01713
    2. Shiquan Lin, Xiangyu Chen, Zhong Lin Wang. Contact Electrification at the Liquid–Solid Interface. Chemical Reviews 2022, 122 (5) , 5209-5232. https://doi.org/10.1021/acs.chemrev.1c00176
    3. Joshua D. Elliott, Alessandro Troisi, Paola Carbone. A QM/MD Coupling Method to Model the Ion-Induced Polarization of Graphene. Journal of Chemical Theory and Computation 2020, 16 (8) , 5253-5263. https://doi.org/10.1021/acs.jctc.0c00239
    4. Martin Pykal, Michal Langer, Barbora Blahová Prudilová, Pavel Banáš, Michal Otyepka. Ion Interactions across Graphene in Electrolyte Aqueous Solutions. The Journal of Physical Chemistry C 2019, 123 (15) , 9799-9806. https://doi.org/10.1021/acs.jpcc.8b12055
    5. Katy N. Olafson, R. John Clark, Peter G. Vekilov, Jeremy C. Palmer, Jeffrey D. Rimer. Structuring of Organic Solvents at Solid Interfaces and Ramifications for Antimalarial Adsorption on β-Hematin Crystals. ACS Applied Materials & Interfaces 2018, 10 (35) , 29288-29298. https://doi.org/10.1021/acsami.8b08579
    6. Teresa Cecchi . Chromatography and the Hotly Debated Enigma of Aqueous Surface’s Acid–Base Character. The Journal of Physical Chemistry C 2013, 117 (48) , 25579-25585. https://doi.org/10.1021/jp409480t
    7. J. Lützenkirchen . Specific Ion Effects at Two Single-Crystal Planes of Sapphire. Langmuir 2013, 29 (25) , 7726-7734. https://doi.org/10.1021/la401509y
    8. Eric Tyrode and Jonathan F. D. Liljeblad . Water Structure Next to Ordered and Disordered Hydrophobic Silane Monolayers: A Vibrational Sum Frequency Spectroscopy Study. The Journal of Physical Chemistry C 2013, 117 (4) , 1780-1790. https://doi.org/10.1021/jp310732f
    9. Collin D. Wick . Hydronium Behavior at the Air–Water Interface with a Polarizable Multistate Empirical Valence Bond Model. The Journal of Physical Chemistry C 2012, 116 (6) , 4026-4038. https://doi.org/10.1021/jp209167w
    10. Daniel J. Cole, Priscilla K. Ang, and Kian Ping Loh . Ion Adsorption at the Graphene/Electrolyte Interface. The Journal of Physical Chemistry Letters 2011, 2 (14) , 1799-1803. https://doi.org/10.1021/jz200765z
    11. Ariel A. Chialvo and Peter T. Cummings . Aqua Ions–Graphene Interfacial and Confinement Behavior: Insights from Isobaric–Isothermal Molecular Dynamics. The Journal of Physical Chemistry A 2011, 115 (23) , 5918-5927. https://doi.org/10.1021/jp110318n
    12. Dominik Marx, Amalendu Chandra, Mark E. Tuckerman. Aqueous Basic Solutions: Hydroxide Solvation, Structural Diffusion, and Comparison to the Hydrated Proton. Chemical Reviews 2010, 110 (4) , 2174-2216. https://doi.org/10.1021/cr900233f
    13. Collin D. Wick and Liem X. Dang . Investigating Hydroxide Anion Interfacial Activity by Classical and Multistate Empirical Valence Bond Molecular Dynamics Simulations. The Journal of Physical Chemistry A 2009, 113 (22) , 6356-6364. https://doi.org/10.1021/jp900290y
    14. Shiquan Lin, Xiangyu Chen, Zhong Lin Wang. Electron transfer in liquid–solid contact electrification and double-layer formation. 2024, 576-599. https://doi.org/10.1016/B978-0-323-85669-0.00142-2
    15. XiangYu CHEN, ZhaoQi LIU, ZhongLin WANG. The process of interfacial electron transfer in liquid-solid contact and the two-step mechanism model of EDL structure. SCIENTIA SINICA Technologica 2023, 53 (6) , 844-859. https://doi.org/10.1360/SST-2023-0038
    16. Shiquan Lin, Xiangyu Chen, Zhong Lin Wang. Origins of Liquid-Solid Contact Electrification. 2023, 1-40. https://doi.org/10.1007/978-3-031-05722-9_3-1
    17. Shiquan Lin, Xiangyu Chen, Zhong Lin Wang. Origins of Liquid-Solid Contact Electrification. 2023, 71-110. https://doi.org/10.1007/978-3-031-28111-2_3
    18. Jesse Lentz, Stephen H. Garofalini. Formation and migration of H 3 O + and OH − ions at the water/silica and water/vapor interfaces under the influence of a static electric field: a molecular dynamics study. Physical Chemistry Chemical Physics 2020, 22 (39) , 22537-22548. https://doi.org/10.1039/D0CP03656K
    19. Jinhui Nie, Zewei Ren, Liang Xu, Shiquan Lin, Fei Zhan, Xiangyu Chen, Zhong Lin Wang. Probing Contact‐Electrification‐Induced Electron and Ion Transfers at a Liquid–Solid Interface. Advanced Materials 2020, 32 (2) https://doi.org/10.1002/adma.201905696
    20. Risa Tanaka, Shuto Watanabe, Yuki Kagamihara, Mitsuru Satoh. Ionic strength and ion-specific effects on the cloud point and the gel swelling of thermo-sensitive polymers in water. Colloid and Polymer Science 2018, 296 (9) , 1431-1441. https://doi.org/10.1007/s00396-018-4363-2
    21. J. Lützenkirchen, G.V. Franks, M. Plaschke, R. Zimmermann, F. Heberling, A. Abdelmonem, G.K. Darbha, D. Schild, A. Filby, P. Eng, J.G. Catalano, J. Rosenqvist, T. Preocanin, T. Aytug, D. Zhang, Y. Gan, B. Braunschweig. The surface chemistry of sapphire-c: A literature review and a study on various factors influencing its IEP. Advances in Colloid and Interface Science 2018, 251 , 1-25. https://doi.org/10.1016/j.cis.2017.12.004
    22. Wenjuan Zhu, Chao Wang, Xiaojian Li, Malik Saddam Khan, Xu Sun, Hongmin Ma, Dawei Fan, Qin Wei. Zinc-doping enhanced cadmium sulfide electrochemiluminescence behavior based on Au-Cu alloy nanocrystals quenching for insulin detection. Biosensors and Bioelectronics 2017, 97 , 115-121. https://doi.org/10.1016/j.bios.2017.05.046
    23. Seiji Higuchi, Mitsuru Satoh. Effects of NaCl, NaOH, and HCl concentration on the cloud point of poly(vinyl methyl ether) in water—electrostatic interactions are inevitably involved in the hydrophobic interaction. Colloid and Polymer Science 2017, 295 (9) , 1511-1520. https://doi.org/10.1007/s00396-017-4130-9
    24. Collin D. Wick. Comparing hydroxide and hydronium at the instantaneous air-water interface using polarizable multi-state empirical valence bond models. Computational and Theoretical Chemistry 2017, 1116 , 64-72. https://doi.org/10.1016/j.comptc.2017.01.036
    25. Lucinda Mulko, Edith Yslas, Silvestre Bongiovanni Abel, Claudia Rivarola, Cesar Barbero, Diego Acevedo, Diego Acevedo. Smart Hydrogels: Application in Bioethanol Production. 2017, 79-105. https://doi.org/10.1002/9781119441632.ch108
    26. Yuka Utashiro, Mizuki Takiguchi, Mitsuru Satoh. Zeta potential of PNIPAM microgel particles dispersed in water—effects of charged radical initiators vs. OH− ion adsorption. Colloid and Polymer Science 2017, 295 (1) , 45-52. https://doi.org/10.1007/s00396-016-3976-6
    27. Isabelle Bergonzi, Lionel Mercury, Patrick Simon, Frédéric Jamme, Kirill Shmulovich. Oversolubility in the microvicinity of solid–solution interfaces. Phys. Chem. Chem. Phys. 2016, 18 (22) , 14874-14885. https://doi.org/10.1039/C5CP08012F
    28. Matthew Michael Gacek, John C. Berg. The role of acid–base effects on particle charging in apolar media. Advances in Colloid and Interface Science 2015, 220 , 108-123. https://doi.org/10.1016/j.cis.2015.03.004
    29. Johannes Lützenkirchen, Frank Heberling, Filip Supljika, Tajana Preocanin, Nikola Kallay, Florian Johann, Ludger Weisser, Peter J. Eng. Structure–charge relationship – the case of hematite (001). Faraday Discussions 2015, 180 , 55-79. https://doi.org/10.1039/C4FD00260A
    30. C.S. Tian, Y.R. Shen. Recent progress on sum-frequency spectroscopy. Surface Science Reports 2014, 69 (2-3) , 105-131. https://doi.org/10.1016/j.surfrep.2014.05.001
    31. Atiða Selmani, Johannes Lützenkirchen, Nikola Kallay, Tajana Preočanin. Surface and zeta-potentials of silver halide single crystals: pH-dependence in comparison to particle systems. Journal of Physics: Condensed Matter 2014, 26 (24) , 244104. https://doi.org/10.1088/0953-8984/26/24/244104
    32. Robert Vácha, Frank Uhlig, Pavel Jungwirth. Charges at Aqueous Interfaces: Development of Computational Approaches in Direct Contact with Experiment. 2014, 69-96. https://doi.org/10.1002/9781118755815.ch02
    33. Johannes Lützenkirchen, Christine Richter. Zeta-potential measurements of OTS-covered silica samples. Adsorption 2013, 19 (2-4) , 217-224. https://doi.org/10.1007/s10450-012-9443-x
    34. Vladimir L. Shapovalov, Helmuth Möhwald, Oleg V. Konovalov, Volker Knecht. Negligible water surface charge determined using Kelvin probe and total reflection X-ray fluorescence techniques. Physical Chemistry Chemical Physics 2013, 15 (33) , 13991. https://doi.org/10.1039/c3cp51575c
    35. Philippe Leroy, Damien Jougnot, André Revil, Arnault Lassin, Mohamed Azaroual. A double layer model of the gas bubble/water interface. Journal of Colloid and Interface Science 2012, 388 (1) , 243-256. https://doi.org/10.1016/j.jcis.2012.07.029
    36. Tajana Preočanin, Atiđa Selmani, Patric Lindqvist-Reis, Frank Heberling, Nikola Kallay, Johannes Lützenkirchen. Surface charge at Teflon/aqueous solution of potassium chloride interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2012, 412 , 120-128. https://doi.org/10.1016/j.colsurfa.2012.07.025
    37. Hyangmi Jung, Keitaro Fujii, Takanori Tamaki, Hidenori Ohashi, Taichi Ito, Takeo Yamaguchi. Low fuel crossover anion exchange pore-filling membrane for solid-state alkaline fuel cells. Journal of Membrane Science 2011, 373 (1-2) , 107-111. https://doi.org/10.1016/j.memsci.2011.02.044
    38. E. E. Fileti, G. M. Dalpian, R. Rivelino. Liquid separation by a graphene membrane. Journal of Applied Physics 2010, 108 (11) https://doi.org/10.1063/1.3518507
    39. J. Lützenkirchen, C. Richter, F. Brandenstein. Some data and simple models for the silanated glass-electrolyte interface. Adsorption 2010, 16 (4-5) , 249-258. https://doi.org/10.1007/s10450-010-9228-z
    40. Collin D. Wick, Liem X. Dang. The behavior of NaOH at the air-water interface: A computational study. The Journal of Chemical Physics 2010, 133 (2) https://doi.org/10.1063/1.3455332
    41. Eva Webster, David A. Ellis, Liisa K. Reid. Modeling the environmental fate of perfluorooctanoic acid and perfluorooctanoate: An investigation of the role of individual species partitioning. Environmental Toxicology and Chemistry 2010, 29 (7) , 1466-1475. https://doi.org/10.1002/etc.181
    42. J. Lützenkirchen, R. Zimmermann, T. Preočanin, A. Filby, T. Kupcik, D. Küttner, A. Abdelmonem, D. Schild, T. Rabung, M. Plaschke, F. Brandenstein, C. Werner, H. Geckeis. An attempt to explain bimodal behaviour of the sapphire c-plane electrolyte interface. Advances in Colloid and Interface Science 2010, 157 (1-2) , 61-74. https://doi.org/10.1016/j.cis.2010.03.003
    43. Ralf Zimmermann, Uwe Freudenberg, Rüdiger Schweiß, David Küttner, Carsten Werner. Hydroxide and hydronium ion adsorption — A survey. Current Opinion in Colloid & Interface Science 2010, 15 (3) , 196-202. https://doi.org/10.1016/j.cocis.2010.01.002
    44. Andreas A. Zavitsas. Ideal Behavior of Water Solutions of Strong Electrolytes and Non-electrolytes at High Concentrations. Journal of Solution Chemistry 2010, 39 (3) , 301-317. https://doi.org/10.1007/s10953-010-9503-3
    45. C. S. Tian, Y. R. Shen. Structure and charging of hydrophobic material/water interfaces studied by phase-sensitive sum-frequency vibrational spectroscopy. Proceedings of the National Academy of Sciences 2009, 106 (36) , 15148-15153. https://doi.org/10.1073/pnas.0901480106
    46. Niharendu Choudhury. Molecular dynamics investigation of hydration of nanoscopic hydrophobic paraffin-like plates. The Journal of Chemical Physics 2009, 131 (1) https://doi.org/10.1063/1.3155186
    47. Bernd Winter, Manfred Faubel, Robert Vácha, Pavel Jungwirth. Behavior of hydroxide at the water/vapor interface. Chemical Physics Letters 2009, 474 (4-6) , 241-247. https://doi.org/10.1016/j.cplett.2009.04.053
    48. Pavel Jungwirth. Spiers Memorial Lecture : Ions at aqueous interfaces. Faraday Discuss. 2009, 141 , 9-30. https://doi.org/10.1039/B816684F
    49. Ralf Zimmermann, Nelly Rein, Carsten Werner. Water ion adsorption dominates charging at nonpolar polymer surfaces in multivalent electrolytes. Physical Chemistry Chemical Physics 2009, 11 (21) , 4360. https://doi.org/10.1039/b900755e
    50. Tomohiro Hayashi, Yusaku Tanaka, Hiroaki Usukura, Masahiko Hara. Behavior of Hydroxide Ions in Vicinity of Self-Assembled Monolayers of Alkanethiols on Metals. e-Journal of Surface Science and Nanotechnology 2009, 7 , 601-605. https://doi.org/10.1380/ejssnt.2009.601
    51. Philip Ball. Water as a Biomolecule. ChemPhysChem 2008, 9 (18) , 2677-2685. https://doi.org/10.1002/cphc.200800515
    52. Johannes Lützenkirchen, Tajana Preočanin, Nikola Kallay. A macroscopic water structure based model for describing charging phenomena at inert hydrophobic surfaces in aqueous electrolyte solutions. Physical Chemistry Chemical Physics 2008, 10 (32) , 4946. https://doi.org/10.1039/b807395c

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect