ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Enumeration of Not-Yet-Synthesized Zeolitic Zinc Imidazolate MOF Networks: A Topological and DFT Approach

View Author Information
Samara State University, Ac. Pavlov St. 1, 443011 Samara, Russia, Max Planck Institut für Chemische Physik fester Stoffe, Nöthnitzer Strasse 40, 01187 Dresden, Germany, and Technische Universität Dresden, Institut für Physikalische Chemie and Elektrochemie, Mommsenstr. 13, 01062 Dresden, Germany
* Corresponding author. E-mail: [email protected]
†Samara State University.
‡Max Planck Institut für Chemische Physik fester Stoffe.
§Technische Universität Dresden.
Cite this: J. Phys. Chem. B 2008, 112, 31, 9437–9443
Publication Date (Web):July 15, 2008
https://doi.org/10.1021/jp801681w
Copyright © 2008 American Chemical Society

    Article Views

    2373

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Twenty-one zeolitic imidazolate metal−organic frameworks based on Zn connectors (ZIFs) are derived and compared to known imidazolate networks. Not-yet-synthesized zinc imidazolates are identified on the basis of DFT total energy scoring. The structure with lowest energy is not porous and represents an unusual structure type with zni topology. Total energy scoring indicates the lcs and pcb networks as reliable ZIF candidates. The intrinsic channel chirality of the lcs network makes this rare topology an attractive target for the synthetic effort. Among the porous ZIFs candidates, the sodalite type, sod, is also found.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Coordinates for all structures in the form of CIF files. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 90 publications.

    1. Rui-Rong Dai, Chong-Wei Ding, Jie-Yi Zhou, Rong-Jia Wei, Xue-Zhi Wang, Xiao-Ping Zhou, Dan Li. Iron(II) Metal–Organic Framework with unh Topology and Tetrazole-Padded Helical Channels. Inorganic Chemistry 2021, 60 (2) , 565-569. https://doi.org/10.1021/acs.inorgchem.0c03216
    2. Paul Iacomi, Philip L. Llewellyn. Data Mining for Binary Separation Materials in Published Adsorption Isotherms. Chemistry of Materials 2020, 32 (3) , 982-991. https://doi.org/10.1021/acs.chemmater.9b03376
    3. Mihails Arhangelskis, Athanassios D. Katsenis, Novendra Novendra, Zamirbek Akimbekov, Dayaker Gandrath, Joseph M. Marrett, Ghada Ayoub, Andrew J. Morris, Omar K. Farha, Tomislav Friščić, Alexandra Navrotsky. Theoretical Prediction and Experimental Evaluation of Topological Landscape and Thermodynamic Stability of a Fluorinated Zeolitic Imidazolate Framework. Chemistry of Materials 2019, 31 (10) , 3777-3783. https://doi.org/10.1021/acs.chemmater.9b00994
    4. Ross J. Verploegh, Ambarish Kulkarni, Salah Eddine Boulfelfel, Jonathan C. Haydak, Dai Tang, David S. Sholl. Screening Diffusion of Small Molecules in Flexible Zeolitic Imidazolate Frameworks Using a DFT-Parameterized Force Field. The Journal of Physical Chemistry C 2019, 123 (14) , 9153-9167. https://doi.org/10.1021/acs.jpcc.9b00733
    5. Johannes P. Dürholt, Guillaume Fraux, François-Xavier Coudert, Rochus Schmid. Ab Initio Derived Force Fields for Zeolitic Imidazolate Frameworks: MOF-FF for ZIFs. Journal of Chemical Theory and Computation 2019, 15 (4) , 2420-2432. https://doi.org/10.1021/acs.jctc.8b01041
    6. Hui Zhang, Yunsong Wang, Wenqi Zhao, Mingchu Zou, Yijun Chen, Liusi Yang, Lu Xu, Huaisheng Wu, and Anyuan Cao . MOF-Derived ZnO Nanoparticles Covered by N-Doped Carbon Layers and Hybridized on Carbon Nanotubes for Lithium-Ion Battery Anodes. ACS Applied Materials & Interfaces 2017, 9 (43) , 37813-37822. https://doi.org/10.1021/acsami.7b12095
    7. Zamirbek Akimbekov, Athanassios D. Katsenis, G. P. Nagabhushana, Ghada Ayoub, Mihails Arhangelskis, Andrew J. Morris, Tomislav Friščić, and Alexandra Navrotsky . Experimental and Theoretical Evaluation of the Stability of True MOF Polymorphs Explains Their Mechanochemical Interconversions. Journal of the American Chemical Society 2017, 139 (23) , 7952-7957. https://doi.org/10.1021/jacs.7b03144
    8. Sanjib Saha, Sergej Springer, Maria E. Schweinefuß, Diego Pontoni, Michael Wiebcke, and Klaus Huber . Insight into Fast Nucleation and Growth of Zeolitic Imidazolate Framework-71 by In Situ Time-Resolved Light and X-ray Scattering Experiments. Crystal Growth & Design 2016, 16 (4) , 2002-2010. https://doi.org/10.1021/acs.cgd.5b01594
    9. Yang Cai, Ambarish R. Kulkarni, You-Gui Huang, David S. Sholl, and Krista S. Walton . Control of Metal–Organic Framework Crystal Topology by Ligand Functionalization: Functionalized HKUST-1 Derivatives. Crystal Growth & Design 2014, 14 (11) , 6122-6128. https://doi.org/10.1021/cg501285q
    10. Richard L. Martin, Cory M. Simon, Bharat Medasani, David K. Britt, Berend Smit, and Maciej Haranczyk . In Silico Design of Three-Dimensional Porous Covalent Organic Frameworks via Known Synthesis Routes and Commercially Available Species. The Journal of Physical Chemistry C 2014, 118 (41) , 23790-23802. https://doi.org/10.1021/jp507152j
    11. Richard Luis Martin and Maciej Haranczyk . Construction and Characterization of Structure Models of Crystalline Porous Polymers. Crystal Growth & Design 2014, 14 (5) , 2431-2440. https://doi.org/10.1021/cg500158c
    12. Jason A. Gee and David S. Sholl . Characterization of the Thermodynamic Stability of Solvated Metal–Organic Framework Polymorphs Using Molecular Simulations. The Journal of Physical Chemistry C 2013, 117 (40) , 20636-20642. https://doi.org/10.1021/jp405774e
    13. Aurélie U. Ortiz, Anne Boutin, Alain H. Fuchs, and François-Xavier Coudert . Investigating the Pressure-Induced Amorphization of Zeolitic Imidazolate Framework ZIF-8: Mechanical Instability Due to Shear Mode Softening. The Journal of Physical Chemistry Letters 2013, 4 (11) , 1861-1865. https://doi.org/10.1021/jz400880p
    14. Jie-Peng Zhang, Yue-Biao Zhang, Jian-Bin Lin, and Xiao-Ming Chen . Metal Azolate Frameworks: From Crystal Engineering to Functional Materials. Chemical Reviews 2012, 112 (2) , 1001-1033. https://doi.org/10.1021/cr200139g
    15. Hugo A. Lopez, Amarajothi Dhakshinamoorthy, Belen Ferrer, Pedro Atienzar, Mercedes Alvaro, and Hermenegildo Garcia . Photochemical Response of Commercial MOFs: Al2(BDC)3 and Its Use As Active Material in Photovoltaic Devices. The Journal of Physical Chemistry C 2011, 115 (45) , 22200-22206. https://doi.org/10.1021/jp206919m
    16. Subash Chandra Sahoo, Tanay Kundu, and Rahul Banerjee . Helical Water Chain Mediated Proton Conductivity in Homochiral Metal–Organic Frameworks with Unprecedented Zeolitic unh-Topology. Journal of the American Chemical Society 2011, 133 (44) , 17950-17958. https://doi.org/10.1021/ja2078637
    17. Saeed Amirjalayer, Maxim Tafipolsky, and Rochus Schmid . Exploring Network Topologies of Copper Paddle Wheel Based Metal–Organic Frameworks with a First-Principles Derived Force Field. The Journal of Physical Chemistry C 2011, 115 (31) , 15133-15139. https://doi.org/10.1021/jp200123g
    18. J. M. Castillo, T. J. H. Vlugt, D. Dubbeldam, S. Hamad, and S. Calero . Performance of Chiral Zeolites for Enantiomeric Separation Revealed by Molecular Simulation. The Journal of Physical Chemistry C 2010, 114 (50) , 22207-22213. https://doi.org/10.1021/jp1079394
    19. Anh Phan, Christian J. Doonan, Fernando J. Uribe-Romo, Carolyn B. Knobler, Michael O’Keeffe and Omar M. Yaghi . Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Accounts of Chemical Research 2010, 43 (1) , 58-67. https://doi.org/10.1021/ar900116g
    20. Rees B. Rankin, Jinchen Liu, Anant D. Kulkarni and J. Karl Johnson. Adsorption and Diffusion of Light Gases in ZIF-68 and ZIF-70: A Simulation Study. The Journal of Physical Chemistry C 2009, 113 (39) , 16906-16914. https://doi.org/10.1021/jp903735m
    21. Min Zhou, Qi Wang, Li Zhang, Ying-Chun Liu and Yu Kang. Adsorption Sites of Hydrogen in Zeolitic Imidazolate Frameworks. The Journal of Physical Chemistry B 2009, 113 (32) , 11049-11053. https://doi.org/10.1021/jp904170s
    22. Janosch Cravillon, Simon Münzer, Sven-Jare Lohmeier, Armin Feldhoff, Klaus Huber and Michael Wiebcke . Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework. Chemistry of Materials 2009, 21 (8) , 1410-1412. https://doi.org/10.1021/cm900166h
    23. Soochan Lee, Dongsik Nam, David ChangMo Yang, Wonyoung Choe. Unveiling Hidden Zeolitic Imidazolate Frameworks Guided by Intuition‐Based Geometrical Factors. Small 2023, 19 (15) https://doi.org/10.1002/smll.202300036
    24. Salvador R. G. Balestra, Bruno Martínez-Haya, Norge Cruz-Hernández, Dewi W. Lewis, Scott M. Woodley, Rocio Semino, Guillaume Maurin, A. Rabdel Ruiz-Salvador, Said Hamad. Nucleation of zeolitic imidazolate frameworks: from molecules to nanoparticles. Nanoscale 2023, 15 (7) , 3504-3519. https://doi.org/10.1039/D2NR06521E
    25. Wasif Mahmood Ahmed Malik, Sheereen Afaq, Azhar Mahmood, Li Niu, Muhammad Yousaf ur Rehman, Muhammad Ibrahim, Abrar Mohyuddin, Ashfaq Mahmood Qureshi, Muhammad Naeem Ashiq, Adeel Hussain Chughtai. A facile synthesis of CeO2 from the GO@Ce-MOF precursor and its efficient performance in the oxygen evolution reaction. Frontiers in Chemistry 2022, 10 https://doi.org/10.3389/fchem.2022.996560
    26. Alice M. Bumstead, Michael F. Thorne, Adam F. Sapnik, Celia Castillo-Blas, Giulio I. Lampronti, Thomas D. Bennett. Investigating the chemical sensitivity of melting in zeolitic imidazolate frameworks. Dalton Transactions 2022, 51 (36) , 13636-13645. https://doi.org/10.1039/D2DT02142K
    27. Eugeny V. Alexandrov, Yumin Yang, Lili Liang, Junjie Wang, Vladislav A. Blatov. Topological transformations in metal–organic frameworks: a prospective design route?. CrystEngComm 2022, 24 (16) , 2914-2924. https://doi.org/10.1039/D2CE00264G
    28. Mohamed Cherif, Gaixia Zhang, Yang Gao, Shuhui Sun, François Vidal. Towards Predicting the Sequential Appearance of Zeolitic Imidazolate Frameworks Synthesized by Mechanochemistry. Molecules 2022, 27 (6) , 1946. https://doi.org/10.3390/molecules27061946
    29. Vladislav A. Blatov, Eugeny V. Alexandrov, Alexander P. Shevchenko. Topology: ToposPro. 2021, 389-412. https://doi.org/10.1016/B978-0-12-409547-2.14576-7
    30. Evelyn Ploetz, Hanna Engelke, Ulrich Lächelt, Stefan Wuttke. The Chemistry of Reticular Framework Nanoparticles: MOF, ZIF, and COF Materials. Advanced Functional Materials 2020, 30 (41) https://doi.org/10.1002/adfm.201909062
    31. Isaiah R. Speight, Igor Huskić, Mihails Arhangelskis, Hatem M. Titi, Robin S. Stein, Timothy P. Hanusa, Tomislav Friščić. Disappearing Polymorphs in Metal–Organic Framework Chemistry: Unexpected Stabilization of a Layered Polymorph over an Interpenetrated Three‐Dimensional Structure in Mercury Imidazolate. Chemistry – A European Journal 2020, 26 (8) , 1811-1818. https://doi.org/10.1002/chem.201905280
    32. . Zeolitic Imidazolate Frameworks. 2019, 463-479. https://doi.org/10.1002/9783527821099.ch20
    33. G. Neville Greaves. Hybrid Glasses: From Metal Organic Frameworks and Co-ordination Polymers to Hybrid Organic Inorganic Perovskites. 2019, 719-770. https://doi.org/10.1007/978-3-319-93728-1_21
    34. Haiyu Wang, Zhiliang jin. Rational design W-doped Co-ZIF-9 based Co 3 S 4 composite photocatalyst for efficient visible-light-driven photocatalytic H 2 evolution. Sustainable Energy & Fuels 2019, 3 (1) , 173-183. https://doi.org/10.1039/C8SE00445E
    35. Julian Keupp, Rochus Schmid. TopoFF: MOF structure prediction using specifically optimized blueprints. Faraday Discussions 2018, 211 , 79-101. https://doi.org/10.1039/C8FD00051D
    36. François‐Xavier Coudert. Molecular Mechanism of Swing Effect in Zeolitic Imidazolate Framework ZIF‐8: Continuous Deformation upon Adsorption. ChemPhysChem 2017, 18 (19) , 2732-2738. https://doi.org/10.1002/cphc.201700463
    37. Dejie Li, Ping Zhang, Qi Kang, Ying Han, Dazhong Shen. Investigation of the effect of energy variation and structure change on the adsorption of volatile organic compounds in ZIF-8 by a DFT approach. Microporous and Mesoporous Materials 2017, 248 , 84-90. https://doi.org/10.1016/j.micromeso.2017.03.029
    38. Girijesh Kumar, Samar K. Das. Coordination frameworks containing compounds as catalysts. Inorganic Chemistry Frontiers 2017, 4 (2) , 202-233. https://doi.org/10.1039/C6QI00358C
    39. Patrick A. Julien, Cristina Mottillo, Tomislav Friščić. Metal–organic frameworks meet scalable and sustainable synthesis. Green Chemistry 2017, 19 (12) , 2729-2747. https://doi.org/10.1039/C7GC01078H
    40. Tanlai Yu, Huihui Li, Pengfei Hao, Junju Shen, Yunlong Fu. Dynamic Directing Effect and Symmetric Correlation in Three pH‐Modulated 1,4‐Diazabicyclo[2.2.2]octane/Iodoargentate Hybrids. European Journal of Inorganic Chemistry 2016, 2016 (30) , 4878-4884. https://doi.org/10.1002/ejic.201600757
    41. Peipei Wang, Xuedan Song, Zhengyan Zhao, Lei Liu, Wensheng Mu, Ce Hao. Role of the electronic excited-state hydrogen bonding in the nitro-explosives detection by [Zn2(oba)2(bpy)]. Chemical Physics Letters 2016, 661 , 257-262. https://doi.org/10.1016/j.cplett.2016.06.085
    42. François-Xavier Coudert, Alain H. Fuchs. Computational characterization and prediction of metal–organic framework properties. Coordination Chemistry Reviews 2016, 307 , 211-236. https://doi.org/10.1016/j.ccr.2015.08.001
    43. Paula Gómez-Álvarez, Said Hamad, Maciej Haranczyk, A. Rabdel Ruiz-Salvador, Sofia Calero. Comparing gas separation performance between all known zeolites and their zeolitic imidazolate framework counterparts. Dalton Transactions 2016, 45 (1) , 216-225. https://doi.org/10.1039/C5DT04012D
    44. Sergej Springer, Igor A. Baburin, Thea Heinemeyer, Jan Gerrit Schiffmann, Leo van Wüllen, Stefano Leoni, Michael Wiebcke. A zeolitic imidazolate framework with conformational variety: conformational polymorphs versus frameworks with static conformational disorder. CrystEngComm 2016, 18 (14) , 2477-2489. https://doi.org/10.1039/C6CE00312E
    45. Diego A. Gómez-Gualdrón, Yamil J. Colón, Xu Zhang, Timothy C. Wang, Yu-Sheng Chen, Joseph T. Hupp, Taner Yildirim, Omar K. Farha, Jian Zhang, Randall Q. Snurr. Evaluating topologically diverse metal–organic frameworks for cryo-adsorbed hydrogen storage. Energy & Environmental Science 2016, 9 (10) , 3279-3289. https://doi.org/10.1039/C6EE02104B
    46. Scott C. McKellar, Stephen A. Moggach. Structural studies of metal–organic frameworks under high pressure. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 2015, 71 (6) , 587-607. https://doi.org/10.1107/S2052520615018168
    47. Caroline Mellot-Draznieks. Computational exploration of metal–organic frameworks: examples of advances in crystal structure predictions and electronic structure tuning. Molecular Simulation 2015, 41 (16-17) , 1422-1437. https://doi.org/10.1080/08927022.2015.1048511
    48. Michael T. Wharmby, Sebastian Henke, Thomas D. Bennett, Sneha R. Bajpe, Inke Schwedler, Stephen P. Thompson, Fabia Gozzo, Petra Simoncic, Caroline Mellot‐Draznieks, Haizheng Tao, Yuanzheng Yue, Anthony K. Cheetham. Extreme Flexibility in a Zeolitic Imidazolate Framework: Porous to Dense Phase Transition in Desolvated ZIF‐4. Angewandte Chemie International Edition 2015, 54 (22) , 6447-6451. https://doi.org/10.1002/anie.201410167
    49. Michael T. Wharmby, Sebastian Henke, Thomas D. Bennett, Sneha R. Bajpe, Inke Schwedler, Stephen P. Thompson, Fabia Gozzo, Petra Simoncic, Caroline Mellot‐Draznieks, Haizheng Tao, Yuanzheng Yue, Anthony K. Cheetham. Extreme Flexibility in a Zeolitic Imidazolate Framework: Porous to Dense Phase Transition in Desolvated ZIF‐4. Angewandte Chemie 2015, 127 (22) , 6547-6551. https://doi.org/10.1002/ange.201410167
    50. Carlos Nieto-Draghi, Javier Pérez-Pellitero. Modeling of Zeolitic-Like Hybrid Materials for Gas Separation. 2015, 381-418. https://doi.org/10.1201/b18039-10
    51. Caroline Mellot-Draznieks, Ben Slater, Raimondas Galvelis. Computational Approaches to the Design, Crystal Structure Prediction, and Structure–Property Relationships of Metal–Organic Frameworks. 2015, 1-52. https://doi.org/10.1201/b18039-2
    52. Ross S. Forgan, Ross J. Marshall, Mona Struckmann, Aurore B. Bleine, De-Liang Long, María C. Bernini, David Fairen-Jimenez. Structure-directing factors when introducing hydrogen bond functionality to metal–organic frameworks. CrystEngComm 2015, 17 (2) , 299-306. https://doi.org/10.1039/C4CE01379D
    53. Sareeya Bureekaew, Vishal Balwani, Saeed Amirjalayer, Rochus Schmid. Isoreticular isomerism in 4,4-connected paddle-wheel metal–organic frameworks: structural prediction by the reverse topological approach. CrystEngComm 2015, 17 (2) , 344-352. https://doi.org/10.1039/C4CE01574F
    54. Lila Bouëssel du Bourg, Aurélie U. Ortiz, Anne Boutin, François-Xavier Coudert. Thermal and mechanical stability of zeolitic imidazolate frameworks polymorphs. APL Materials 2014, 2 (12) https://doi.org/10.1063/1.4904818
    55. Brian R. Pimentel, Aamena Parulkar, Er‐kang Zhou, Nicholas A. Brunelli, Ryan P. Lively. Zeolitic Imidazolate Frameworks: Next‐Generation Materials for Energy‐Efficient Gas Separations. ChemSusChem 2014, 7 (12) , 3202-3240. https://doi.org/10.1002/cssc.201402647
    56. Maria J. Climent, Avelino Corma, Sara Iborra, Maria J. Sabater. Heterogeneous Catalysis for Tandem Reactions. ACS Catalysis 2014, 4 (3) , 870-891. https://doi.org/10.1021/cs401052k
    57. Caroline Mellot-Draznieks, Boutheïna Kerkeni. Exploring the interplay between ligand and topology in zeolitic imidazolate frameworks with computational chemistry. Molecular Simulation 2014, 40 (1-3) , 25-32. https://doi.org/10.1080/08927022.2013.845298
    58. Aurélie U. Ortiz, Alexy P. Freitas, Anne Boutin, Alain H. Fuchs, François-Xavier Coudert. What makes zeolitic imidazolate frameworks hydrophobic or hydrophilic? The impact of geometry and functionalization on water adsorption. Phys. Chem. Chem. Phys. 2014, 16 (21) , 9940-9949. https://doi.org/10.1039/C3CP54292K
    59. Maria E. Schweinefuß, Sergej Springer, Igor A. Baburin, Todor Hikov, Klaus Huber, Stefano Leoni, Michael Wiebcke. Zeolitic imidazolate framework-71 nanocrystals and a novel SOD-type polymorph: solution mediated phase transformations, phase selection via coordination modulation and a density functional theory derived energy landscape. Dalton Transactions 2014, 43 (9) , 3528. https://doi.org/10.1039/c3dt52992d
    60. Benjamin C. Revard, William W. Tipton, Richard G. Hennig. Structure and Stability Prediction of Compounds with Evolutionary Algorithms. 2014, 181-222. https://doi.org/10.1007/128_2013_489
    61. Qilong Bao, Yongbing Lou, Tiantian Xing, Jinxi Chen. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) in aqueous solution via microwave irradiation. Inorganic Chemistry Communications 2013, 37 , 170-173. https://doi.org/10.1016/j.inoche.2013.09.061
    62. Hermenegildo García, Belén Ferrer. Photocatalysis by MOFs. 2013, 365-383. https://doi.org/10.1039/9781849737586-00365
    63. Maksym Opanasenko, Mariya Shamzhy, Jiří Čejka. Solid Acid Catalysts for Coumarin Synthesis by the Pechmann Reaction: MOFs versus Zeolites. ChemCatChem 2013, 5 (4) , 1024-1031. https://doi.org/10.1002/cctc.201200232
    64. S. Calero. Adsorption in Metal-Organic Frameworks. 2013, 989-1006. https://doi.org/10.1016/B978-0-08-097774-4.00944-X
    65. Christian A. Schröder, Igor A. Baburin, Leo van Wüllen, Michael Wiebcke, Stefano Leoni. Subtle polymorphism of zinc imidazolate frameworks: temperature-dependent ground states in the energy landscape revealed by experiment and theory. CrystEngComm 2013, 15 (20) , 4036-4040. https://doi.org/10.1039/C2CE26045J
    66. Sareeya Bureekaew, Rochus Schmid. Hypothetical 3D-periodic covalent organic frameworks: exploring the possibilities by a first principles derived force field. CrystEngComm 2013, 15 (8) , 1551. https://doi.org/10.1039/c2ce26473k
    67. Tanay Kundu, Subash C. Sahoo, Subhadeep Saha, Rahul Banerjee. Salt metathesis in three dimensional metal–organic frameworks (MOFs) with unprecedented hydrolytic regenerability. Chemical Communications 2013, 49 (46) , 5262. https://doi.org/10.1039/c3cc41842a
    68. Tanay Kundu, Subash Chandra Sahoo, Rahul Banerjee. Relating pore hydrophilicity with vapour adsorption capacity in a series of amino acid based metal organic frameworks. CrystEngComm 2013, 15 (45) , 9634. https://doi.org/10.1039/c3ce41083h
    69. Raimondas Galvelis, Ben Slater, Robin Chaudret, Benoit Creton, Carlos Nieto-Draghi, Caroline Mellot-Draznieks. Impact of functionalized linkers on the energy landscape of ZIFs. CrystEngComm 2013, 15 (45) , 9603. https://doi.org/10.1039/c3ce41103f
    70. François-Xavier Coudert. Systematic investigation of the mechanical properties of pure silica zeolites: stiffness, anisotropy, and negative linear compressibility. Physical Chemistry Chemical Physics 2013, 15 (38) , 16012. https://doi.org/10.1039/c3cp51817e
    71. Igor A. Baburin, Gotthard Seifert, Stefano Leoni. Reticular Materials for Hydrogen Storage. Zeitschrift für anorganische und allgemeine Chemie 2012, 638 (10) , 1626-1626. https://doi.org/10.1002/zaac.201204119
    72. Qiang Zhu, Artem R. Oganov, Colin W. Glass, Harold T. Stokes. Constrained evolutionary algorithm for structure prediction of molecular crystals: methodology and applications. Acta Crystallographica Section B Structural Science 2012, 68 (3) , 215-226. https://doi.org/10.1107/S0108768112017466
    73. Avelina Arnanz, Mercedes Pintado‐Sierra, Avelino Corma, Marta Iglesias, Félix Sánchez. Bifunctional Metal Organic Framework Catalysts for Multistep Reactions: MOF‐Cu(BTC)‐[Pd] Catalyst for One‐Pot Heteroannulation of Acetylenic Compounds. Advanced Synthesis & Catalysis 2012, 354 (7) , 1347-1355. https://doi.org/10.1002/adsc.201100503
    74. Raimondas Galvelis, Ben Slater, Anthony K. Cheetham, Caroline Mellot-Draznieks. Comparison of the relative stability of zinc and lithium-boron zeolitic imidazolate frameworks. CrystEngComm 2012, 14 (2) , 374-378. https://doi.org/10.1039/C1CE05854A
    75. Todor Hikov, Christian A. Schröder, Janosch Cravillon, Michael Wiebcke, Klaus Huber. In situ static and dynamic light scattering and scanning electron microscopy study on the crystallization of the dense zinc imidazolate framework ZIF-zni. Phys. Chem. Chem. Phys. 2012, 14 (2) , 511-521. https://doi.org/10.1039/C1CP22855B
    76. Igor A. Baburin, Stefano Leoni. The energy landscapes of zeolitic imidazolate frameworks (ZIFs): towards quantifying the presence of substituents on the imidazole ring. J. Mater. Chem. 2012, 22 (20) , 10152-10154. https://doi.org/10.1039/C2JM15629F
    77. Bassem Assfour, Stefano Leoni, Sergei Yurchenko, Gotthard Seifert. Hydrogen storage in zeolite imidazolate frameworks. A multiscale theoretical investigation. International Journal of Hydrogen Energy 2011, 36 (10) , 6005-6013. https://doi.org/10.1016/j.ijhydene.2011.02.044
    78. Igor A. Baburin, Bassem Assfour, Gotthard Seifert, Stefano Leoni. Polymorphs of lithium-boron imidazolates: energy landscape and hydrogen storage properties. Dalton Trans. 2011, 40 (15) , 3796-3798. https://doi.org/10.1039/C0DT01441A
    79. Jin Chong Tan, Anthony K. Cheetham. Mechanical properties of hybrid inorganic–organic framework materials: establishing fundamental structure–property relationships. Chemical Society Reviews 2011, 40 (2) , 1059. https://doi.org/10.1039/c0cs00163e
    80. Vladislav A. Blatov, Davide M. Proserpio. Periodic‐Graph Approaches in Crystal Structure Prediction. 2010, 1-28. https://doi.org/10.1002/9783527632831.ch1
    81. Amarajothi Dhakshinamoorthy, Mercedes Alvaro, Hermenegildo Garcia. Metal Organic Frameworks as Solid Acid Catalysts for Acetalization of Aldehydes with Methanol. Advanced Synthesis & Catalysis 2010, 352 (17) , 3022-3030. https://doi.org/10.1002/adsc.201000537
    82. Igor Baburin, Christian Schröder, Michael Wiebcke, Stefano Leoni. Subtle Polymorphism in the Zinc Imidazolate System. Zeitschrift für anorganische und allgemeine Chemie 2010, 636 (11) , 2086-2086. https://doi.org/10.1002/zaac.201009075
    83. Avelino Corma, Marta Iglesias, Francesc X. Llabrés i Xamena, Félix Sánchez. Cu and Au Metal–Organic Frameworks Bridge the Gap between Homogeneous and Heterogeneous Catalysts for Alkene Cyclopropanation Reactions. Chemistry – A European Journal 2010, 16 (32) , 9789-9795. https://doi.org/10.1002/chem.201000278
    84. Amarajothi Dhakshinamoorthy, Mercedes Alvaro, Hermenegildo Garcia. Metal–Organic Frameworks as Efficient Heterogeneous Catalysts for the Regioselective Ring Opening of Epoxides. Chemistry – A European Journal 2010, 16 (28) , 8530-8536. https://doi.org/10.1002/chem.201000588
    85. Maxim Tafipolsky, Saeed Amirjalayer, Rochus Schmid. Atomistic theoretical models for nanoporous hybrid materials. Microporous and Mesoporous Materials 2010, 129 (3) , 304-318. https://doi.org/10.1016/j.micromeso.2009.07.006
    86. Amarajothi Dhakshinamoorthy, Mercedes Alvaro, Hermenegildo Garcia. Claisen–Schmidt Condensation Catalyzed by Metal‐Organic Frameworks. Advanced Synthesis & Catalysis 2010, 352 (4) , 711-717. https://doi.org/10.1002/adsc.200900747
    87. Igor A. Baburin, Stefano Leoni. Modelling polymorphs of metal–organic frameworks: a systematic study of diamondoid zinc imidazolates. CrystEngComm 2010, 12 (10) , 2809. https://doi.org/10.1039/b926717d
    88. L. Marleny Rodriguez Albelo, A. Rabdel Ruiz-Salvador, Dewi W. Lewis, Ariel Gómez, Pierre Mialane, Jérome Marrot, Anne Dolbecq, Alvaro Sampieri, Caroline Mellot-Draznieks. Zeolitic polyoxometalates metal organic frameworks (Z-POMOF) with imidazole ligands and ε-Keggin ions as building blocks; computational evaluation of hypothetical polymorphs and a synthesis approach. Physical Chemistry Chemical Physics 2010, 12 (30) , 8632. https://doi.org/10.1039/c004234j
    89. Amarajothi Dhakshinamoorthy, Mercedes Alvaro, Hermenegildo Garcia. Metal‐Organic Frameworks (MOFs) as Heterogeneous Catalysts for the Chemoselective Reduction of Carbon‐Carbon Multiple Bonds with Hydrazine. Advanced Synthesis & Catalysis 2009, 351 (14-15) , 2271-2276. https://doi.org/10.1002/adsc.200900362
    90. Dewi W. Lewis, A. Rabdel Ruiz-Salvador, Ariel Gómez, L. Marleny Rodriguez-Albelo, François-Xavier Coudert, Ben Slater, Anthony K. Cheetham, Caroline Mellot-Draznieks. Zeolitic imidazole frameworks: structural and energetics trends compared with their zeolite analogues. CrystEngComm 2009, 11 (11) , 2272. https://doi.org/10.1039/b912997a

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect