ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Thermodynamic and Kinetic Characterization of Host−Guest Association between Bolaform Surfactants and α- and β-Cyclodextrins

View Author Information
Physical Chemistry 1, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal, and Department of Chemistry and CSGI, University of Florence, 50019 Florence, Italy
* Corresponding author. E-mail: [email protected]. Telephone: +351 239854459. Fax: (+351) 239 827703.
†Physical Chemistry 1, Lund University.
‡Department of Chemistry, University of Coimbra.
§Department of Chemistry and CSGI, University of Florence.
Cite this: J. Phys. Chem. B 2008, 112, 36, 11310–11316
Publication Date (Web):August 15, 2008
https://doi.org/10.1021/jp802963x
Copyright © 2008 American Chemical Society

    Article Views

    1056

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    The thermodynamics and kinetics of formation of host−guest complexes between a series of bolaform surfactants of type CnMe62+2Br (n = 8, 10, and 12) and α-cyclodextrin and β-cyclodextrin were studied with the aid of isothermal titration calorimetry (ITC) at 298.15 and 308.20 K. The association constant, the enthalpy, and the entropy of formation were determined. The obtained thermodynamic parameters are compared with parameters for the micelle formation of a related cationic surfactant. The difference in magnitude and sign between the parameters of the α-CD and β-CD complexes is discussed based on the curvature of the cavity of the CD. We suggest that the water molecules inside the α-CD cavity are not able to maintain their hydrogen bond network. Upon complex formation these water molecules are expelled and reform their hydrogen bond network. The situation is different in the larger β-CD cavity where water has the possibility of a more extensive hydrogen bonding. The kinetics for α-CD is slow, associated with high activation energies for both association and dissociation of the complex. The rates increased with a decrease in the number of methylene groups in the hydrocarbon chain. The slow kinetics is argued to originate from the fact that the charged headgroup needs to be pushed through a relative nonpolar cavity. A comparison is made with the Born energy.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 59 publications.

    1. Andreas Erichsen, Günther H. J. Peters, Sophie R. Beeren. Templated Enzymatic Synthesis of δ-Cyclodextrin. Journal of the American Chemical Society 2023, 145 (8) , 4882-4891. https://doi.org/10.1021/jacs.3c00341
    2. Amandeep Kaur, Poonam Khullar, Mandeep Singh Bakshi. Cyclodextrin-Functionalized Iron Oxide Nanoparticles for Efficient Extractors of Gold and Silver Nanoparticles from Water. ACS Sustainable Chemistry & Engineering 2022, 10 (50) , 16903-16915. https://doi.org/10.1021/acssuschemeng.2c05739
    3. Christian Schönbeck. Complexation Kinetics of Cyclodextrins with Bile Salt Anions: Energy Barriers for the Threading of Ionic Groups. The Journal of Physical Chemistry B 2019, 123 (46) , 9831-9838. https://doi.org/10.1021/acs.jpcb.9b09415
    4. Zhiye Tang and Chia-en A. Chang . Binding Thermodynamics and Kinetics Calculations Using Chemical Host and Guest: A Comprehensive Picture of Molecular Recognition. Journal of Chemical Theory and Computation 2018, 14 (1) , 303-318. https://doi.org/10.1021/acs.jctc.7b00899
    5. Francieli Isa Ziembowicz, Caroline Raquel Bender, Clarissa Piccinin Frizzo, Marcos Antonio Pinto Martins, Thiane Deprá de Souza, Carmen Luisa Kloster, Irene Teresinha Santos Garcia, and Marcos Antonio Villetti . Thermodynamic Insights into the Binding of Mono- and Dicationic Imidazolium Surfactant Ionic Liquids with Methylcellulose in the Diluted Regime. The Journal of Physical Chemistry B 2017, 121 (35) , 8385-8398. https://doi.org/10.1021/acs.jpcb.7b03525
    6. Miguel Quiroga, Mercedes Parajó, Pedro Rodríguez-Dafonte, and Luis García-Río . Kinetic Study of [2]Pseudorotaxane Formation with an Asymmetrical Thread. Langmuir 2016, 32 (25) , 6367-6375. https://doi.org/10.1021/acs.langmuir.6b01348
    7. Kasper D. Tidemand, Christian Schönbeck, René Holm, Peter Westh, and Günther H. Peters . Computational Investigation of Enthalpy–Entropy Compensation in Complexation of Glycoconjugated Bile Salts with β-Cyclodextrin and Analogs. The Journal of Physical Chemistry B 2014, 118 (37) , 10889-10897. https://doi.org/10.1021/jp506716d
    8. Aninda Chatterjee, Banibrata Maity, and Debabrata Seth . Supramolecular Interaction between a Hydrophilic Coumarin Dye and Macrocyclic Hosts: Spectroscopic and Calorimetric Study. The Journal of Physical Chemistry B 2014, 118 (32) , 9768-9781. https://doi.org/10.1021/jp502944h
    9. Vitor Francisco and Luis Garcia-Rio . Interaction of Bolaform Surfactants with p-Sulfonatocalix[4]Arene: The Role of Two Positive Charges in the Binding. Langmuir 2014, 30 (23) , 6748-6755. https://doi.org/10.1021/la501337c
    10. Mária Benkő, László A. Király, Sándor Puskás, and Zoltán Király . Complexation of β-Cyclodextrin with a Gemini Surfactant Studied by Isothermal Titration Microcalorimetry and Surface Tensiometry. Langmuir 2014, 30 (23) , 6756-6762. https://doi.org/10.1021/la501386j
    11. Lianshan Li, Zhijian Wang, Teng Huang, Jinglin Xie and Limin Qi. Porous Gold Nanobelts Templated by Metal−Surfactant Complex Nanobelts. Langmuir 2010, 26 (14) , 12330-12335. https://doi.org/10.1021/la1015737
    12. Hang Xing, Shrong-Shi Lin and Jin-Xin Xiao . A Study of the Behavior of α-Cyclodextrin with Single Solutions of Hydrogenated and Fluorinated Surfactants and Their Mixtures. Journal of Chemical & Engineering Data 2010, 55 (5) , 1940-1944. https://doi.org/10.1021/je900918c
    13. Lingxiang Jiang, Yun Yan and Jianbin Huang, Caifang Yu and Changwen Jin, Manli Deng and Yilin Wang. Selectivity and Stoichiometry Boosting of β-Cyclodextrin in Cationic/Anionic Surfactant Systems: When Host−Guest Equilibrium Meets Biased Aggregation Equilibrium. The Journal of Physical Chemistry B 2010, 114 (6) , 2165-2174. https://doi.org/10.1021/jp911092y
    14. Li-Sheng Hao, Han-Xiao Wang, Yan-Si Wang, Ya-Qi Meng, Yan-Qing Nan. Inclusion complexation of surfactant with β-cyclodextrin and its effect on the mixed micellization of cationic/anionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2023, 668 , 131437. https://doi.org/10.1016/j.colsurfa.2023.131437
    15. Gianluca Utzeri, Dina Murtinho, Artur J. M. Valente. Introduction to Cyclodextrin-Based Nanosponges. 2023, 87-115. https://doi.org/10.1007/978-3-031-41077-2_5
    16. Jorge C. Pereira, Artur J.M. Valente, Olle Söderman. α-Cyclodextrin affects the acid-base properties of octanoic acid/sodium octanoate. Journal of Molecular Liquids 2022, 364 , 119955. https://doi.org/10.1016/j.molliq.2022.119955
    17. Francieli Isa Ziembowicz, Lia Mallmann Mattiazzi, Caroline Raquel Bender, Clarissa Piccinin Frizzo, Marcelo Barcellos da Rosa, José Miguel Reichert, Carmen Luisa Kloster, Marcos Antonio Villetti. Thermodynamics of aggregation and modulation of Rheo-Thermal properties of hydroxypropyl cellulose by imidazolium ionic liquids. Journal of Molecular Liquids 2022, 359 , 119314. https://doi.org/10.1016/j.molliq.2022.119314
    18. Gianluca Utzeri, Dina Murtinho, Teresa M.R. Maria, Alberto A.C.C. Pais, Filomena Sannino, Artur J.M. Valente. Amine-β-cyclodextrin-based nanosponges. The role of cyclodextrin amphiphilicity in the imidacloprid uptake. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 635 , 128044. https://doi.org/10.1016/j.colsurfa.2021.128044
    19. Rodolfo D. Porasso, Matias I. Sancho, Mercedes Parajó, Luis García-Río, Ricardo D. Enriz. Pseudorotaxane formation affected by stereo-electronic effects. A theoretical and experimental study. Physical Chemistry Chemical Physics 2022, 24 (3) , 1654-1665. https://doi.org/10.1039/D1CP04300E
    20. Konrad Szaruga, Maja Fuz, Małgorzata Wszelaka-Rylik, Paweł Gierycz. Thermodynamics of antibiotics: natural cyclodextrin inclusion complex formation and covering of nano-metric calcite with these substances. Journal of Thermal Analysis and Calorimetry 2021, 146 (3) , 1283-1296. https://doi.org/10.1007/s10973-020-10048-8
    21. Roberto Aguado, Dina Murtinho, Artur J.M. Valente. Association of antioxidant monophenolic compounds with β-cyclodextrin-functionalized cellulose and starch substrates. Carbohydrate Polymers 2021, 267 , 118189. https://doi.org/10.1016/j.carbpol.2021.118189
    22. Tousif Hossen, Kalyanasis Sahu. Contrasting pKa shift and fluorescence modulation of 6-cyano-2-naphthol within α- and β-cyclodextrin. Journal of Photochemistry and Photobiology A: Chemistry 2021, 412 , 113254. https://doi.org/10.1016/j.jphotochem.2021.113254
    23. Larissa dos Santos Silva Araújo, Giuseppe Lazzara, Leonardo Chiappisi. Cyclodextrin/surfactant inclusion complexes: An integrated view of their thermodynamic and structural properties. Advances in Colloid and Interface Science 2021, 289 , 102375. https://doi.org/10.1016/j.cis.2021.102375
    24. Yuan Zhou, Xiuquan Yang, Jun Zhang. Effects of Head Groups on the Aggregation Behavior of Lauryl Monoglucoside Sulfosuccinates in Aqueous Solution. Journal of Surfactants and Detergents 2020, 23 (1) , 177-186. https://doi.org/10.1002/jsde.12344
    25. Sandra M.A. Cruz, Paula A.A.P. Marques, Artur J.M. Valente. Supramolecular Graphene‐Based Systems for Drug Delivery. 2019, 443-479. https://doi.org/10.1002/9781119468455.ch67
    26. Zakaria Hafidi, Mohammed El Achouri. The Effect of Polar Head and Chain Length on the Physicochemical Properties of Micellization and Adsorption of Amino Alcohol‐Based Surfactants. Journal of Surfactants and Detergents 2019, 22 (3) , 663-672. https://doi.org/10.1002/jsde.12241
    27. Ana C. F. Ribeiro, Miguel A. Esteso. Transport Properties for Pharmaceutical Controlled-Release Systems: A Brief Review of the Importance of Their Study in Biological Systems. Biomolecules 2018, 8 (4) , 178. https://doi.org/10.3390/biom8040178
    28. Trung Hai Nguyen, Ariën S. Rustenburg, Stefan G. Krimmer, Hexi Zhang, John D. Clark, Paul A. Novick, Kim Branson, Vijay S. Pande, John D. Chodera, David D. L. Minh, . Bayesian analysis of isothermal titration calorimetry for binding thermodynamics. PLOS ONE 2018, 13 (9) , e0203224. https://doi.org/10.1371/journal.pone.0203224
    29. Tânia F. Cova, Dina Murtinho, Alberto A. C. C. Pais, Artur J. M. Valente. Combining Cellulose and Cyclodextrins: Fascinating Designs for Materials and Pharmaceutics. Frontiers in Chemistry 2018, 6 https://doi.org/10.3389/fchem.2018.00271
    30. Bruno Filipe Figueiras Medronho, Sandra Gonçalves, Raquel Rodríguez-Solana, Artur J.M. Valente, Anabela Romano. Interactions between Bio-Based Compounds and Cyclodextrins. 2018https://doi.org/10.5772/intechopen.73531
    31. Sayeed Ashique Ahmed, Debabrata Seth. Thermodynamic analysis of binding of benzimidazole derivative with cucurbit[7]uril: A isothermal titration calorimetry study. Journal of Molecular Liquids 2018, 254 , 70-75. https://doi.org/10.1016/j.molliq.2018.01.082
    32. Fernando García-Martínez, Miguel Quiroga, Pedro Rodríguez-Dafonte, Mercedes Parajó, Luis Garcia-Rio. Displacement assay methodology for pseudorotaxane formation in the millisecond time-scale. Pure and Applied Chemistry 2017, 89 (6) , 821-827. https://doi.org/10.1515/pac-2016-1101
    33. Banibrata Maity, Aninda Chatterjee, Sayeed Ashique Ahmed, Debabrata Seth. Deciphering the perturbation effect of urea on the supramolecular host-guest interaction of biologically active hydrophobic molecule inside the nanocavity of cyclodextrins. Journal of Luminescence 2017, 183 , 238-250. https://doi.org/10.1016/j.jlumin.2016.11.037
    34. Małgorzata Wszelaka-Rylik. Thermodynamics of β-cyclodextrin–ephedrine inclusion complex formation and covering of nanometric calcite with these substances. Journal of Thermal Analysis and Calorimetry 2017, 127 (2) , 1825-1834. https://doi.org/10.1007/s10973-016-5467-x
    35. Li-Sheng Hao, Yun-Feng Jia, Qian Liu, Ying Wang, Guang-Yu Xu, Yan-Qing Nan. Influences of molecular structure of the cationic surfactant, additives and medium on the micellization of cationic/anionic surfactant mixed systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2016, 511 , 91-104. https://doi.org/10.1016/j.colsurfa.2016.09.054
    36. Miguel Quiroga, Marcia Pessêgo, Mercedes Parajo, Pedro Rodriguez-Dafonte, Luis Garcia-Rio. Cyclodextrin-based [2]pseudorotaxane formation studied by probe displacement assay. Journal of Physical Organic Chemistry 2016, 29 (11) , 574-579. https://doi.org/10.1002/poc.3518
    37. Daniel Ondo. Calorimetric study on the interaction of didecyldimethylammonium and decyltrimethylammonium cations with native cyclodextrins in water. The Journal of Chemical Thermodynamics 2016, 97 , 235-243. https://doi.org/10.1016/j.jct.2016.01.027
    38. Watson Loh, César Brinatti, Kam Chiu Tam. Use of isothermal titration calorimetry to study surfactant aggregation in colloidal systems. Biochimica et Biophysica Acta (BBA) - General Subjects 2016, 1860 (5) , 999-1016. https://doi.org/10.1016/j.bbagen.2015.10.003
    39. Cesar M.C. Filho, Luis M.P. Verissimo, Artur J.M. Valente, Ana C.F. Ribeiro. Limiting diffusion coefficients of sodium octanoate, and octanoic acid in aqueous solutions without and with α-cyclodextrin. The Journal of Chemical Thermodynamics 2016, 94 , 234-237. https://doi.org/10.1016/j.jct.2015.11.013
    40. Małgorzata Wszelaka-Rylik, Paweł Gierycz. Isothermal titration calorimetry (ITC) study of natural cyclodextrins inclusion complexes with tropane alkaloids. Journal of Thermal Analysis and Calorimetry 2015, 121 (3) , 1359-1364. https://doi.org/10.1007/s10973-015-4658-1
    41. Sayeed Ashique Ahmed, Aninda Chatterjee, Banibrata Maity, Debabrata Seth. Supramolecular interaction of a cancer cell photosensitizer in the nanocavity of cucurbit[7]uril: A spectroscopic and calorimetric study. International Journal of Pharmaceutics 2015, 492 (1-2) , 103-108. https://doi.org/10.1016/j.ijpharm.2015.07.016
    42. Ana C.F. Ribeiro, M.M. Rodrigo, Marisa C.F. Barros, Luis M.P. Verissimo, Carmen Romero, Artur J.M. Valente, Miguel A. Esteso. Mutual diffusion coefficients of L-glutamic acid and monosodium L-glutamate in aqueous solutions at T=298.15K. The Journal of Chemical Thermodynamics 2014, 74 , 133-137. https://doi.org/10.1016/j.jct.2014.01.017
    43. Raquel S. Teixeira, Francisco J.B. Veiga, Rita S. Oliveira, Stuart A. Jones, Sérgio M.C. Silva, Rui A. Carvalho, Artur J.M. Valente. Effect of Cyclodextrins and pH on the permeation of tetracaine: Supramolecular assemblies and release behavior. International Journal of Pharmaceutics 2014, 466 (1-2) , 349-358. https://doi.org/10.1016/j.ijpharm.2014.03.035
    44. Artur J.M. Valente, Olle Söderman. The formation of host–guest complexes between surfactants and cyclodextrins. Advances in Colloid and Interface Science 2014, 205 , 156-176. https://doi.org/10.1016/j.cis.2013.08.001
    45. Karuppiah Nagaraj, Sankaralingam Arunachalam. Binding of a double-chain surfactant-cobalt(III) complex to CT DNA: Effect of β-cyclodextrin in the medium. International Journal of Biological Macromolecules 2013, 62 , 273-280. https://doi.org/10.1016/j.ijbiomac.2013.09.002
    46. Małgorzata Wszelaka-Rylik, Paweł Gierycz. Isothermal titration calorimetry (ITC) study of natural cyclodextrins inclusion complexes with drugs. Journal of Thermal Analysis and Calorimetry 2013, 111 (3) , 2029-2035. https://doi.org/10.1007/s10973-012-2251-4
    47. Artur J.M. Valente, Sandra M.A. Cruz, Dina M.B. Murtinho, M. Graça Miguel, Edvani C. Muniz. DNA–poly(vinyl alcohol) gel matrices: Release properties are strongly dependent on electrolytes and cationic surfactants. Colloids and Surfaces B: Biointerfaces 2013, 101 , 111-117. https://doi.org/10.1016/j.colsurfb.2012.05.039
    48. Zory Vlad Todres. Stereochemical Outcomes of Confinement. 2013, 169-177. https://doi.org/10.1007/978-3-319-00158-6_10
    49. Tarek A. Fayed, Mohammed A. El-morsi, Marwa N. El-Nahass. Fluorescence Characteristics and Inclusion of ICT Fluorescent Probe in Organized Assemblies. Journal of Fluorescence 2012, 22 (4) , 1101-1111. https://doi.org/10.1007/s10895-012-1049-x
    50. Ana C.F. Ribeiro, Cecilia I.A.V. Santos, Dina B. Murtinho, Victor M.M. Lobo, Artur J.M. Valente. Diffusion coefficients of bolaform alkane-1,n-bis(trimethylammonium bromide) surfactants. The Journal of Chemical Thermodynamics 2012, 50 , 89-93. https://doi.org/10.1016/j.jct.2012.02.004
    51. Simon J. Holder, Bruntha C. Sriskantha, Stephen A. Bagshaw, Ian J. Bruce. Headgroup effects on the krafft temperatures and self-assembly of ω-hydroxy and ω-carboxy hexadecyl quaternary ammonium bromide bolaform amphiphiles: Micelles versus molecular clusters?. Journal of Colloid and Interface Science 2012, 367 (1) , 293-304. https://doi.org/10.1016/j.jcis.2011.10.017
    52. Lingxiang Jiang, Yun Yan, Jianbin Huang. Versatility of cyclodextrins in self-assembly systems of amphiphiles. Advances in Colloid and Interface Science 2011, 169 (1) , 13-25. https://doi.org/10.1016/j.cis.2011.07.002
    53. Zhenyu Yang, Chunzhi Gao, Hongming Wang, Ningyu Gu, Rongbin Zhang, Ning Zhang. Spectroscopic and Molecular Modeling Studies of the Inclusion Complex of TNBAB with β -cyclodextrin in Aqueous Solution. Zeitschrift für Physikalische Chemie 2011, 225 (8) , 859-873. https://doi.org/10.1524/zpch.2011.0113
    54. R.A. Carvalho, H.A. Correia, A.J.M. Valente, O. Söderman, M. Nilsson. The effect of the head-group spacer length of 12-s-12 gemini surfactants in the host–guest association with β-cyclodextrin. Journal of Colloid and Interface Science 2011, 354 (2) , 725-732. https://doi.org/10.1016/j.jcis.2010.11.024
    55. Hui Li, Xiangyu Xu, Min Liu, Dezhi Sun, Linwei Li. Microcalorimetric and spectrographic studies on host–guest interactions of α-, β-, γ- and Mβ-cyclodextrin with resveratrol. Thermochimica Acta 2010, 510 (1-2) , 168-172. https://doi.org/10.1016/j.tca.2010.07.011
    56. Robert J. Falconer, Anita Penkova, Ilian Jelesarov, Brett M. Collins. Survey of the year 2008: applications of isothermal titration calorimetry. Journal of Molecular Recognition 2010, 23 (5) , 395-413. https://doi.org/10.1002/jmr.1025
    57. Luis García-Río, Juan Carlos Mejuto, Pedro Rodríguez-Dafonte, Russell W. Hall. The role of water release from the cyclodextrin cavity in the complexation of benzoyl chlorides by dimethyl-β-cyclodextrin. Tetrahedron 2010, 66 (13) , 2529-2537. https://doi.org/10.1016/j.tet.2009.12.005
    58. Ana Figueiras, Jorge M. G. Sarraguça, Alberto A. C. C. Pais, Rui A. Carvalho, J. Francisco Veiga. The Role of l-arginine in Inclusion Complexes of Omeprazole with Cyclodextrins. AAPS PharmSciTech 2010, 11 (1) , 233-240. https://doi.org/10.1208/s12249-009-9375-2
    59. Vincent J. Smith, Natalia M. Rougier, Rita H. de Rossi, Mino R. Caira, Elba I. Buján, Mariana A. Fernández, Susan A. Bourne. Investigation of the inclusion of the herbicide metobromuron in native cyclodextrins by powder X-ray diffraction and isothermal titration calorimetry. Carbohydrate Research 2009, 344 (17) , 2388-2393. https://doi.org/10.1016/j.carres.2009.08.036

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect