ACS Publications. Most Trusted. Most Cited. Most Read
OH Formation from O and H Atoms Physisorbed on a Graphitic Surface through the Langmuir−Hinshelwood Mechanism: A Quasi-Classical Approach
My Activity

Figure 1Loading Img
    Article

    OH Formation from O and H Atoms Physisorbed on a Graphitic Surface through the Langmuir−Hinshelwood Mechanism: A Quasi-Classical Approach
    Click to copy article linkArticle link copied!

    View Author Information
    Université Paris-Sud, Laboratoire des Collisions Atomiques et Moléculaires, UMR8625 F-91405, Orsay, France
    * To whom correspondence should be addressed. E-mail: [email protected]
    †Université Paris-Sud, Laboratoire des Collisions Atomiques et Moléculaires.
    ‡CNRS, Laboratoire des Collisions Atomiques et Moléculaires.
    Other Access Options

    The Journal of Physical Chemistry A

    Cite this: J. Phys. Chem. A 2008, 112, 46, 11921–11930
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp8050966
    Published October 24, 2008
    Copyright © 2008 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    We study the quasi-classical dynamics of OH formation on a graphitic surface through the Langmuir−Hinshelwood (LH) mechanism when both O and H ground-state atoms are initially physisorbed on the surface. The model proceeds from previous theoretical work on the LH formation of the H2 molecule on graphite [Morisset, S.; Aguillon, F.; Sizun, M.; Sidis, V. J. Chem. Phys.2004, 121, 6493; ibid 2005, 122, 194704]. The H-graphite system is first revisited with a view to get a tractable DFT-GGA computational prescription for the determination of atom physisorption onto graphitic surfaces. The DZP-RPBE combination is found to perform well; it is thereafter used along with MP2 calculations to determine the physisorption characteristics of atomic oxygen on graphitic surfaces. We also deal with chemisorption. In accordance with previous work, we find that O chemisorbs on graphite in a singlet spin state epoxy-like conformation. In the triplet state we find only “metastable” chemisorption with an activation barrier of 0.2 eV. The physisorption results are then used in the LH dynamics calculation. We show that in the [0.15 meV, 12 meV] relative collision energy range of the reacting O and H atoms on the surface, the OH molecule is produced with a large amount of internal energy (≃4 eV) and a significant translation energy (≥100 meV) relative to the surface.

    Copyright © 2008 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 36 publications.

    1. Marco Minissale, Yuri Aikawa, Edwin Bergin, Mathieu Bertin, Wendy A. Brown, Stephanie Cazaux, Steven B. Charnley, Audrey Coutens, Herma M. Cuppen, Victoria Guzman, Harold Linnartz, Martin R. S. McCoustra, Albert Rimola, Johanna G.M. Schrauwen, Celine Toubin, Piero Ugliengo, Naoki Watanabe, Valentine Wakelam, Francois Dulieu. Thermal Desorption of Interstellar Ices: A Review on the Controlling Parameters and Their Implications from Snowlines to Chemical Complexity. ACS Earth and Space Chemistry 2022, 6 (3) , 597-630. https://doi.org/10.1021/acsearthspacechem.1c00357
    2. Lorenzo Zamirri, Piero Ugliengo, Cecilia Ceccarelli, Albert Rimola. Quantum Mechanical Investigations on the Formation of Complex Organic Molecules on Interstellar Ice Mantles. Review and Perspectives. ACS Earth and Space Chemistry 2019, 3 (8) , 1499-1523. https://doi.org/10.1021/acsearthspacechem.9b00082
    3. Megumi Kayanuma, Mitsuo Shoji, Kenji Furuya, Katsumasa Kamiya, Yuri Aikawa, Masayuki Umemura, Yasuteru Shigeta. First-Principles Study of the Reaction Mechanism of CHO + H on Graphene Surface. The Journal of Physical Chemistry A 2019, 123 (26) , 5633-5639. https://doi.org/10.1021/acs.jpca.9b02345
    4. Tetsuya Hama and Naoki Watanabe . Surface Processes on Interstellar Amorphous Solid Water: Adsorption, Diffusion, Tunneling Reactions, and Nuclear-Spin Conversion. Chemical Reviews 2013, 113 (12) , 8783-8839. https://doi.org/10.1021/cr4000978
    5. Laura Colzi. Isotopic fractionation study towards massive star-forming regions across the Galaxy. 2021https://doi.org/10.36253/978-88-5518-380-2
    6. Helen J Kimber, Jutta Toscano, Stephen D Price. The surface reactivity of acrylonitrile with oxygen atoms on an analogue of interstellar dust grains. Monthly Notices of the Royal Astronomical Society 2018, 476 (4) , 5332-5340. https://doi.org/10.1093/mnras/sty587
    7. Cecilia Ceccarelli, Serena Viti, Nadia Balucani, Vianney Taquet. The evolution of grain mantles and silicate dust growth at high redshift. Monthly Notices of the Royal Astronomical Society 2018, 476 (1) , 1371-1383. https://doi.org/10.1093/mnras/sty313
    8. Ch. Rab, M. Güdel, M. Padovani, I. Kamp, W.-F. Thi, P. Woitke, G. Aresu. Stellar energetic particle ionization in protoplanetary disks around T Tauri stars. Astronomy & Astrophysics 2017, 603 , A96. https://doi.org/10.1051/0004-6361/201630241
    9. Boutheïna Kerkeni, Marie-Christine Bacchus-Montabonel, Stefan T. Bromley. How hydroxylation affects hydrogen adsorption and formation on nanosilicates. Molecular Astrophysics 2017, 7 , 1-8. https://doi.org/10.1016/j.molap.2017.04.001
    10. V. Taquet, K. Furuya, C. Walsh, E. F. van Dishoeck. A primordial origin for molecular oxygen in comets: a chemical kinetics study of the formation and survival of O 2 ice from clouds to discs. Monthly Notices of the Royal Astronomical Society 2016, 462 (Suppl 1) , S99-S115. https://doi.org/10.1093/mnras/stw2176
    11. O. Sipilä, P. Caselli, V. Taquet. Effect of multilayer ice chemistry on gas-phase deuteration in starless cores. Astronomy & Astrophysics 2016, 591 , A9. https://doi.org/10.1051/0004-6361/201628272
    12. M. Minissale, F. Dulieu, S. Cazaux, S. Hocuk. Dust as interstellar catalyst. Astronomy & Astrophysics 2016, 585 , A24. https://doi.org/10.1051/0004-6361/201525981
    13. M. Minissale, E. Congiu, F. Dulieu. Direct measurement of desorption and diffusion energies of O and N atoms physisorbed on amorphous surfaces. Astronomy & Astrophysics 2016, 585 , A146. https://doi.org/10.1051/0004-6361/201526702
    14. S. Cazaux, M. Minissale, F. Dulieu, S. Hocuk. Dust as interstellar catalyst. Astronomy & Astrophysics 2016, 585 , A55. https://doi.org/10.1051/0004-6361/201527187
    15. M. Schmalzl, R. Visser, C. Walsh, T. Albertsson, E. F. van Dishoeck, L. E. Kristensen, J. C. Mottram. Water in low-mass star-forming regions with Herschel. Astronomy & Astrophysics 2014, 572 , A81. https://doi.org/10.1051/0004-6361/201424236
    16. Claes G. Granqvist. Electrochromics for smart windows: Oxide-based thin films and devices. Thin Solid Films 2014, 564 , 1-38. https://doi.org/10.1016/j.tsf.2014.02.002
    17. M. Minissale, F. Dulieu. Influence of surface coverage on the chemical desorption process. The Journal of Chemical Physics 2014, 141 (1) https://doi.org/10.1063/1.4885847
    18. Helen J. Kimber, Courtney P. Ennis, Stephen D. Price. Single and double addition of oxygen atoms to propyne on surfaces at low temperatures. Faraday Discuss. 2014, 168 , 167-184. https://doi.org/10.1039/C3FD00130J
    19. François Dulieu, Emanuele Congiu, Jennifer Noble, Saoud Baouche, Henda Chaabouni, Audrey Moudens, Marco Minissale, Stéphanie Cazaux. How micron-sized dust particles determine the chemistry of our Universe. Scientific Reports 2013, 3 (1) https://doi.org/10.1038/srep01338
    20. M. Minissale, E. Congiu, S. Baouche, H. Chaabouni, A. Moudens, F. Dulieu, M. Accolla, S. Cazaux, G. Manicó, V. Pirronello. Quantum Tunneling of Oxygen Atoms on Very Cold Surfaces. Physical Review Letters 2013, 111 (5) https://doi.org/10.1103/PhysRevLett.111.053201
    21. O. Sipilä, P. Caselli, J. Harju. HD depletion in starless cores. Astronomy & Astrophysics 2013, 554 , A92. https://doi.org/10.1051/0004-6361/201220922
    22. Emilie-Laure Zins, Prasad Ramesh Joshi, Lahouari Krim. A new way to produce and isolate the OH-(H 2 O) complex. Monthly Notices of the Royal Astronomical Society 2012, 426 (4) , 3070-3078. https://doi.org/10.1111/j.1365-2966.2012.21788.x
    23. Michael D. Ward, Isobel A. Hogg, Stephen D. Price. Thermal reactions of oxygen atoms with CS2 at low temperatures on interstellar dust. Monthly Notices of the Royal Astronomical Society 2012, 425 (2) , 1264-1269. https://doi.org/10.1111/j.1365-2966.2012.21520.x
    24. O. Sipilä. Radial molecular abundances and gas cooling in starless cores. Astronomy & Astrophysics 2012, 543 , A38. https://doi.org/10.1051/0004-6361/201219083
    25. Prasad Ramesh Joshi, Emilie-Laure Zins, Lahouari Krim. The NO and non-energetic OH radical reactivity: characterization and reaction scheme. Monthly Notices of the Royal Astronomical Society 2012, 419 (2) , 1713-1720. https://doi.org/10.1111/j.1365-2966.2011.19835.x
    26. R. Meijerink, S. Cazaux, M. Spaans. Enhanced H 2 O formation through dust grain chemistry in X-ray exposed environments. Astronomy & Astrophysics 2012, 537 , A102. https://doi.org/10.1051/0004-6361/201117700
    27. Michael D. Ward, Stephen D. Price. THERMAL REACTIONS OF OXYGEN ATOMS WITH ALKENES AT LOW TEMPERATURES ON INTERSTELLAR DUST. The Astrophysical Journal 2011, 741 (2) , 121. https://doi.org/10.1088/0004-637X/741/2/121
    28. S. Cazaux, P. Caselli, M. Spaans. INTERSTELLAR ICES AS WITNESSES OF STAR FORMATION: SELECTIVE DEUTERATION OF WATER AND ORGANIC MOLECULES UNVEILED. The Astrophysical Journal 2011, 741 (2) , L34. https://doi.org/10.1088/2041-8205/741/2/L34
    29. Emilie-Laure Zins, Prasad Ramesh Joshi, Lahouari Krim. Production and isolation of OH radicals in water ice. Monthly Notices of the Royal Astronomical Society 2011, 415 (4) , 3107-3112. https://doi.org/10.1111/j.1365-2966.2011.18921.x
    30. Ricardo M. Ferullo, Nicolás F. Domancich, Norberto J. Castellani. On the performance of van der Waals corrected-density functional theory in describing the atomic hydrogen physisorption on graphite. Chemical Physics Letters 2010, 500 (4-6) , 283-286. https://doi.org/10.1016/j.cplett.2010.10.027
    31. S. Cazaux, V. Cobut, M. Marseille, M. Spaans, P. Caselli. Water formation on bare grains: When the chemistry on dust impacts interstellar gas. Astronomy & Astrophysics 2010, 522 , A74. https://doi.org/10.1051/0004-6361/201014026
    32. D. Teillet‐Billy, N. Rougeau, V. V. Ivanovskaya, V. Sidis. Interaction of atoms with graphenic‐type surfaces for the chemistry of the interstellar medium: New properties of H dimers on the surface. International Journal of Quantum Chemistry 2010, 110 (12) , 2231-2236. https://doi.org/10.1002/qua.22564
    33. T. P. M. Goumans, Stefan Andersson. Tunnelling in the O + CO reaction. Monthly Notices of the Royal Astronomical Society 2010, 406 (4) , 2213-2217. https://doi.org/10.1111/j.1365-2966.2010.16836.x
    34. M. Oubal, S. Picaud, M.T. Rayez, J.C. Rayez. A theoretical characterization of the interaction of water with oxidized carbonaceous clusters. Carbon 2010, 48 (5) , 1570-1579. https://doi.org/10.1016/j.carbon.2009.12.054
    35. T. P. M. Goumans, C. Richard A. Catlow, Wendy A. Brown, Johannes Kästner, Paul Sherwood. An embedded cluster study of the formation of water on interstellar dust grains. Physical Chemistry Chemical Physics 2009, 11 (26) , 5431. https://doi.org/10.1039/b816905e
    36. E. Hristova, Khr. Khristov, D. Exerowa. Foam Film Characterization of Commercial Surfactants and their Mixtures. Tenside Surfactants Detergents 2005, 42 (4) , 217-225. https://doi.org/10.3139/113.100262

    The Journal of Physical Chemistry A

    Cite this: J. Phys. Chem. A 2008, 112, 46, 11921–11930
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp8050966
    Published October 24, 2008
    Copyright © 2008 American Chemical Society

    Article Views

    570

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.