ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
Recently Viewed
You have not visited any articles yet, Please visit some articles to see contents here.
CONTENT TYPES

Figure 1Loading Img

The Interpretation of Sulfur K-Edge XANES Spectra: A Case Study on Thiophenic and Aliphatic Sulfur Compounds

View Author Information
Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Research, Department of Chemistry, Utrecht University, Sorbonnelaan 16, 3584CA, Utrecht, The Netherlands, Department of Physics, AlbaNova, Stockholm University, SE 106 9 L Stockholm, Sweden, ANKA, Forschungszentrum Karlsruhe GmbH, Institut für Synchrotronstrahlung (ISS), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein, Germany, Swiss Light Source, Paul Scherrer Institute, CH 5232 Villigen, Switzerland, and X-ray Microscopy beamline, ID21, European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP 220, F-38043 Grenoble Cedex, France
* To whom correspondence should be addressed. E-mail: [email protected]
†Utrecht University.
‡Stockholm University.
§Institut für Synchrotronstrahlung (ISS).
∥Paul Scherrer Institute.
⊥European Synchrotron Radiation Facility.
Cite this: J. Phys. Chem. A 2009, 113, 12, 2750–2756
Publication Date (Web):March 3, 2009
https://doi.org/10.1021/jp806823c
Copyright © 2009 American Chemical Society
Article Views
1530
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (683 KB)

Abstract

Sulfur K-edge XANES has been measured for three sulfur model compounds, dibenzothiophene, dibenzothiophene sulfone, and aliphatic sulfur (dl-methionine). The spectra have been simulated with Density Functional Theory (DFT) by using a number of methods, including the half-core-hole approximation. Dipole transition elements were calculated and the transitions were convoluted with linearly increasing Gaussian functions in the first 20 eV of the near-edge region. In the case of dibenzothiophene, relaxation of the first excited states in the presence of the core-hole gave a further improvement. The theoretical results reproduce well the features of the spectra and give insight in the relation between geometric structure and molecular orbitals. Though dl-methionine and dibenzothiophene show a similar sharp rise of the white line, their molecular levels are quite different, pointing out the difficulties in finding useful “fingerprints” in the spectra for specific compounds.

Cited By


This article is cited by 35 publications.

  1. Yi Yao, Dorothea Golze, Patrick Rinke, Volker Blum, Yosuke Kanai. All-Electron [email protected] Method for K-Edge Core Electron Excitation Energies. Journal of Chemical Theory and Computation 2022, 18 (3) , 1569-1583. https://doi.org/10.1021/acs.jctc.1c01180
  2. Nicholas A. Besley. Density Functional Theory Calculations of Core–Electron Binding Energies at the K-Edge of Heavier Elements. Journal of Chemical Theory and Computation 2021, 17 (6) , 3644-3651. https://doi.org/10.1021/acs.jctc.1c00171
  3. Goranka Bilalbegović, Aleksandar Maksimović, Lynne A. Valencic, Susi Lehtola. Sulfur Molecules in Space by X-rays: A Computational Study. ACS Earth and Space Chemistry 2021, 5 (3) , 436-448. https://doi.org/10.1021/acsearthspacechem.0c00238
  4. William M. Holden, Evan P. Jahrman, Niranjan Govind, Gerald T. Seidler. Probing Sulfur Chemical and Electronic Structure with Experimental Observation and Quantitative Theoretical Prediction of Kα and Valence-to-Core Kβ X-ray Emission Spectroscopy. The Journal of Physical Chemistry A 2020, 124 (26) , 5415-5434. https://doi.org/10.1021/acs.jpca.0c04195
  5. Ambra Guarnaccio, Teng Zhang, Cesare Grazioli, Fredrik O. L. Johansson, Marcello Coreno, Monica de Simone, Giovanna Fronzoni, Daniele Toffoli, Elisa Bernes, Carla Puglia. PPT Isolated Molecule and Its Building Block Moieties Studied by C 1s and O 1s Gas Phase X-ray Photoelectron and Photoabsorption Spectroscopies. The Journal of Physical Chemistry C 2020, 124 (18) , 9774-9786. https://doi.org/10.1021/acs.jpcc.0c01764
  6. Lucas Schwob, Simon Dörner, Kaan Atak, Kaja Schubert, Martin Timm, Christine Bülow, Vicente Zamudio-Bayer, Bernd von Issendorff, J. Tobias Lau, Simone Techert, Sadia Bari. Site-Selective Dissociation upon Sulfur L-Edge X-ray Absorption in a Gas-Phase Protonated Peptide. The Journal of Physical Chemistry Letters 2020, 11 (4) , 1215-1221. https://doi.org/10.1021/acs.jpclett.0c00041
  7. D. Toffoli, A. Guarnaccio, C. Grazioli, T. Zhang, F. Johansson, M. de Simone, M. Coreno, A. Santagata, M. D’Auria, C. Puglia, E. Bernes, M. Stener, G. Fronzoni. Electronic Structure Characterization of a Thiophene Benzo-Annulated Series of Common Building Blocks for Donor and Acceptor Compounds Studied by Gas Phase Photoelectron and Photoabsorption Synchrotron Spectroscopies. The Journal of Physical Chemistry A 2018, 122 (44) , 8745-8761. https://doi.org/10.1021/acs.jpca.8b08333
  8. Ingrid J. Pickering, Monica Barney, Julien J. H. Cotelesage, Linda Vogt, M. Jake Pushie, Andrew Nissan, Roger C. Prince, and Graham N. George . Chemical Sensitivity of the Sulfur K-Edge X-ray Absorption Spectra of Organic Disulfides. The Journal of Physical Chemistry A 2016, 120 (37) , 7279-7286. https://doi.org/10.1021/acs.jpca.6b06790
  9. Andrew E. Pomerantz, Tuong Van Le Doan, Paul R. Craddock, Kyle D. Bake, Robert L. Kleinberg, Alan K. Burnham, Qinghao Wu, Richard N. Zare, Grant Brodnik, William Chung Hei Lo, Michael Grayson, Sudipa Mitra-Kirtley, Trudy B. Bolin, and Tianpin Wu . Impact of Laboratory-Induced Thermal Maturity on Asphaltene Molecular Structure. Energy & Fuels 2016, 30 (9) , 7025-7036. https://doi.org/10.1021/acs.energyfuels.6b01238
  10. Bo Peng, Patrick J. Lestrange, Joshua J. Goings, Marco Caricato, and Xiaosong Li . Energy-Specific Equation-of-Motion Coupled-Cluster Methods for High-Energy Excited States: Application to K-edge X-ray Absorption Spectroscopy. Journal of Chemical Theory and Computation 2015, 11 (9) , 4146-4153. https://doi.org/10.1021/acs.jctc.5b00459
  11. Graham N. George, Mark J. Hackett, Michael Sansone, Martin L. Gorbaty, Simon R. Kelemen, Roger C. Prince, Hugh H. Harris, and Ingrid J. Pickering . Long-Range Chemical Sensitivity in the Sulfur K-Edge X-ray Absorption Spectra of Substituted Thiophenes. The Journal of Physical Chemistry A 2014, 118 (36) , 7796-7802. https://doi.org/10.1021/jp505766f
  12. Ana Mijovilovich , Lars G. M. Pettersson , Frank M. F. de Groot , and Bert M. Weckhuysen . Functional Groups and Sulfur K-Edge XANES Spectra: Divalent Sulfur and Disulfides. The Journal of Physical Chemistry A 2010, 114 (35) , 9523-9528. https://doi.org/10.1021/jp103109y
  13. Peter de Peinder, Tom Visser, Rudy Wagemans, Jan Blomberg, Hassan Chaabani, Fouad Soulimani and Bert M. Weckhuysen . Sulfur Speciation of Crude Oils by Partial Least Squares Regression Modeling of Their Infrared Spectra. Energy & Fuels 2010, 24 (1) , 557-562. https://doi.org/10.1021/ef900908p
  14. R. Alonso Mori, E. Paris, G. Giuli, S. G. Eeckhout, M. Kavčič, M. Žitnik, K. Bučar, L. G. M. Pettersson and P. Glatzel. Electronic Structure of Sulfur Studied by X-ray Absorption and Emission Spectroscopy. Analytical Chemistry 2009, 81 (15) , 6516-6525. https://doi.org/10.1021/ac900970z
  15. Gabriel L. S. Rodrigues, Elias Diesen, Johannes Voss, Patrick Norman, Lars G. M. Pettersson. Simulations of x-ray absorption spectra for CO desorbing from Ru(0001) with transition-potential and time-dependent density functional theory approaches. Structural Dynamics 2022, 9 (1) , 014101. https://doi.org/10.1063/4.0000135
  16. Nicholas A. Besley. Modeling of the spectroscopy of core electrons with density functional theory. WIREs Computational Molecular Science 2021, 11 (6) https://doi.org/10.1002/wcms.1527
  17. Samantha Tetef, Niranjan Govind, Gerald T. Seidler. Unsupervised machine learning for unbiased chemical classification in X-ray absorption spectroscopy and X-ray emission spectroscopy. Physical Chemistry Chemical Physics 2021, 23 (41) , 23586-23601. https://doi.org/10.1039/D1CP02903G
  18. Ronit Sarangi, Marta L. Vidal, Sonia Coriani, Anna I. Krylov. On the basis set selection for calculations of core-level states: different strategies to balance cost and accuracy. Molecular Physics 2020, 118 (19-20) , e1769872. https://doi.org/10.1080/00268976.2020.1769872
  19. Adam A. E. Fouda, Nicholas A. Besley. Improving the predictive quality of time‐dependent density functional theory calculations of the X‐ray emission spectroscopy of organic molecules. Journal of Computational Chemistry 2020, 41 (11) , 1081-1090. https://doi.org/10.1002/jcc.26153
  20. Raffaella Capelli, Luca Pasquali. Interpretation of linear dichroism at S L2,3 x-ray absorption edges of small organic molecules at surfaces. Journal of Electron Spectroscopy and Related Phenomena 2019, 232 , 16-20. https://doi.org/10.1016/j.elspec.2019.01.001
  21. Magnus W.D. Hanson-Heine, Michael W. George, Nicholas A. Besley. Basis sets for the calculation of core-electron binding energies. Chemical Physics Letters 2018, 699 , 279-285. https://doi.org/10.1016/j.cplett.2018.03.066
  22. Justin E. Birdwell, Michael D. Lewan, Kyle D. Bake, Trudy B. Bolin, Paul R. Craddock, Julia C. Forsythe, Andrew E. Pomerantz. Evolution of sulfur speciation in bitumen through hydrous pyrolysis induced thermal maturation of Jordanian Ghareb Formation oil shale. Fuel 2018, 219 , 214-222. https://doi.org/10.1016/j.fuel.2018.01.107
  23. Adam E. A. Fouda, Nicholas A. Besley. Assessment of basis sets for density functional theory-based calculations of core-electron spectroscopies. Theoretical Chemistry Accounts 2018, 137 (1) https://doi.org/10.1007/s00214-017-2181-0
  24. Anna Zimina, Igor Vilfan, Daniel Vrbanic, Valeria Nicolosi, David Batchelor, Ralph Steininger, Dragan Mihailovic. Electronic structure of purified Mo6S(9−x)Ix nanowires studied by X-ray spectroscopy. Journal of Electron Spectroscopy and Related Phenomena 2016, 207 , 29-33. https://doi.org/10.1016/j.elspec.2015.12.004
  25. Michael L. Greenfield, Michael Byrne, Sudipa Mitra-Kirtley, Eric M. Kercher, Trudy B. Bolin, Tianpin Wu, Paul R. Craddock, Kyle D. Bake, Andrew E. Pomerantz. XANES measurements of sulfur chemistry during asphalt oxidation. Fuel 2015, 162 , 179-185. https://doi.org/10.1016/j.fuel.2015.08.074
  26. Shirin Behyan, Yongfeng Hu, Stephen G. Urquhart. Chemical sensitivity of sulfur 1s NEXAFS spectroscopy I: Speciation of sulfoxides and sulfones. Chemical Physics Letters 2014, 592 , 69-74. https://doi.org/10.1016/j.cplett.2013.10.026
  27. Shirin Behyan, Yongfeng Hu, Stephen G. Urquhart. Sulfur 1 s near edge x-ray absorption fine structure spectroscopy of thiophenic and aromatic thioether compounds. The Journal of Chemical Physics 2013, 138 (21) , 214302. https://doi.org/10.1063/1.4807604
  28. Erik Darlatt, Alexei Nefedov, Christoph H.-H. Traulsen, Johannes Poppenberg, Sebastian Richter, Paul M. Dietrich, Andreas Lippitz, René Illgen, Julius Kühn, Christoph A. Schalley, Christof Wöll, Wolfgang E.S. Unger. Interpretation of experimental N K NEXAFS of azide, 1,2,3-triazole and terpyridyl groups by DFT spectrum simulations. Journal of Electron Spectroscopy and Related Phenomena 2012, 185 (12) , 621-624. https://doi.org/10.1016/j.elspec.2012.09.008
  29. Thays C. M. Leite, Ana L. F. de Barros, Glaucio B. Ferreira, Antonio C. O. Guerra, Cássia C. Turci. Photoabsorption spectroscopy of dimethyl sulfoxide at the O1s, C1s, S2s, and S2p Regions: A comparison with acetone. International Journal of Quantum Chemistry 2012, 112 (20) , 3421-3433. https://doi.org/10.1002/qua.24285
  30. A. Nilsson, L.G.M. Pettersson. Perspective on the structure of liquid water. Chemical Physics 2011, 389 (1-3) , 1-34. https://doi.org/10.1016/j.chemphys.2011.07.021
  31. Shirin Behyan, Yongfeng Hu, Stephen G. Urquhart. Sulfur 1 s near-edge x-ray absorption fine structure (NEXAFS) of thiol and thioether compounds. The Journal of Chemical Physics 2011, 134 (24) , 244304. https://doi.org/10.1063/1.3602218
  32. Lei Zheng, Yi-Dong Zhao, Kun Tang, Chen-Yan Ma, Yong Han, Ming-Qi Cui. Total electron yield mode for XANES measurements in the energy region of 2.1–6.0 keV. Chinese Physics C 2011, 35 (2) , 199-202. https://doi.org/10.1088/1674-1137/35/2/018
  33. Alexander Samokhvalov, Bruce J. Tatarchuk. Characterization of active sites, determination of mechanisms of H2S, COS and CS2 sorption and regeneration of ZnO low-temperature sorbents: past, current and perspectives. Physical Chemistry Chemical Physics 2011, 13 (8) , 3197. https://doi.org/10.1039/c0cp01227k
  34. Marianne H. F. Kox, Ana Mijovilovich, Jesper J. H. B. Sättler, Eli Stavitski, Bert M. Weckhuysen. The Catalytic Conversion of Thiophenes over Large H-ZSM-5 Crystals: An X-Ray, UV/Vis, and Fluorescence Microspectroscopic Study. ChemCatChem 2010, 2 (5) , 564-571. https://doi.org/10.1002/cctc.200900329
  35. M. Leetmaa, M.P. Ljungberg, A. Lyubartsev, A. Nilsson, L.G.M. Pettersson. Theoretical approximations to X-ray absorption spectroscopy of liquid water and ice. Journal of Electron Spectroscopy and Related Phenomena 2010, 177 (2-3) , 135-157. https://doi.org/10.1016/j.elspec.2010.02.004

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE