ACS Publications. Most Trusted. Most Cited. Most Read
Systematic Coarse-graining of a Multicomponent Lipid Bilayer
My Activity

Figure 1Loading Img
    Article

    Systematic Coarse-graining of a Multicomponent Lipid Bilayer
    Click to copy article linkArticle link copied!

    View Author Information
    Center for Biophysical Modeling and Simulation and Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850
    * Author to whom correspondence should be addressed. E-mail: [email protected]
    Other Access Options

    The Journal of Physical Chemistry B

    Cite this: J. Phys. Chem. B 2009, 113, 5, 1501–1510
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp809604k
    Published January 12, 2009
    Copyright © 2009 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    A solvent-free coarse-grained model for a 1:1 mixed dioleoylphosphatidylcholine (DOPC) and a dioleoylphospatidylethanolamine (DOPE) bilayer is developed using the multiscale coarse-graining (MS-CG) approach. B-spline basis functions are implemented instead of the original cubic spline basis functions in the MS-CG method. The new B-spline basis functions are able to dramatically reduce memory requirements and increase computational efficiency of the MS-CG calculation. Various structural properties from the CG simulations are compared with their corresponding all-atom counterpart in order to validate the CG model. The resulting CG structural properties agree well with atomistic results, which shows that the MS-CG force field can reasonably approximate the many-body potential of mean force in the coarse-grained coordinates. Fast lipid lateral diffusion in the CG simulations, as a result of smoother free energy landscape, makes the study of phase behavior of the binary mixture possible. Small clusters of distinct lipid composition are identified by analyzing the DOPC/DOPE lipid lateral distribution, indicating a nonuniform distribution for the mixed bilayer. The results of lipid phase behavior are compared to experimental results, and connections between the experimental and simulation conclusions are discussed.

    Copyright © 2009 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 99 publications.

    1. Patrick G. Sahrmann, Gregory A. Voth. Enhancing the Assembly Properties of Bottom-Up Coarse-Grained Phospholipids. Journal of Chemical Theory and Computation 2024, 20 (22) , 10235-10246. https://doi.org/10.1021/acs.jctc.4c00905
    2. Sergei Izvekov, Matthew P. Kroonblawd, James P. Larentzos, John K. Brennan, Betsy M. Rice. Maximum Entropy Theory of Multiscale Coarse-Graining via Matching Thermodynamic Forces: Application to a Molecular Crystal (TATB). The Journal of Physical Chemistry B 2024, 128 (12) , 2955-2971. https://doi.org/10.1021/acs.jpcb.3c07078
    3. Yuxing Peng, Alexander J. Pak, Aleksander E. P. Durumeric, Patrick G. Sahrmann, Sriramvignesh Mani, Jaehyeok Jin, Timothy D. Loose, Jeriann Beiter, Gregory A. Voth. OpenMSCG: A Software Tool for Bottom-Up Coarse-Graining. The Journal of Physical Chemistry B 2023, 127 (40) , 8537-8550. https://doi.org/10.1021/acs.jpcb.3c04473
    4. Patrick G. Sahrmann, Timothy D. Loose, Aleksander E. P. Durumeric, Gregory A. Voth. Utilizing Machine Learning to Greatly Expand the Range and Accuracy of Bottom-Up Coarse-Grained Models through Virtual Particles. Journal of Chemical Theory and Computation 2023, 19 (14) , 4402-4413. https://doi.org/10.1021/acs.jctc.2c01183
    5. Archita Maiti, Abhay Kumar, Snehasis Daschakraborty. How Do Cyclopropane Fatty Acids Protect the Cell Membrane of Escherichia coli in Cold Shock?. The Journal of Physical Chemistry B 2023, 127 (7) , 1607-1617. https://doi.org/10.1021/acs.jpcb.3c00541
    6. Jaehyeok Jin, Alexander J. Pak, Aleksander E. P. Durumeric, Timothy D. Loose, Gregory A. Voth. Bottom-up Coarse-Graining: Principles and Perspectives. Journal of Chemical Theory and Computation 2022, 18 (10) , 5759-5791. https://doi.org/10.1021/acs.jctc.2c00643
    7. Shakkira Erimban, Snehasis Daschakraborty. Homeoviscous Adaptation of the Lipid Membrane of a Soil Bacterium Surviving under Diurnal Temperature Variation: A Molecular Simulation Perspective. The Journal of Physical Chemistry B 2022, 126 (39) , 7638-7650. https://doi.org/10.1021/acs.jpcb.2c01359
    8. Yuwei Zhang, Yunchu Wang, Fei Xia, Zexing Cao, Xin Xu. Accurate and Efficient Estimation of Lennard–Jones Interactions for Coarse-Grained Particles via a Potential Matching Method. Journal of Chemical Theory and Computation 2022, 18 (8) , 4879-4890. https://doi.org/10.1021/acs.jctc.2c00513
    9. Charly Empereur-Mot, Luca Pesce, Giovanni Doni, Davide Bochicchio, Riccardo Capelli, Claudio Perego, Giovanni M. Pavan. Swarm-CG: Automatic Parametrization of Bonded Terms in MARTINI-Based Coarse-Grained Models of Simple to Complex Molecules via Fuzzy Self-Tuning Particle Swarm Optimization. ACS Omega 2020, 5 (50) , 32823-32843. https://doi.org/10.1021/acsomega.0c05469
    10. Alison N. Leonard, Eric Wang, Viviana Monje-Galvan, Jeffery B. Klauda. Developing and Testing of Lipid Force Fields with Applications to Modeling Cellular Membranes. Chemical Reviews 2019, 119 (9) , 6227-6269. https://doi.org/10.1021/acs.chemrev.8b00384
    11. Siewert J. Marrink, Valentina Corradi, Paulo C.T. Souza, Helgi I. Ingólfsson, D. Peter Tieleman, Mark S.P. Sansom. Computational Modeling of Realistic Cell Membranes. Chemical Reviews 2019, 119 (9) , 6184-6226. https://doi.org/10.1021/acs.chemrev.8b00460
    12. Alexander J. Pak, Thomas Dannenhoffer-Lafage, Jesper J. Madsen, Gregory A. Voth. Systematic Coarse-Grained Lipid Force Fields with Semiexplicit Solvation via Virtual Sites. Journal of Chemical Theory and Computation 2019, 15 (3) , 2087-2100. https://doi.org/10.1021/acs.jctc.8b01033
    13. James F. Dama, Jaehyeok Jin, and Gregory A. Voth . The Theory of Ultra-Coarse-Graining. 3. Coarse-Grained Sites with Rapid Local Equilibrium of Internal States. Journal of Chemical Theory and Computation 2017, 13 (3) , 1010-1022. https://doi.org/10.1021/acs.jctc.6b01081
    14. Qiang Cui, Rigoberto Hernandez, Sara E. Mason, Thomas Frauenheim, Joel A. Pedersen, and Franz Geiger . Sustainable Nanotechnology: Opportunities and Challenges for Theoretical/Computational Studies. The Journal of Physical Chemistry B 2016, 120 (30) , 7297-7306. https://doi.org/10.1021/acs.jpcb.6b03976
    15. Emily M. Curtis, Xingqing Xiao, Stavroula Sofou, and Carol K. Hall . Phase Separation Behavior of Mixed Lipid Systems at Neutral and Low pH: Coarse-Grained Simulations with DMD/LIME. Langmuir 2015, 31 (3) , 1086-1094. https://doi.org/10.1021/la504082x
    16. Clément Arnarez, Jaakko J. Uusitalo, Marcelo F. Masman, Helgi I. Ingólfsson, Djurre H. de Jong, Manuel N. Melo, Xavier Periole, Alex H. de Vries, and Siewert J. Marrink . Dry Martini, a Coarse-Grained Force Field for Lipid Membrane Simulations with Implicit Solvent. Journal of Chemical Theory and Computation 2015, 11 (1) , 260-275. https://doi.org/10.1021/ct500477k
    17. Casey T. Andrews and Adrian H. Elcock . COFFDROP: A Coarse-Grained Nonbonded Force Field for Proteins Derived from All-Atom Explicit-Solvent Molecular Dynamics Simulations of Amino Acids. Journal of Chemical Theory and Computation 2014, 10 (11) , 5178-5194. https://doi.org/10.1021/ct5006328
    18. Anand Srivastava and Gregory A. Voth . Solvent-Free, Highly Coarse-Grained Models for Charged Lipid Systems. Journal of Chemical Theory and Computation 2014, 10 (10) , 4730-4744. https://doi.org/10.1021/ct500474a
    19. Parimal Kar, Srinivasa Murthy Gopal, Yi-Ming Cheng, Afra Panahi, and Michael Feig . Transferring the PRIMO Coarse-Grained Force Field to the Membrane Environment: Simulations of Membrane Proteins and Helix–Helix Association. Journal of Chemical Theory and Computation 2014, 10 (8) , 3459-3472. https://doi.org/10.1021/ct500443v
    20. Sarah Lee, Alan Tran, Matthew Allsopp, Joseph B. Lim, Jérôme Hénin, and Jeffery B. Klauda . CHARMM36 United Atom Chain Model for Lipids and Surfactants. The Journal of Physical Chemistry B 2014, 118 (2) , 547-556. https://doi.org/10.1021/jp410344g
    21. Zhen Cao, James F. Dama, Lanyuan Lu, and Gregory A. Voth . Solvent Free Ionic Solution Models from Multiscale Coarse-Graining. Journal of Chemical Theory and Computation 2013, 9 (1) , 172-178. https://doi.org/10.1021/ct3007277
    22. Anand Srivastava and Gregory A. Voth . Hybrid Approach for Highly Coarse-Grained Lipid Bilayer Models. Journal of Chemical Theory and Computation 2013, 9 (1) , 750-765. https://doi.org/10.1021/ct300751h
    23. Joseph F. Rudzinski and William G. Noid . The Role of Many-Body Correlations in Determining Potentials for Coarse-Grained Models of Equilibrium Structure. The Journal of Physical Chemistry B 2012, 116 (29) , 8621-8635. https://doi.org/10.1021/jp3002004
    24. Hiroaki Saito and Wataru Shinoda . Cholesterol Effect on Water Permeability through DPPC and PSM Lipid Bilayers: A Molecular Dynamics Study. The Journal of Physical Chemistry B 2011, 115 (51) , 15241-15250. https://doi.org/10.1021/jp201611p
    25. Zhe Wu, Qiang Cui, and Arun Yethiraj . A New Coarse-Grained Force Field for Membrane–Peptide Simulations. Journal of Chemical Theory and Computation 2011, 7 (11) , 3793-3802. https://doi.org/10.1021/ct200593t
    26. Ian F. Thorpe, David P. Goldenberg, and Gregory A. Voth . Exploration of Transferability in Multiscale Coarse-Grained Peptide Models. The Journal of Physical Chemistry B 2011, 115 (41) , 11911-11926. https://doi.org/10.1021/jp204455g
    27. Björn Sommer, Tim Dingersen, Christian Gamroth, Sebastian E. Schneider, Sebastian Rubert, Jens Krüger, and Karl-Josef Dietz . CELLmicrocosmos 2.2 MembraneEditor: A Modular Interactive Shape-Based Software Approach To Solve Heterogeneous Membrane Packing Problems. Journal of Chemical Information and Modeling 2011, 51 (5) , 1165-1182. https://doi.org/10.1021/ci1003619
    28. Yanting Wang and Gregory A. Voth . Molecular Dynamics Simulations of Polyglutamine Aggregation Using Solvent-Free Multiscale Coarse-Grained Models. The Journal of Physical Chemistry B 2010, 114 (26) , 8735-8743. https://doi.org/10.1021/jp1007768
    29. J. W. Mullinax and W. G. Noid. A Generalized-Yvon−Born−Green Theory for Determining Coarse-Grained Interaction Potentials. The Journal of Physical Chemistry C 2010, 114 (12) , 5661-5674. https://doi.org/10.1021/jp9073976
    30. Lanyuan Lu, Sergei Izvekov, Avisek Das, Hans C. Andersen and Gregory A. Voth. Efficient, Regularized, and Scalable Algorithms for Multiscale Coarse-Graining. Journal of Chemical Theory and Computation 2010, 6 (3) , 954-965. https://doi.org/10.1021/ct900643r
    31. Davide Alemani, Francesca Collu, Michele Cascella and Matteo Dal Peraro . A Nonradial Coarse-Grained Potential for Proteins Produces Naturally Stable Secondary Structure Elements. Journal of Chemical Theory and Computation 2010, 6 (1) , 315-324. https://doi.org/10.1021/ct900457z
    32. Mohsen Sadeghi, David Rosenberger. Dynamic framework for large-scale modeling of membranes and peripheral proteins. 2024, 457-514. https://doi.org/10.1016/bs.mie.2024.03.018
    33. Jaehyeok Jin, Jisung Hwang, Gregory A. Voth. Gaussian representation of coarse-grained interactions of liquids: Theory, parametrization, and transferability. The Journal of Chemical Physics 2023, 159 (18) https://doi.org/10.1063/5.0160567
    34. Jaehyeok Jin, Yining Han, Alexander J. Pak, Gregory A. Voth. A new one-site coarse-grained model for water: Bottom-up many-body projected water (BUMPer). I. General theory and model. The Journal of Chemical Physics 2021, 154 (4) https://doi.org/10.1063/5.0026651
    35. Chun Chan, Shi Du, Yizhou Dong, Xiaolin Cheng. Computational and Experimental Approaches to Investigate Lipid Nanoparticles as Drug and Gene Delivery Systems. Current Topics in Medicinal Chemistry 2021, 21 (2) , 92-114. https://doi.org/10.2174/1568026620666201126162945
    36. Diego Ugarte La Torre, Shoji Takada. Coarse-grained implicit solvent lipid force field with a compatible resolution to the Cα protein representation. The Journal of Chemical Physics 2020, 153 (20) https://doi.org/10.1063/5.0026342
    37. Fengxuan Jiao, Jianbing Sang, Zhaoyang Liu, Wei Liu, Weiguang Liang. Effect of concentration of PEG coated gold nanoparticle on lung surfactant studied with coarse-grained molecular dynamics simulations. Biophysical Chemistry 2020, 266 , 106457. https://doi.org/10.1016/j.bpc.2020.106457
    38. Kathryn M. Lebold, W. G. Noid. Dual-potential approach for coarse-grained implicit solvent models with accurate, internally consistent energetics and predictive transferability. The Journal of Chemical Physics 2019, 151 (16) https://doi.org/10.1063/1.5125246
    39. Marc Baaden. Visualizing Biological Membrane Organization and Dynamics. Journal of Molecular Biology 2019, 431 (10) , 1889-1919. https://doi.org/10.1016/j.jmb.2019.02.018
    40. Saeed Mortezazadeh, Yousef Jamali, Hossein Naderi-Manesh, Alexander P. Lyubartsev, . Implicit solvent systematic coarse-graining of dioleoylphosphatidylethanolamine lipids: From the inverted hexagonal to the bilayer structure. PLOS ONE 2019, 14 (4) , e0214673. https://doi.org/10.1371/journal.pone.0214673
    41. Thomas D. Potter, Jos Tasche, Mark R. Wilson. Assessing the transferability of common top-down and bottom-up coarse-grained molecular models for molecular mixtures. Physical Chemistry Chemical Physics 2019, 21 (4) , 1912-1927. https://doi.org/10.1039/C8CP05889J
    42. Liangzhen Zheng, Amr A. Alhossary, Chee-Keong Kwoh, Yuguang Mu. Molecular Dynamics and Simulation. 2019, 550-566. https://doi.org/10.1016/B978-0-12-809633-8.20284-7
    43. Andrea Grafmüller. Multiscale (re)modeling of lipid bilayer membranes. 2019, 39-104. https://doi.org/10.1016/bs.abl.2019.09.002
    44. Xiang Yu, Meenakshi Dutt. A multiscale approach to study molecular and interfacial characteristics of vesicles. Molecular Systems Design & Engineering 2018, 3 (6) , 883-895. https://doi.org/10.1039/C8ME00029H
    45. Michail Palaiokostas, Wei Ding, Ganesh Shahane, Mario Orsi. Effects of lipid composition on membrane permeation. Soft Matter 2018, 14 (42) , 8496-8508. https://doi.org/10.1039/C8SM01262H
    46. Mingwei Wan, Lianghui Gao, Weihai Fang, . Implicit-solvent dissipative particle dynamics force field based on a four-to-one coarse-grained mapping scheme. PLOS ONE 2018, 13 (5) , e0198049. https://doi.org/10.1371/journal.pone.0198049
    47. Mijo Simunovic, Gregory A. Voth. Simulating Protein-Mediated Membrane Remodeling at Multiple Scales. 2018, 351-384. https://doi.org/10.1007/978-3-030-00630-3_14
    48. Ronald D. Hills, Jr. Refining amino acid hydrophobicity for dynamics simulation of membrane proteins. PeerJ 2018, 6 , e4230. https://doi.org/10.7717/peerj.4230
    49. Pavel Buslaev, Ivan Gushchin. Effects of Coarse Graining and Saturation of Hydrocarbon Chains on Structure and Dynamics of Simulated Lipid Molecules. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-11761-5
    50. M. Aldeghi, P.C. Biggin. Advances in Molecular Simulation. 2017, 14-33. https://doi.org/10.1016/B978-0-12-409547-2.12343-1
    51. Daniela Lopes, Sven Jakobtorweihen, Cláudia Nunes, Bruno Sarmento, Salette Reis. Shedding light on the puzzle of drug-membrane interactions: Experimental techniques and molecular dynamics simulations. Progress in Lipid Research 2017, 65 , 24-44. https://doi.org/10.1016/j.plipres.2016.12.001
    52. Yan Xu, Li Deng, Hao Ren, Xianren Zhang, Fang Huang, Tongtao Yue. Transport of nanoparticles across pulmonary surfactant monolayer: a molecular dynamics study. Physical Chemistry Chemical Physics 2017, 19 (27) , 17568-17576. https://doi.org/10.1039/C7CP02548C
    53. Jacob Fosso-Tande, Cody Black, Stephen G. Aller, Lanyuan Lu, Ronald D. Hills Jr, , , . Simulation of lipid-protein interactions with the CgProt force field. AIMS Molecular Science 2017, 4 (3) , 352-369. https://doi.org/10.3934/molsci.2017.3.352
    54. Aram Davtyan, Gregory A. Voth, Hans C. Andersen. Dynamic force matching: Construction of dynamic coarse-grained models with realistic short time dynamics and accurate long time dynamics. The Journal of Chemical Physics 2016, 145 (22) https://doi.org/10.1063/1.4971430
    55. Alexander P. Lyubartsev, Alexander L. Rabinovich. Force Field Development for Lipid Membrane Simulations. Biochimica et Biophysica Acta (BBA) - Biomembranes 2016, 1858 (10) , 2483-2497. https://doi.org/10.1016/j.bbamem.2015.12.033
    56. Aram Davtyan, Mijo Simunovic, Gregory A. Voth. Multiscale simulations of protein-facilitated membrane remodeling. Journal of Structural Biology 2016, 196 (1) , 57-63. https://doi.org/10.1016/j.jsb.2016.06.012
    57. Ronald D. Hills, Nicholas McGlinchey. Model parameters for simulation of physiological lipids. Journal of Computational Chemistry 2016, 37 (12) , 1112-1118. https://doi.org/10.1002/jcc.24324
    58. Tongtao Yue, Yan Xu, Shixin Li, Xianren Zhang, Fang Huang. Lipid extraction mediates aggregation of carbon nanospheres in pulmonary surfactant monolayers. Physical Chemistry Chemical Physics 2016, 18 (28) , 18923-18933. https://doi.org/10.1039/C6CP01957A
    59. Chun Chan, Haohua Wen, Lanyuan Lu, Jun Fan. Multiscale molecular dynamics simulations of membrane remodeling by Bin/Amphiphysin/Rvs family proteins. Chinese Physics B 2016, 25 (1) , 018707. https://doi.org/10.1088/1674-1056/25/1/018707
    60. M. Maiolo, A. Vancheri, R. Krause, A. Danani. Wavelets as basis functions to represent the coarse-graining potential in multiscale coarse graining approach. Journal of Computational Physics 2015, 300 , 592-604. https://doi.org/10.1016/j.jcp.2015.07.039
    61. Aram Davtyan, James F. Dama, Gregory A. Voth, Hans C. Andersen. Dynamic force matching: A method for constructing dynamical coarse-grained models with realistic time dependence. The Journal of Chemical Physics 2015, 142 (15) https://doi.org/10.1063/1.4917454
    62. Tongtao Yue, Xiaojuan Wang, Xianren Zhang, Fang Huang. Molecular modeling of interaction between lipid monolayer and graphene nanosheets: implications for pulmonary nanotoxicity and pulmonary drug delivery. RSC Advances 2015, 5 (38) , 30092-30106. https://doi.org/10.1039/C5RA04922A
    63. Tomasz Róg, Ilpo Vattulainen. Cholesterol, sphingolipids, and glycolipids: What do we know about their role in raft-like membranes?. Chemistry and Physics of Lipids 2014, 184 , 82-104. https://doi.org/10.1016/j.chemphyslip.2014.10.004
    64. Nicolas Leconte, Frank Ortmann, Alessandro Cresti, Jean-Christophe Charlier, Stephan Roche. Quantum transport in chemically functionalized graphene at high magnetic field: defect-induced critical states and breakdown of electron-hole symmetry. 2D Materials 2014, 1 (2) , 021001. https://doi.org/10.1088/2053-1583/1/2/021001
    65. Themis Lazaridis, Rodney Versace. The Treatment of Solvent in Multiscale Biophysical Modeling. Israel Journal of Chemistry 2014, 54 (8-9) , 1074-1083. https://doi.org/10.1002/ijch.201400006
    66. Alexander Mirzoev, Alexander P. Lyubartsev. Systematic implicit solvent coarse graining of dimyristoylphosphatidylcholine lipids. Journal of Computational Chemistry 2014, 35 (16) , 1208-1218. https://doi.org/10.1002/jcc.23610
    67. Helgi I. Ingólfsson, Cesar A. Lopez, Jaakko J. Uusitalo, Djurre H. de Jong, Srinivasa M. Gopal, Xavier Periole, Siewert J. Marrink. The power of coarse graining in biomolecular simulations. WIREs Computational Molecular Science 2014, 4 (3) , 225-248. https://doi.org/10.1002/wcms.1169
    68. Xubo Lin, Tingting Bai, Yi Y. Zuo, Ning Gu. Promote potential applications of nanoparticles as respiratory drug carrier: insights from molecular dynamics simulations. Nanoscale 2014, 6 (5) , 2759-2767. https://doi.org/10.1039/C3NR04163H
    69. Lanyuan Lu, James F. Dama, Gregory A. Voth. Fitting coarse-grained distribution functions through an iterative force-matching method. The Journal of Chemical Physics 2013, 139 (12) https://doi.org/10.1063/1.4811667
    70. W. G. Noid. Perspective: Coarse-grained models for biomolecular systems. The Journal of Chemical Physics 2013, 139 (9) https://doi.org/10.1063/1.4818908
    71. A. L. Rabinovich, A. P. Lyubartsev. Computer simulation of lipid membranes: Methodology and achievements. Polymer Science Series C 2013, 55 (1) , 162-180. https://doi.org/10.1134/S1811238213070060
    72. Yanping Chen, Yunfeng Shi. Dynamic self assembly of confined active nanoparticles. Chemical Physics Letters 2013, 557 , 76-79. https://doi.org/10.1016/j.cplett.2012.11.073
    73. W. G. Noid. Systematic Methods for Structurally Consistent Coarse-Grained Models. 2013, 487-531. https://doi.org/10.1007/978-1-62703-017-5_19
    74. Mario Orsi, Jonathan W. Essex. Physical properties of mixed bilayers containing lamellar and nonlamellar lipids: insights from coarse-grain molecular dynamics simulations. Faraday Discuss. 2013, 161 , 249-272. https://doi.org/10.1039/C2FD20110K
    75. Chris Knight, Gerrick E. Lindberg, Gregory A. Voth. Multiscale reactive molecular dynamics. The Journal of Chemical Physics 2012, 137 (22) https://doi.org/10.1063/1.4743958
    76. Andrew B. Ward, Olgun Guvench, Ronald D. Hills. Coarse grain lipid–protein molecular interactions and diffusion with MsbA flippase. Proteins: Structure, Function, and Bioinformatics 2012, 80 (9) , 2178-2190. https://doi.org/10.1002/prot.24108
    77. Avisek Das, Hans C. Andersen. The multiscale coarse-graining method. VIII. Multiresolution hierarchical basis functions and basis function selection in the construction of coarse-grained force fields. The Journal of Chemical Physics 2012, 136 (19) https://doi.org/10.1063/1.4705384
    78. Avisek Das, Hans C. Andersen. The multiscale coarse-graining method. IX. A general method for construction of three body coarse-grained force fields. The Journal of Chemical Physics 2012, 136 (19) https://doi.org/10.1063/1.4705417
    79. Avisek Das, Lanyuan Lu, Hans C. Andersen, Gregory A. Voth. The multiscale coarse-graining method. X. Improved algorithms for constructing coarse-grained potentials for molecular systems. The Journal of Chemical Physics 2012, 136 (19) https://doi.org/10.1063/1.4705420
    80. Chris Knight, Gregory A. Voth. Coarse-graining away electronic structure: a rigorous route to accurate condensed phase interaction potentials. Molecular Physics 2012, 110 (9-10) , 935-944. https://doi.org/10.1080/00268976.2012.668621
    81. Lanyuan Lu, Gregory A. Voth. The Multiscale Coarse‐Graining Method. 2012, 47-81. https://doi.org/10.1002/9781118180396.ch2
    82. D. Harries, G. Khelashvili. 9.4 Coarse Grained Methods: Applications to Membranes. 2012, 53-75. https://doi.org/10.1016/B978-0-12-374920-8.00905-X
    83. Christopher R. Ellis, Joseph F. Rudzinski, William G. Noid. Generalized‐Yvon–Born–Green Model of Toluene. Macromolecular Theory and Simulations 2011, 20 (7) , 478-495. https://doi.org/10.1002/mats.201100022
    84. Lanyuan Lu, Gregory A. Voth. The multiscale coarse-graining method. VII. Free energy decomposition of coarse-grained effective potentials. The Journal of Chemical Physics 2011, 134 (22) https://doi.org/10.1063/1.3599049
    85. Bonnie A. Merchant, Jeffry D. Madura. A Review of Coarse-Grained Molecular Dynamics Techniques to Access Extended Spatial and Temporal Scales in Biomolecular Simulations. 2011, 67-87. https://doi.org/10.1016/B978-0-444-53835-2.00003-1
    86. Alexander P. Lyubartsev, Alexander L. Rabinovich. Recent development in computer simulations of lipid bilayers. Soft Matter 2011, 7 (1) , 25-39. https://doi.org/10.1039/C0SM00457J
    87. Gary S. Ayton, Gregory A. Voth. Multiscale Computer Simulation of the Immature HIV-1 Virion. Biophysical Journal 2010, 99 (9) , 2757-2765. https://doi.org/10.1016/j.bpj.2010.08.018
    88. Max L. Berkowitz, James T. Kindt. Molecular Detailed Simulations of Lipid Bilayers. 2010, 253-286. https://doi.org/10.1002/9780470890905.ch5
    89. Zun-Jing Wang, Markus Deserno. Systematic implicit solvent coarse-graining of bilayer membranes: lipid and phase transferability of the force field. New Journal of Physics 2010, 12 (9) , 095004. https://doi.org/10.1088/1367-2630/12/9/095004
    90. Ronald D. Hills, Lanyuan Lu, Gregory A. Voth, . Multiscale Coarse-Graining of the Protein Energy Landscape. PLoS Computational Biology 2010, 6 (6) , e1000827. https://doi.org/10.1371/journal.pcbi.1000827
    91. Yong Jiang, Hao Wang, James T. Kindt. Atomistic Simulations of Bicelle Mixtures. Biophysical Journal 2010, 98 (12) , 2895-2903. https://doi.org/10.1016/j.bpj.2010.03.042
    92. Gary S. Ayton, Gregory A. Voth. Multiscale simulation of protein mediated membrane remodeling. Seminars in Cell & Developmental Biology 2010, 21 (4) , 357-362. https://doi.org/10.1016/j.semcdb.2009.11.011
    93. Avisek Das, Hans C. Andersen. The multiscale coarse-graining method. V. Isothermal-isobaric ensemble. The Journal of Chemical Physics 2010, 132 (16) https://doi.org/10.1063/1.3394862
    94. Luca Larini, Lanyuan Lu, Gregory A. Voth. The multiscale coarse-graining method. VI. Implementation of three-body coarse-grained potentials. The Journal of Chemical Physics 2010, 132 (16) https://doi.org/10.1063/1.3394863
    95. George Khelashvili, Daniel Harries. Modeling Signaling Processes across Cellular Membranes Using a Mesoscopic Approach. 2010, 236-261. https://doi.org/10.1016/S1574-1400(10)06012-3
    96. Gary S. Ayton, Edward Lyman, Gregory A. Voth. Hierarchical coarse-graining strategy for protein-membrane systems to access mesoscopic scales. Faraday Discuss. 2010, 144 , 347-357. https://doi.org/10.1039/B901996K
    97. Hyung Min Cho, Jhih-Wei Chu. Inversion of radial distribution functions to pair forces by solving the Yvon–Born–Green equation iteratively. The Journal of Chemical Physics 2009, 131 (13) https://doi.org/10.1063/1.3238547
    98. Avisek Das, Hans C. Andersen. The multiscale coarse-graining method. III. A test of pairwise additivity of the coarse-grained potential and of new basis functions for the variational calculation. The Journal of Chemical Physics 2009, 131 (3) https://doi.org/10.1063/1.3173812
    99. Gary S Ayton, Gregory A Voth. Systematic multiscale simulation of membrane protein systems. Current Opinion in Structural Biology 2009, 19 (2) , 138-144. https://doi.org/10.1016/j.sbi.2009.03.001

    The Journal of Physical Chemistry B

    Cite this: J. Phys. Chem. B 2009, 113, 5, 1501–1510
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp809604k
    Published January 12, 2009
    Copyright © 2009 American Chemical Society

    Article Views

    1447

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.