ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Transferable Force Field for Carbon Dioxide Adsorption in Zeolites

View Author Information
Department of Physical, Chemical, and Natural Systems, University Pablo de Olavide, Ctra. Utrera km. 1, 41013 Seville, Spain, Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam, The Netherlands, Energy and Environment Department, Instituto Nacional del Carbón, CSIC, P.O. 73, 33080 Oviedo, Spain, and Process & Energy Laboratory, Delft University of Technology, Leeghwaterstraat 44, 2628 CA Delft, The Netherlands
* To whom correspondence should be addressed. E-mail: [email protected]
†University Pablo de Olavide.
‡University of Amsterdam.
§Instituto Nacional de Carbón (CSIC).
⊥Delft University of Technology.
Cite this: J. Phys. Chem. C 2009, 113, 20, 8814–8820
Publication Date (Web):April 23, 2009
https://doi.org/10.1021/jp810871f
Copyright © 2009 American Chemical Society

Article Views

4278

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
Read OnlinePDF (4 MB)

Abstract

Abstract Image

We have developed a complete force field that accurately reproduces the adsorption properties of carbon dioxide in a variety of zeolites with different topologies and compositions. The force field parameters were obtained by fitting to our own experimental data and validated with available data taken from the literature. The novelty of this force field is that it is fully transferable between different zeolite framework types, and therefore, it is applicable to all possible Si/Al ratios (with sodium as extra-framework cation) and for the first time affording the prediction of topology-specific and chemical composition-specific adsorption properties.

Cited By

This article is cited by 172 publications.

  1. Mariana C.N. Bessa, Azahara Luna-Triguero, Jose M. Vicent-Luna, Paulo M.O.C. Carmo, Mihalis N. Tsampas, Ana Mafalda Ribeiro, Alírio E. Rodrigues, Sofia Calero, Alexandre F.P. Ferreira. An Efficient Strategy for Electroreduction Reactor Outlet Fractioning into Valuable Products. Industrial & Engineering Chemistry Research 2023, 62 (22) , 8847-8863. https://doi.org/10.1021/acs.iecr.3c00090
  2. Xiucheng Huang, Ana Martín-Calvo, Martijn J. J. Mulder, Sjoerd C. J. van Acht, Juan José Gutiérrez-Sevillano, Julio C. García-Navarro, Sofía Calero. Effect of Zeolitic Imidazolate Framework Topology on the Purification of Hydrogen from Coke Oven Gas. ACS Sustainable Chemistry & Engineering 2023, 11 (21) , 8020-8034. https://doi.org/10.1021/acssuschemeng.2c07006
  3. Jake Burner, Jun Luo, Andrew White, Adam Mirmiran, Ohmin Kwon, Peter G. Boyd, Stephen Maley, Marco Gibaldi, Scott Simrod, Victoria Ogden, Tom K. Woo. ARC–MOF: A Diverse Database of Metal-Organic Frameworks with DFT-Derived Partial Atomic Charges and Descriptors for Machine Learning. Chemistry of Materials 2023, 35 (3) , 900-916. https://doi.org/10.1021/acs.chemmater.2c02485
  4. Satyanarayana Bonakala, Anas Abutaha, Palani Elumalai, Ayman Samara, Said Mansour, Fedwa El-Mellouhi. Democratizing the Assessment of Thermal Robustness of Metal–Organic Frameworks. ACS Omega 2022, 7 (50) , 46515-46523. https://doi.org/10.1021/acsomega.2c05345
  5. Dominika O. Wasik, H. Mert Polat, Mahinder Ramdin, Othonas A. Moultos, Sofia Calero, Thijs J. H. Vlugt. Solubility of CO2 in Aqueous Formic Acid Solutions and the Effect of NaCl Addition: A Molecular Simulation Study. The Journal of Physical Chemistry C 2022, 126 (45) , 19424-19434. https://doi.org/10.1021/acs.jpcc.2c05476
  6. Marco Gibaldi, Ohmin Kwon, Andrew White, Jake Burner, Tom K. Woo. The HEALED SBU Library of Chemically Realistic Building Blocks for Construction of Hypothetical Metal–Organic Frameworks. ACS Applied Materials & Interfaces 2022, 14 (38) , 43372-43386. https://doi.org/10.1021/acsami.2c13100
  7. Sebastião M. P. de Lucena, José Carlos A. Oliveira, Daniel V. Gonçalves, Lyssandra M. O. Lucas, Pedro A. S. Moura, Rafaelle G. Santiago, Diana C. S. Azevedo, Moises Bastos-Neto. LTA Zeolite Characterization Based on Pore Type Distribution. Industrial & Engineering Chemistry Research 2022, 61 (5) , 2268-2279. https://doi.org/10.1021/acs.iecr.1c04897
  8. Salah Eddine Boulfelfel, John M. Findley, Hanjun Fang, Alan S. S. Daou, Peter I. Ravikovitch, David S. Sholl. A Transferable Force Field for Predicting Adsorption and Diffusion of Small Molecules in Alkali Metal Exchanged Zeolites with Coupled Cluster Accuracy. The Journal of Physical Chemistry C 2021, 125 (48) , 26832-26846. https://doi.org/10.1021/acs.jpcc.1c07790
  9. Amir H. Farmahini, Shreenath Krishnamurthy, Daniel Friedrich, Stefano Brandani, Lev Sarkisov. Performance-Based Screening of Porous Materials for Carbon Capture. Chemical Reviews 2021, 121 (17) , 10666-10741. https://doi.org/10.1021/acs.chemrev.0c01266
  10. Kaizhong Yang, Guang Yang, Jingyi Wu. Quantitatively Understanding the Insights into CO2 Adsorption on Faujasite from the Heterogeneity and Occupancy Sequence of Adsorption Sites. The Journal of Physical Chemistry C 2021, 125 (28) , 15676-15686. https://doi.org/10.1021/acs.jpcc.1c04254
  11. John M. Findley, Salah Eddine Boulfelfel, Hanjun Fang, Giovanni Muraro, Peter I. Ravikovitch, David S. Sholl. A Transferable Force Field for Predicting Adsorption and Diffusion of Hydrocarbons and Small Molecules in Silica Zeolites with Coupled-Cluster Accuracy. The Journal of Physical Chemistry C 2021, 125 (15) , 8418-8429. https://doi.org/10.1021/acs.jpcc.1c00943
  12. Koen Heijmans, Ionut C. Tranca, David M. J. Smeulders, Thijs J. H. Vlugt, Silvia V. Gaastra-Nedea. Gibbs Ensemble Monte Carlo for Reactive Force Fields to Determine the Vapor–Liquid Equilibrium of CO2 and H2O. Journal of Chemical Theory and Computation 2021, 17 (1) , 322-329. https://doi.org/10.1021/acs.jctc.0c00876
  13. Jake Burner, Ludwig Schwiedrzik, Mykhaylo Krykunov, Jun Luo, Peter G. Boyd, Tom K. Woo. High-Performing Deep Learning Regression Models for Predicting Low-Pressure CO2 Adsorption Properties of Metal–Organic Frameworks. The Journal of Physical Chemistry C 2020, 124 (51) , 27996-28005. https://doi.org/10.1021/acs.jpcc.0c06334
  14. Sebastián Caro-Ortiz, Erik Zuidema, Desmond Dekker, Marcello Rigutto, David Dubbeldam, Thijs J. H. Vlugt. Adsorption of Aromatics in MFI-Type Zeolites: Experiments and Framework Flexibility in Monte Carlo Simulations. The Journal of Physical Chemistry C 2020, 124 (39) , 21782-21797. https://doi.org/10.1021/acs.jpcc.0c06096
  15. Rajamani Krishna, Jasper M. van Baten. Using Molecular Simulations for Elucidation of Thermodynamic Nonidealities in Adsorption of CO2-Containing Mixtures in NaX Zeolite. ACS Omega 2020, 5 (32) , 20535-20542. https://doi.org/10.1021/acsomega.0c02730
  16. Rajamani Krishna, Jasper M. van Baten. Elucidation of Selectivity Reversals for Binary Mixture Adsorption in Microporous Adsorbents. ACS Omega 2020, 5 (15) , 9031-9040. https://doi.org/10.1021/acsomega.0c01051
  17. Isidro Jaraı́z-Arroyo, Ana Martin-Calvo, Juan José Gutiérrez-Sevillano, Carlos Barranco, Norberto Diaz-Diaz, Sofia Calero. OCEAN: An Algorithm to Predict the Separation of Biogas Using Zeolites. Industrial & Engineering Chemistry Research 2020, 59 (15) , 7212-7223. https://doi.org/10.1021/acs.iecr.9b06451
  18. Kaizhong Yang, Jingyi Wu, Chunyu Li, Yu Xiang, Guang Yang. Efficient Method To Obtain the Force Field for CO2 Adsorption on Zeolite 13X: Understanding the Host–Guest Interaction Mechanisms of Low-Pressure Adsorption. The Journal of Physical Chemistry C 2020, 124 (1) , 544-556. https://doi.org/10.1021/acs.jpcc.9b09187
  19. Caroline Desgranges, Jerome Delhommelle. Nucleation of Capillary Bridges and Bubbles in Nanoconfined CO2. Langmuir 2019, 35 (47) , 15401-15409. https://doi.org/10.1021/acs.langmuir.9b01744
  20. Alexander S. Hyla, Hanjun Fang, Salah Eddine Boulfelfel, Giovanni Muraro, Charanjit Paur, Karl Strohmaier, Peter I. Ravikovitch, David S. Sholl. Significant Temperature Dependence of the Isosteric Heats of Adsorption of Gases in Zeolites Demonstrated by Experiments and Molecular Simulations. The Journal of Physical Chemistry C 2019, 123 (33) , 20405-20412. https://doi.org/10.1021/acs.jpcc.9b05758
  21. I. Matito-Martos, J. García-Reyes, A. Martin-Calvo, D. Dubbeldam, S. Calero. Improving Ammonia Production Using Zeolites. The Journal of Physical Chemistry C 2019, 123 (30) , 18475-18481. https://doi.org/10.1021/acs.jpcc.9b05366
  22. Hossein Taghdisian, Saeideh Tasharrofi, Abdollah Golchoobi Firoozjaie, Akram Hosseinnia. Loading-Dependent Diffusion of SO2 in 13X and 5A Using Molecular Dynamics: Effects of Extraframework Ions and Topology. Journal of Chemical & Engineering Data 2019, 64 (7) , 3092-3104. https://doi.org/10.1021/acs.jced.9b00204
  23. Julio Perez-Carbajo, José B. Parra, Conchi O. Ania, Patrick J. Merkling, Sofia Calero. Molecular Sieves for the Separation of Hydrogen Isotopes. ACS Applied Materials & Interfaces 2019, 11 (20) , 18833-18840. https://doi.org/10.1021/acsami.9b02736
  24. Hana Dureckova, Mykhaylo Krykunov, Mohammad Zein Aghaji, Tom K. Woo. Robust Machine Learning Models for Predicting High CO2 Working Capacity and CO2/H2 Selectivity of Gas Adsorption in Metal Organic Frameworks for Precombustion Carbon Capture. The Journal of Physical Chemistry C 2019, 123 (7) , 4133-4139. https://doi.org/10.1021/acs.jpcc.8b10644
  25. J. Perez-Carbajo, D. Dubbeldam, S. Calero, P. J. Merkling. Diffusion Patterns in Zeolite MFI: The Cation Effect. The Journal of Physical Chemistry C 2018, 122 (51) , 29274-29284. https://doi.org/10.1021/acs.jpcc.8b08963
  26. Amir H. Farmahini, Shreenath Krishnamurthy, Daniel Friedrich, Stefano Brandani, Lev Sarkisov. From Crystal to Adsorption Column: Challenges in Multiscale Computational Screening of Materials for Adsorption Separation Processes. Industrial & Engineering Chemistry Research 2018, 57 (45) , 15491-15511. https://doi.org/10.1021/acs.iecr.8b03065
  27. Jose Manuel Vicent-Luna, Juan Jose Gutiérrez-Sevillano, Said Hamad, Juan Anta, Sofia Calero. Role of Ionic Liquid [EMIM]+[SCN]− in the Adsorption and Diffusion of Gases in Metal–Organic Frameworks. ACS Applied Materials & Interfaces 2018, 10 (35) , 29694-29704. https://doi.org/10.1021/acsami.8b11842
  28. Julio Perez-Carbajo, Ismael Matito-Martos, Salvador R. G. Balestra, Mihalis N. Tsampas, Mauritius C. M. van de Sanden, José A. Delgado, V. Ismael Águeda, Patrick J. Merkling, Sofia Calero. Zeolites for CO2–CO–O2 Separation to Obtain CO2-Neutral Fuels. ACS Applied Materials & Interfaces 2018, 10 (24) , 20512-20520. https://doi.org/10.1021/acsami.8b04507
  29. A. Martin-Calvo, J. J. Gutiérrez-Sevillano, I. Matito-Martos, T. J. H. Vlugt, S. Calero. Identifying Zeolite Topologies for Storage and Release of Hydrogen. The Journal of Physical Chemistry C 2018, 122 (23) , 12485-12493. https://doi.org/10.1021/acs.jpcc.8b02263
  30. Jian Ren Lim, Chi-Ta Yang, Jihan Kim, Li-Chiang Lin. Transferability of CO2 Force Fields for Prediction of Adsorption Properties in All-Silica Zeolites. The Journal of Physical Chemistry C 2018, 122 (20) , 10892-10903. https://doi.org/10.1021/acs.jpcc.8b02208
  31. Francisco D. Lahoz-Martín, Ana Martin-Calvo, Juan José Gutiérrez-Sevillano, Sofía Calero. Effect of Light Gases in the Ethane/Ethylene Separation Using Zeolitic Imidazolate Frameworks. The Journal of Physical Chemistry C 2018, 122 (15) , 8637-8646. https://doi.org/10.1021/acs.jpcc.8b01305
  32. Paula Gómez-Álvarez, A. Rabdel Ruiz-Salvador, Said Hamad, and Sofia Calero . Importance of Blocking Inaccessible Voids on Modeling Zeolite Adsorption: Revisited. The Journal of Physical Chemistry C 2017, 121 (8) , 4462-4470. https://doi.org/10.1021/acs.jpcc.7b00031
  33. Sean P. Collins and Tom K. Woo . Split-Charge Equilibration Parameters for Generating Rapid Partial Atomic Charges in Metal–Organic Frameworks and Porous Polymer Networks for High-Throughput Screening. The Journal of Physical Chemistry C 2017, 121 (1) , 903-910. https://doi.org/10.1021/acs.jpcc.6b10804
  34. Paula Gómez-Álvarez, Julio Perez-Carbajo, Salvador R. G. Balestra, and Sofia Calero . Impact of the Nature of Exchangeable Cations on LTA-Type Zeolite Hydration. The Journal of Physical Chemistry C 2016, 120 (40) , 23254-23261. https://doi.org/10.1021/acs.jpcc.6b06916
  35. Javier Cepeda, Sonia Pérez-Yáñez, Garikoitz Beobide, Oscar Castillo, Eider Goikolea, Frederic Aguesse, Leoncio Garrido, Antonio Luque, and Paul A. Wright . Scandium/Alkaline Metal–Organic Frameworks: Adsorptive Properties and Ionic Conductivity. Chemistry of Materials 2016, 28 (8) , 2519-2528. https://doi.org/10.1021/acs.chemmater.5b03458
  36. Amber Mace, Mikael Leetmaa, and Aatto Laaksonen . Temporal Coarse Graining of CO2 and N2 Diffusion in Zeolite NaKA: From the Quantum Scale to the Macroscopic. Journal of Chemical Theory and Computation 2015, 11 (10) , 4850-4860. https://doi.org/10.1021/acs.jctc.5b00401
  37. Andrea Gabrieli, Marco Sant, Pierfranco Demontis, and Giuseppe B. Suffritti . Partial Charges in Periodic Systems: Improving Electrostatic Potential (ESP) Fitting via Total Dipole Fluctuations and Multiframe Approaches. Journal of Chemical Theory and Computation 2015, 11 (8) , 3829-3843. https://doi.org/10.1021/acs.jctc.5b00503
  38. Youssef Oulad-Zian, Juan R. Sanchez-Valencia, Julian Parra-Barranco, Said Hamad, Juan P. Espinos, Angel Barranco, Javier Ferrer, Mariona Coll, and Ana Borras . Ultraviolet Pretreatment of Titanium Dioxide and Tin-Doped Indium Oxide Surfaces as a Promoter of the Adsorption of Organic Molecules in Dry Deposition Processes: Light Patterning of Organic Nanowires. Langmuir 2015, 31 (30) , 8294-8302. https://doi.org/10.1021/acs.langmuir.5b01572
  39. Honghong Yi, Yundong Li, Xiaolong Tang, Fenrong Li, Kai Li, Qin Yuan, and Xin Sun . Effect of the Adsorbent Pore Structure on the Separation of Carbon Dioxide and Methane Gas Mixtures. Journal of Chemical & Engineering Data 2015, 60 (5) , 1388-1395. https://doi.org/10.1021/je501109q
  40. A. Martin-Calvo, J. B. Parra, C. O. Ania, and S. Calero . Insights on the Anomalous Adsorption of Carbon Dioxide in LTA Zeolites. The Journal of Physical Chemistry C 2014, 118 (44) , 25460-25467. https://doi.org/10.1021/jp507431c
  41. S. Calero and P. Gómez-Álvarez . Effect of the Confinement and Presence of Cations on Hydrogen Bonding of Water in LTA-Type Zeolite. The Journal of Physical Chemistry C 2014, 118 (17) , 9056-9065. https://doi.org/10.1021/jp5014847
  42. Lennart Joos, Joseph A. Swisher, and Berend Smit . Molecular Simulation Study of the Competitive Adsorption of H2O and CO2 in Zeolite 13X. Langmuir 2013, 29 (51) , 15936-15942. https://doi.org/10.1021/la403824g
  43. Amber Mace, Niklas Hedin, and Aatto Laaksonen . Role of Ion Mobility in Molecular Sieving of CO2 over N2 with Zeolite NaKA. The Journal of Physical Chemistry C 2013, 117 (46) , 24259-24267. https://doi.org/10.1021/jp4048133
  44. Michael Fischer and Robert G. Bell . Modeling CO2 Adsorption in Zeolites Using DFT-Derived Charges: Comparing System-Specific and Generic Models. The Journal of Physical Chemistry C 2013, 117 (46) , 24446-24454. https://doi.org/10.1021/jp4086969
  45. Jennifer C. Crabtree, Marco Molinari, Stephen C. Parker, and John A. Purton . Simulation of the Adsorption and Transport of CO2 on Faujasite Surfaces. The Journal of Physical Chemistry C 2013, 117 (42) , 21778-21787. https://doi.org/10.1021/jp4053727
  46. José Manuel Vicent-Luna, Juan José Gutiérrez-Sevillano, Juan Antonio Anta, and Sofía Calero . Effect of Room-Temperature Ionic Liquids on CO2 Separation by a Cu-BTC Metal–Organic Framework. The Journal of Physical Chemistry C 2013, 117 (40) , 20762-20768. https://doi.org/10.1021/jp407176j
  47. Michael Fischer and Robert G. Bell . Identifying Promising Zeolite Frameworks for Separation Applications: A Building-Block-Based Approach. The Journal of Physical Chemistry C 2013, 117 (33) , 17099-17110. https://doi.org/10.1021/jp405507y
  48. Kathryn S. Deeg, Juan José Gutiérrez-Sevillano, Rocío Bueno-Pérez, José B. Parra, Conchi O. Ania, Manuel Doblaré, and Sofía Calero . Insights on the Molecular Mechanisms of Hydrogen Adsorption in Zeolites. The Journal of Physical Chemistry C 2013, 117 (27) , 14374-14380. https://doi.org/10.1021/jp4037233
  49. S. R. G. Balestra, J. J. Gutiérrez-Sevillano, P. J. Merkling, D. Dubbeldam, and S. Calero . Simulation Study of Structural Changes in Zeolite RHO. The Journal of Physical Chemistry C 2013, 117 (22) , 11592-11599. https://doi.org/10.1021/jp4026283
  50. Juan José Gutiérrez-Sevillano, José Manuel Vicent-Luna, David Dubbeldam, and Sofía Calero . Molecular Mechanisms for Adsorption in Cu-BTC Metal Organic Framework. The Journal of Physical Chemistry C 2013, 117 (21) , 11357-11366. https://doi.org/10.1021/jp401017u
  51. Ilknur Erucar and Seda Keskin . High CO2 Selectivity of an Amine-Functionalized Metal Organic Framework in Adsorption-Based and Membrane-Based Gas Separations. Industrial & Engineering Chemistry Research 2013, 52 (9) , 3462-3472. https://doi.org/10.1021/ie303343m
  52. Juan José Gutiérrez Sevillano, Sofía Calero, Conchi O. Ania, José B. Parra, Freek Kapteijn, Jorge Gascon, and Said Hamad . Toward a Transferable Set of Charges to Model Zeolitic Imidazolate Frameworks: Combined Experimental–Theoretical Research. The Journal of Physical Chemistry C 2013, 117 (1) , 466-471. https://doi.org/10.1021/jp3107167
  53. Michael Fischer and Robert G. Bell . Influence of Zeolite Topology on CO2/N2 Separation Behavior: Force-Field Simulations Using a DFT-Derived Charge Model. The Journal of Physical Chemistry C 2012, 116 (50) , 26449-26463. https://doi.org/10.1021/jp3099768
  54. Jihan Kim, Li-Chiang Lin, Joseph A. Swisher, Maciej Haranczyk, and Berend Smit . Predicting Large CO2 Adsorption in Aluminosilicate Zeolites for Postcombustion Carbon Dioxide Capture. Journal of the American Chemical Society 2012, 134 (46) , 18940-18943. https://doi.org/10.1021/ja309818u
  55. Hanjun Fang, Preeti Kamakoti, Ji Zang, Stephen Cundy, Charanjit Paur, Peter I. Ravikovitch, and David S. Sholl . Prediction of CO2 Adsorption Properties in Zeolites Using Force Fields Derived from Periodic Dispersion-Corrected DFT Calculations. The Journal of Physical Chemistry C 2012, 116 (19) , 10692-10701. https://doi.org/10.1021/jp302433b
  56. Ana Martín-Calvo, Francisco D. Lahoz-Martín, and Sofía Calero . Understanding Carbon Monoxide Capture Using Metal–Organic Frameworks. The Journal of Physical Chemistry C 2012, 116 (11) , 6655-6663. https://doi.org/10.1021/jp211563e
  57. Daniela Frahm, Michael Fischer, Frank Hoffmann, and Michael Fröba . An Interpenetrated Metal–Organic Framework and Its Gas Storage Behavior: Simulation and Experiment. Inorganic Chemistry 2011, 50 (21) , 11055-11063. https://doi.org/10.1021/ic201596x
  58. Thijs van Westen, Thijs J. H. Vlugt, and Joachim Gross . Determining Force Field Parameters Using a Physically Based Equation of State. The Journal of Physical Chemistry B 2011, 115 (24) , 7872-7880. https://doi.org/10.1021/jp2026219
  59. Almudena García-Sánchez, Emma Eggink, Erin S. McGarrity, Sofía Calero, and Thijs J. H. Vlugt . Predictive Model for Optimizing Guest–Host Lennard–Jones Interactions in Zeolites. The Journal of Physical Chemistry C 2011, 115 (20) , 10187-10195. https://doi.org/10.1021/jp2021984
  60. A. García-Sánchez, D. Dubbeldam and S. Calero. Modeling Adsorption and Self-Diffusion of Methane in LTA Zeolites: The Influence of Framework Flexibility. The Journal of Physical Chemistry C 2010, 114 (35) , 15068-15074. https://doi.org/10.1021/jp1059215
  61. Bei Liu and Berend Smit . Molecular Simulation Studies of Separation of CO2/N2, CO2/CH4, and CH4/N2 by ZIFs. The Journal of Physical Chemistry C 2010, 114 (18) , 8515-8522. https://doi.org/10.1021/jp101531m
  62. Dominika O. Wasik, Ana Martín-Calvo, Juan José Gutiérrez-Sevillano, David Dubbeldam, Thijs J.H. Vlugt, Sofía Calero. Enhancement of formic acid production from carbon dioxide hydrogenation using metal-organic frameworks: Monte Carlo simulation study. Chemical Engineering Journal 2023, 105 , 143432. https://doi.org/10.1016/j.cej.2023.143432
  63. Yongkang Cui, Yi Xing, Jinglei Tian, Wei Su, Fang-Zhou Sun, Yingshu Liu. Insights into the adsorption performance and separation mechanisms for CO2 and CO on NaX and CaA zeolites by experiments and simulation. Fuel 2023, 337 , 127179. https://doi.org/10.1016/j.fuel.2022.127179
  64. Shrinjay Sharma, Marcello S. Rigutto, Richard Baur, Umang Agarwal, Erik Zuidema, Salvador R. G. Balestra, Sofia Calero, David Dubbeldam, Thijs J. H. Vlugt. Modelling of adsorbate-size dependent explicit isotherms using a segregated approach to account for surface heterogeneities. Molecular Physics 2023, 30 https://doi.org/10.1080/00268976.2023.2183721
  65. G. C. Q. da Silva, J. M. Simon, J. Marcos Salazar. When less is more: does more Na + -cations mean more adsorption sites for toluene in faujasites?. Physical Chemistry Chemical Physics 2023, 25 (11) , 8028-8042. https://doi.org/10.1039/D2CP04644J
  66. Botagoz Zhakisheva, Juan José Gutiérrez-Sevillano, Sofía Calero. Ammonia and water in zeolites: Effect of aluminum distribution on the heat of adsorption. Separation and Purification Technology 2023, 306 , 122564. https://doi.org/10.1016/j.seppur.2022.122564
  67. Gabriela Jajko, Sofia Calero, Paweł Kozyra, Wacław Makowski, Andrzej Sławek, Barbara Gil, Juan José Gutiérrez-Sevillano. Defect-induced tuning of polarity-dependent adsorption in hydrophobic–hydrophilic UiO-66. Communications Chemistry 2022, 5 (1) https://doi.org/10.1038/s42004-022-00742-z
  68. Christopher Kessler, Robin Schuldt, Sebastian Emmerling, Bettina V. Lotsch, Johannes Kästner, Joachim Gross, Niels Hansen. Influence of layer slipping on adsorption of light gases in covalent organic frameworks: A combined experimental and computational study. Microporous and Mesoporous Materials 2022, 336 , 111796. https://doi.org/10.1016/j.micromeso.2022.111796
  69. Thalles S. Diógenes, Rafaelle G. Santiago, Débora A.S. Maia, Daniel V. Gonçalves, Diana C.S. Azevedo, S. Mardônio P. Lucena, Moises Bastos-Neto. Experimental and theoretical assessment of CO2 capture by adsorption on clinoptilolite. Chemical Engineering Research and Design 2022, 177 , 640-652. https://doi.org/10.1016/j.cherd.2021.11.033
  70. Silda Peters, Renjith S. Pillai, Raksh V. Jasra. Significance of extra-framework monovalent and divalent cation motion upon CO2 and N2 sorption in zeolite X. Materials Today: Proceedings 2022, 68 , 85-92. https://doi.org/10.1016/j.matpr.2022.06.105
  71. Jiasheng Song, Lang Liu, Chao Liu, Xuechao Gao. Interfacial resistance of gas transport through rigid and flexible zeolites. Separation and Purification Technology 2021, 278 , 119529. https://doi.org/10.1016/j.seppur.2021.119529
  72. Maite Perfecto-Irigaray, Garikoitz Beobide, Sofia Calero, Oscar Castillo, Ivan da Silva, J. José Gutierrez Sevillano, Antonio Luque, Sonia Pérez-Yáñez, Leticia F. Velasco. Metastable Zr/Hf-MOFs: the hexagonal family of EHU-30 and their water-sorption induced structural transformation. Inorganic Chemistry Frontiers 2021, 8 (22) , 4767-4779. https://doi.org/10.1039/D1QI00997D
  73. Gabriela Jajko, Paweł Kozyra, Juan José Gutiérrez‐Sevillano, Wacław Makowski, Sofia Calero. Carbon Dioxide Capture Enhanced by Pre‐Adsorption of Water and Methanol in UiO‐66. Chemistry – A European Journal 2021, https://doi.org/10.1002/chem.202102181
  74. Ismael Matito-Martos, Claudia Sepúlveda, Cintia Gómez, Gabriel Acién, Julio Perez-Carbajo, José A. Delgado, V.I. Águeda, Conchi Ania, José B. Parra, Sofía Calero, Juan A. Anta. Potential of CO2 capture from flue gases by physicochemical and biological methods: A comparative study. Chemical Engineering Journal 2021, 417 , 128020. https://doi.org/10.1016/j.cej.2020.128020
  75. Sudipta Dasgupta, Marcos Antônio Klunk, Mohuli Das, Soyane Juceli Siqueira Xavier, Farid Chemale, Paulo Roberto Wander, Carlos Alberto Mendes Moraes. Hydrothermal synthesis of zeolite Y from green materials. The Canadian Journal of Chemical Engineering 2021, 9 https://doi.org/10.1002/cjce.23994
  76. A. Luna-Triguero, J.M. Vicent-Luna, M.J. Jansman, G. Zafeiropoulos, M.N. Tsampas, M.C.M. van de Sanden, H.N. Akse, S. Calero. Enhancing separation efficiency in European syngas industry by using zeolites. Catalysis Today 2021, 362 , 113-121. https://doi.org/10.1016/j.cattod.2020.03.061
  77. Justyna Rogacka, Agnieszka Seremak, Azahara Luna-Triguero, Filip Formalik, Ismael Matito-Martos, Lucyna Firlej, Sofia Calero, Bogdan Kuchta. High-throughput screening of metal – Organic frameworks for CO2 and CH4 separation in the presence of water. Chemical Engineering Journal 2021, 403 , 126392. https://doi.org/10.1016/j.cej.2020.126392
  78. Kaizhong Yang, Guang Yang, Jingyi Wu. Insights into the enhancement of CO2 adsorption on faujasite with a low Si/Al ratio: Understanding the formation sequence of adsorption complexes. Chemical Engineering Journal 2021, 404 , 127056. https://doi.org/10.1016/j.cej.2020.127056
  79. Seongbin Ga, Sangwon Lee, Jihan Kim, Jay H. Lee. Isotherm parameter library and evaluation software for CO2 capture adsorbents. Computers & Chemical Engineering 2020, 143 , 107105. https://doi.org/10.1016/j.compchemeng.2020.107105
  80. Chao Shi, Lin Li, Yi Li. High-throughput screening of hypothetical aluminosilicate zeolites for CO2 capture from flue gas. Journal of CO2 Utilization 2020, 42 , 101346. https://doi.org/10.1016/j.jcou.2020.101346
  81. Jie Zhao, Shuai Deng, Li Zhao, Xiangzhou Yuan, Zhenyu Du, Shuangjun Li, Lijin Chen, Kailong Wu. Understanding the effect of H 2 O on CO 2 adsorption capture: mechanism explanation, quantitative approach and application. Sustainable Energy & Fuels 2020, 4 (12) , 5970-5986. https://doi.org/10.1039/D0SE01179G
  82. Ivan G. Clayson, Daniel Hewitt, Martin Hutereau, Tom Pope, Ben Slater. High Throughput Methods in the Synthesis, Characterization, and Optimization of Porous Materials. Advanced Materials 2020, 32 (44) , 2002780. https://doi.org/10.1002/adma.202002780
  83. Sofia O. Slavova, Anastasia A. Sizova, Vladimir V. Sizov. Molecular dynamics simulation of carbon dioxide diffusion in NaA zeolite: assessment of surface effects and evaluation of bulk-like properties. Physical Chemistry Chemical Physics 2020, 22 (39) , 22529-22536. https://doi.org/10.1039/D0CP04189K
  84. Elaine O’Connor, Oisin N. Kavanagh, Drahomir Chovan, David G. Madden, Patrick Cronin, Ahmad B. Albadarin, Gavin M. Walker, Alan Ryan. Highly selective trace ammonium removal from dairy wastewater streams by aluminosilicate materials. Journal of Industrial and Engineering Chemistry 2020, 86 , 39-46. https://doi.org/10.1016/j.jiec.2019.10.027
  85. Zenan Shi, Wenyuan Yang, Xiaomei Deng, Chengzhi Cai, Yaling Yan, Hong Liang, Zili Liu, Zhiwei Qiao. Machine-learning-assisted high-throughput computational screening of high performance metal–organic frameworks. Molecular Systems Design & Engineering 2020, 5 (4) , 725-742. https://doi.org/10.1039/D0ME00005A
  86. I. Matito-Martos, A. Martin-Calvo, C.O. Ania, J.B. Parra, J.M. Vicent-Luna, S. Calero. Role of hydrogen bonding in the capture and storage of ammonia in zeolites. Chemical Engineering Journal 2020, 387 , 124062. https://doi.org/10.1016/j.cej.2020.124062
  87. Moises Bastos‐Neto, Diana Cristina Silva Azevedo, Sebastião Mardônio Pereira Lucena. Adsorption. 2020, 1-59. https://doi.org/10.1002/0471238961.0104191518212008.a01.pub3
  88. Hui Wang, Ying Yin, Junqiang Bai, Shifeng Wang. Multi-factor study of the effects of a trace amount of water vapor on low concentration CO 2 capture by 5A zeolite particles. RSC Advances 2020, 10 (11) , 6503-6511. https://doi.org/10.1039/C9RA08334K
  89. J. Perez-Carbajo, S.R.G. Balestra, S. Calero, P.J. Merkling. Effect of lattice shrinking on the migration of water within zeolite LTA. Microporous and Mesoporous Materials 2020, 293 , 109808. https://doi.org/10.1016/j.micromeso.2019.109808
  90. Juan José Gutiérrez-Sevillano, Sofía Calero. Computational Approaches to Zeolite-Based Adsorption Processes. 2020, 57-83. https://doi.org/10.1007/430_2020_66
  91. Fabien Cailliez, Pascal Pernot, Francesco Rizzi, Reese Jones, Omar Knio, Georgios Arampatzis, Petros Koumoutsakos. Bayesian calibration of force fields for molecular simulations. 2020, 169-227. https://doi.org/10.1016/B978-0-08-102941-1.00006-7
  92. David Dubbeldam, Krista S. Walton, Thijs J. H. Vlugt, Sofia Calero. Design, Parameterization, and Implementation of Atomic Force Fields for Adsorption in Nanoporous Materials. Advanced Theory and Simulations 2019, 2 (11) , 1900135. https://doi.org/10.1002/adts.201900135
  93. Eun Hyun Cho, Qiang Lyu, Li-Chiang Lin. Computational discovery of nanoporous materials for energy- and environment-related applications. Molecular Simulation 2019, 45 (14-15) , 1122-1147. https://doi.org/10.1080/08927022.2019.1626990
  94. A.A. Azmi, M.A.A. Aziz. Mesoporous adsorbent for CO2 capture application under mild condition: A review. Journal of Environmental Chemical Engineering 2019, 7 (2) , 103022. https://doi.org/10.1016/j.jece.2019.103022
  95. Yongping Zeng, Kai Li, Qingyu Zhu, Jilong Wang, Yanan Cao, Shengjie Lu. Capture of CO2 in carbon nanotube bundles supported with room-temperature ionic liquids: A molecular simulation study. Chemical Engineering Science 2018, 192 , 94-102. https://doi.org/10.1016/j.ces.2018.07.025
  96. H. Wang, Z.G. Qu, J.Q. Bai, Y.S. Qiu. Combined grand canonical Monte Carlo and finite volume method simulation method for investigation of direct air capture of low concentration CO2 by 5A zeolite adsorbent bed. International Journal of Heat and Mass Transfer 2018, 126 , 1219-1235. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.052
  97. Rajamani Krishna, Jasper M. van Baten. Investigating the non-idealities in adsorption of CO2-bearing mixtures in cation-exchanged zeolites. Separation and Purification Technology 2018, 206 , 208-217. https://doi.org/10.1016/j.seppur.2018.06.009
  98. Minman Tong, Youshi Lan, Qingyuan Yang, Chongli Zhong. High-throughput computational screening and design of nanoporous materials for methane storage and carbon dioxide capture. Green Energy & Environment 2018, 3 (2) , 107-119. https://doi.org/10.1016/j.gee.2017.09.004
  99. Ana Martin-Calvo, Stijn Van der Perre, Benjamin Claessens, Sofia Calero, Joeri F. M. Denayer. Unravelling the influence of carbon dioxide on the adsorptive recovery of butanol from fermentation broth using ITQ-29 and ZIF-8. Physical Chemistry Chemical Physics 2018, 20 (15) , 9957-9964. https://doi.org/10.1039/C8CP01034J
  100. Bojan Vujic, Alexander P. Lyubartsev. Computationally based analysis of the energy efficiency of a CO2 capture process. Chemical Engineering Science 2017, 174 , 174-188. https://doi.org/10.1016/j.ces.2017.09.006
Load all citations

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect