ACS Publications. Most Trusted. Most Cited. Most Read
Mie Potentials for Phase Equilibria Calculations: Application to Alkanes and Perfluoroalkanes
My Activity

Figure 1Loading Img
    Article

    Mie Potentials for Phase Equilibria Calculations: Application to Alkanes and Perfluoroalkanes
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202
    * To whom correspondence should be addressed. E-mail: [email protected]. Fax: 313 577 3810. Phone: 313 577 9357.
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry B

    Cite this: J. Phys. Chem. B 2009, 113, 44, 14725–14731
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp9072137
    Published October 13, 2009
    Copyright © 2009 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Transferable united-atom force fields, based on n − 6 Lennard-Jones potentials, are presented for normal alkanes and perfluorocarbons. It is shown that by varying the repulsive exponent the range of the potential can be altered, leading to improved predictions of vapor pressures while also reproducing saturated liquid densities to high accuracy. Histogram-reweighting Monte Carlo simulations in the grand canonical ensemble are used to determine the vapor liquid coexistence curves, vapor pressures, heats of vaporization, and critical points for normal alkanes methane through tetradecane, and perfluorocarbons perfluoromethane through perfluorooctane. For all molecules studied, saturated liquid densities are reproduced to within 1% of experiment. Vapor pressures for normal alkanes and perfluorocarbons were predicted to within 3% and 6% of experiment, respectively. Calculations performed for binary mixture vapor−liquid equilibria for propane + pentane show excellent agreement with experiment, while slight deviations are observed for the ethane + perfluoroethane mixture.

    Copyright © 2009 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    All data presented in this work have been tabulated. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 114 publications.

    1. Maximilian Fleck, Samir Darouich, Niels Hansen, Joachim Gross. TAMie Force Field for Alkanethiols: Multifidelity Gaussian Processes for Dealing with Scarce Experimental Data. The Journal of Physical Chemistry B 2024, 128 (39) , 9544-9552. https://doi.org/10.1021/acs.jpcb.4c04456
    2. Maximilian Fleck, Samir Darouich, Niels Hansen, Joachim Gross. Transferable Anisotropic Mie Potential Force Field for Alkanediols. The Journal of Physical Chemistry B 2024, 128 (19) , 4792-4801. https://doi.org/10.1021/acs.jpcb.4c00962
    3. Maximilian Fleck, Joachim Gross, Niels Hansen. Multifidelity Gaussian Processes for Predicting Shear Viscosity over Wide Ranges of Liquid State Points Based on Molecular Dynamics Simulations. Industrial & Engineering Chemistry Research 2024, 63 (8) , 3755-3765. https://doi.org/10.1021/acs.iecr.3c03931
    4. Sebastian Schmitt, Gajanan Kanagalingam, Florian Fleckenstein, Daniel Froescher, Hans Hasse, Simon Stephan. Extension of the MolMod Database to Transferable Force Fields. Journal of Chemical Information and Modeling 2023, 63 (22) , 7148-7158. https://doi.org/10.1021/acs.jcim.3c01484
    5. Ning Wang, Montana N. Carlozo, Eliseo Marin-Rimoldi, Bridgette J. Befort, Alexander W. Dowling, Edward J. Maginn. Machine Learning-Enabled Development of Accurate Force Fields for Refrigerants. Journal of Chemical Theory and Computation 2023, 19 (14) , 4546-4558. https://doi.org/10.1021/acs.jctc.3c00338
    6. Sebastian Schmitt, Florian Fleckenstein, Hans Hasse, Simon Stephan. Comparison of Force Fields for the Prediction of Thermophysical Properties of Long Linear and Branched Alkanes. The Journal of Physical Chemistry B 2023, 127 (8) , 1789-1802. https://doi.org/10.1021/acs.jpcb.2c07997
    7. Turan Selman Erkal, Norazanita Shamsuddin, Serdal Kirmizialtin, A. Ozgur Yazaydin. Computational Investigation of Structure–Function Relationship in Fluorine-Functionalized MOFs for PFOA Capture from Water. The Journal of Physical Chemistry C 2023, 127 (6) , 3204-3216. https://doi.org/10.1021/acs.jpcc.2c07737
    8. Sonja A. M. Smith, Jamie T. Cripwell, Cara E. Schwarz. Application of Renormalization Corrections to SAFT-VR Mie. Industrial & Engineering Chemistry Research 2022, 61 (34) , 12797-12812. https://doi.org/10.1021/acs.iecr.2c02004
    9. Pedro Morgado, João Barras, Amparo Galindo, George Jackson, Eduardo J. M. Filipe. Modeling the Fluid-Phase Equilibria of Semifluorinated Alkanes and Mixtures of (n-Alkanes + n-Perfluoroalkanes) with the SAFT-γ Mie Group-Contribution Approach. Journal of Chemical & Engineering Data 2020, 65 (12) , 5909-5919. https://doi.org/10.1021/acs.jced.0c00785
    10. Julia Gebhardt, Matthias Kiesel, Sereina Riniker, Niels Hansen. Combining Molecular Dynamics and Machine Learning to Predict Self-Solvation Free Energies and Limiting Activity Coefficients. Journal of Chemical Information and Modeling 2020, 60 (11) , 5319-5330. https://doi.org/10.1021/acs.jcim.0c00479
    11. Matthias Fischer, Gernot Bauer, Joachim Gross. Transferable Anisotropic United-Atom Mie (TAMie) Force Field: Transport Properties from Equilibrium Molecular Dynamic Simulations. Industrial & Engineering Chemistry Research 2020, 59 (18) , 8855-8869. https://doi.org/10.1021/acs.iecr.0c00848
    12. Matthias Fischer, Gernot Bauer, Joachim Gross. Force Fields with Fixed Bond Lengths and with Flexible Bond Lengths: Comparing Static and Dynamic Fluid Properties. Journal of Chemical & Engineering Data 2020, 65 (4) , 1583-1593. https://doi.org/10.1021/acs.jced.9b01031
    13. Jörg Baz, Niels Hansen, Joachim Gross. Transferable Anisotropic Mie-Potential Force Field for n-Alcohols: Static and Dynamic Fluid Properties of Pure Substances and Binary Mixtures. Industrial & Engineering Chemistry Research 2020, 59 (2) , 919-929. https://doi.org/10.1021/acs.iecr.9b05323
    14. Richard A. Messerly, Mohammad Soroush Barhaghi, Jeffrey J. Potoff, Michael R. Shirts. Histogram-Free Reweighting with Grand Canonical Monte Carlo: Post-simulation Optimization of Non-bonded Potentials for Phase Equilibria. Journal of Chemical & Engineering Data 2019, 64 (9) , 3701-3717. https://doi.org/10.1021/acs.jced.8b01232
    15. Christian Waibel, Joachim Gross. Polarizable Transferable Anisotropic United-Atom Force Field Based on the Mie Potential for Phase Equilibria: Ethers, n-Alkanes, and Nitrogen. Journal of Chemical Theory and Computation 2019, 15 (4) , 2561-2573. https://doi.org/10.1021/acs.jctc.8b01238
    16. Christian Waibel, Mathias Simon Feinler, Joachim Gross. A Modified Shifted Force Approach to the Wolf Summation. Journal of Chemical Theory and Computation 2019, 15 (1) , 572-583. https://doi.org/10.1021/acs.jctc.8b00343
    17. Zheng Gong, Yanze Wu, Liang Wu, Huai Sun. Predicting Thermodynamic Properties of Alkanes by High-Throughput Force Field Simulation and Machine Learning. Journal of Chemical Information and Modeling 2018, 58 (12) , 2502-2516. https://doi.org/10.1021/acs.jcim.8b00407
    18. Sadia Rahman, Olga Lobanova, Guadalupe Jiménez-Serratos, Carlos Braga, Vasilios Raptis, Erich A. Müller, George Jackson, Carlos Avendaño, Amparo Galindo. SAFT-γ Force Field for the Simulation of Molecular Fluids. 5. Hetero-Group Coarse-Grained Models of Linear Alkanes and the Importance of Intramolecular Interactions. The Journal of Physical Chemistry B 2018, 122 (39) , 9161-9177. https://doi.org/10.1021/acs.jpcb.8b04095
    19. Richard A. Messerly, S. Mostafa Razavi, Michael R. Shirts. Configuration-Sampling-Based Surrogate Models for Rapid Parameterization of Non-Bonded Interactions. Journal of Chemical Theory and Computation 2018, 14 (6) , 3144-3162. https://doi.org/10.1021/acs.jctc.8b00223
    20. Christian Waibel, Joachim Gross. Modification of the Wolf Method and Evaluation for Molecular Simulation of Vapor–Liquid Equilibria. Journal of Chemical Theory and Computation 2018, 14 (4) , 2198-2206. https://doi.org/10.1021/acs.jctc.7b01190
    21. Jason R. Mick, Mohammad Soroush Barhaghi, Brock Jackman, Loren Schwiebert, and Jeffrey J. Potoff . Optimized Mie Potentials for Phase Equilibria: Application to Branched Alkanes. Journal of Chemical & Engineering Data 2017, 62 (6) , 1806-1818. https://doi.org/10.1021/acs.jced.6b01036
    22. Dominik Weidler and Joachim Gross . Transferable Anisotropic United-Atom Force Field Based on the Mie Potential for Phase Equilibria: Aldehydes, Ketones, and Small Cyclic Alkanes. Industrial & Engineering Chemistry Research 2016, 55 (46) , 12123-12132. https://doi.org/10.1021/acs.iecr.6b02182
    23. Richard A. Messerly, Thomas A. Knotts IV, Richard L. Rowley, and W. Vincent Wilding . Improved Estimates of the Critical Point Constants for Large n-Alkanes Using Gibbs Ensemble Monte Carlo Simulations. Journal of Chemical & Engineering Data 2016, 61 (10) , 3640-3649. https://doi.org/10.1021/acs.jced.6b00574
    24. Carlos Nieto-Draghi, Guillaume Fayet, Benoit Creton, Xavier Rozanska, Patricia Rotureau, Jean-Charles de Hemptinne, Philippe Ungerer, Bernard Rousseau, and Carlo Adamo . A General Guidebook for the Theoretical Prediction of Physicochemical Properties of Chemicals for Regulatory Purposes. Chemical Reviews 2015, 115 (24) , 13093-13164. https://doi.org/10.1021/acs.chemrev.5b00215
    25. Fenglei Cao and Huai Sun . Transferability and Nonbond Functional Form of Coarse Grained Force Field – Tested on Linear Alkanes. Journal of Chemical Theory and Computation 2015, 11 (10) , 4760-4769. https://doi.org/10.1021/acs.jctc.5b00573
    26. Andrea Hemmen and Joachim Gross . Transferable Anisotropic United-Atom Force Field Based on the Mie Potential for Phase Equilibrium Calculations: n-Alkanes and n-Olefins. The Journal of Physical Chemistry B 2015, 119 (35) , 11695-11707. https://doi.org/10.1021/acs.jpcb.5b01354
    27. Andrea Hemmen, Athanassios Z. Panagiotopoulos, and Joachim Gross . Grand Canonical Monte Carlo Simulations Guided by an Analytic Equation of State—Transferable Anisotropic Mie Potentials for Ethers. The Journal of Physical Chemistry B 2015, 119 (23) , 7087-7099. https://doi.org/10.1021/acs.jpcb.5b01806
    28. V. Lachet, J.-M. Teuler, and B. Rousseau . Classical Force Field for Hydrofluorocarbon Molecular Simulations. Application to the Study of Gas Solubility in Poly(vinylidene fluoride). The Journal of Physical Chemistry A 2015, 119 (1) , 140-151. https://doi.org/10.1021/jp506895p
    29. Amanda Sans, Amir Vahid, and J. Richard Elliott . Transferable Intermolecular Potential Models for a Broad Range of Organic Compounds. Journal of Chemical & Engineering Data 2014, 59 (10) , 3069-3079. https://doi.org/10.1021/je500151a
    30. Jeffrey J. Potoff and Ganesh Kamath . Mie Potentials for Phase Equilibria: Application to Alkenes. Journal of Chemical & Engineering Data 2014, 59 (10) , 3144-3150. https://doi.org/10.1021/je500202q
    31. Niels Hansen and Wilfred F. van Gunsteren . Practical Aspects of Free-Energy Calculations: A Review. Journal of Chemical Theory and Computation 2014, 10 (7) , 2632-2647. https://doi.org/10.1021/ct500161f
    32. Navendu Bhatnagar, Ganesh Kamath, and Jeffrey J. Potoff . Biomolecular Simulations with the Transferable Potentials for Phase Equilibria: Extension to Phospholipids. The Journal of Physical Chemistry B 2013, 117 (34) , 9910-9921. https://doi.org/10.1021/jp404314k
    33. Pedro Duarte, Marcelo Silva, Djêide Rodrigues, Pedro Morgado, Luís F. G. Martins, and Eduardo J. M. Filipe . Liquid Mixtures Involving Hydrogenated and Fluorinated Chains: (p, ρ, T, x) Surface of (Ethanol + 2,2,2-Trifluoroethanol), Experimental and Simulation. The Journal of Physical Chemistry B 2013, 117 (33) , 9709-9717. https://doi.org/10.1021/jp3105387
    34. Carlos Avendaño, Thomas Lafitte, Claire S. Adjiman, Amparo Galindo, Erich A. Müller, and George Jackson . SAFT-γ Force Field for the Simulation of Molecular Fluids: 2. Coarse-Grained Models of Greenhouse Gases, Refrigerants, and Long Alkanes. The Journal of Physical Chemistry B 2013, 117 (9) , 2717-2733. https://doi.org/10.1021/jp306442b
    35. Carlos Avendaño, Thomas Lafitte, Amparo Galindo, Claire S. Adjiman, George Jackson, and Erich A. Müller . SAFT-γ Force Field for the Simulation of Molecular Fluids. 1. A Single-Site Coarse Grained Model of Carbon Dioxide. The Journal of Physical Chemistry B 2011, 115 (38) , 11154-11169. https://doi.org/10.1021/jp204908d
    36. Pedro Morgado, Carlos M. C. Laginhas, J. Ben Lewis, Clare McCabe, Luís F. G. Martins, Eduardo J. M. Filipe. Viscosity of Liquid Perfluoroalkanes and Perfluoroalkylalkane Surfactants. The Journal of Physical Chemistry B 2011, 115 (29) , 9130-9139. https://doi.org/10.1021/jp201364k
    37. Thijs van Westen, Thijs J. H. Vlugt, and Joachim Gross . Determining Force Field Parameters Using a Physically Based Equation of State. The Journal of Physical Chemistry B 2011, 115 (24) , 7872-7880. https://doi.org/10.1021/jp2026219
    38. Katie A. Maerzke and J. Ilja Siepmann . Transferable Potentials for Phase Equilibria−Coarse-Grain Description for Linear Alkanes. The Journal of Physical Chemistry B 2011, 115 (13) , 3452-3465. https://doi.org/10.1021/jp1063935
    39. Thi Vo. Theory and simulation of ligand functionalized nanoparticles – a pedagogical overview. Soft Matter 2024, 20 (17) , 3554-3576. https://doi.org/10.1039/D4SM00177J
    40. Javier Pozos-García, Edgar Núñez-Rojas, José Luis Quiroz-Fabián, Adriana Pérez-Espinosa, José Alejandre. Efficient search of molecular interaction parameters for polar liquids. Molecular Physics 2024, 131 https://doi.org/10.1080/00268976.2024.2343386
    41. Saumya Suvarna, Madhu Priya. Role of range of interaction potential on structure and dynamics of a one-component system of particles interacting via Mie potential. AIP Advances 2024, 14 (4) https://doi.org/10.1063/5.0199631
    42. Denis Saric, Ian H. Bell, Gabriela Guevara-Carrion, Jadran Vrabec. Influence of repulsion on entropy scaling and density scaling of monatomic fluids. The Journal of Chemical Physics 2024, 160 (10) https://doi.org/10.1063/5.0196592
    43. Richard J. Sadus. Intermolecular pair potentials and force fields. 2024, 51-116. https://doi.org/10.1016/B978-0-323-85398-9.00017-4
    44. Nikita A. Dmitryuk, Lucia A. Mistryukova, Nikita P. Kryuchkov, Sergey A. Khrapak, Stanislav O. Yurchenko. Diffusion mobility increases linearly on liquid binodals above triple point. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-022-26390-w
    45. Gajanan Kanagalingam, Sebastian Schmitt, Florian Fleckenstein, Simon Stephan. Data scheme and data format for transferable force fields for molecular simulation. Scientific Data 2023, 10 (1) https://doi.org/10.1038/s41597-023-02369-8
    46. David Fertig, Simon Stephan. Influence of dispersive long-range interactions on transport and excess properties of simple mixtures. Molecular Physics 2023, 121 (19-20) https://doi.org/10.1080/00268976.2022.2162993
    47. Johann Fischer, Martin Wendland. On the history of key empirical intermolecular potentials. Fluid Phase Equilibria 2023, 573 , 113876. https://doi.org/10.1016/j.fluid.2023.113876
    48. Mengru Zhang, François Sicard, Turan Selman Erkal, Geoffrey M. Bowers, A. Ozgur Yazaydin. The role of surface thermodynamics and kinetics in the removal of PFOA from aqueous solutions. Surfaces and Interfaces 2023, 41 , 103271. https://doi.org/10.1016/j.surfin.2023.103271
    49. Simon Stephan, Maximilian Urschel. Characteristic curves of the Mie fluid. Journal of Molecular Liquids 2023, 383 , 122088. https://doi.org/10.1016/j.molliq.2023.122088
    50. Justinas Šlepavičius, Alessandro Patti, James L. McDonagh, Carlos Avendaño. Application of machine-learning algorithms to predict the transport properties of Mie fluids. The Journal of Chemical Physics 2023, 159 (2) https://doi.org/10.1063/5.0151123
    51. Marcus J. Tillotson, Nikolaos I. Diamantonis, Corneliu Buda, Leslie W. Bolton, Erich A. Müller. Molecular modelling of the thermophysical properties of fluids: expectations, limitations, gaps and opportunities. Physical Chemistry Chemical Physics 2023, 25 (18) , 12607-12628. https://doi.org/10.1039/D2CP05423J
    52. Gözdenur Toraman, Toon Verstraelen, Dieter Fauconnier. Impact of Ad Hoc Post-Processing Parameters on the Lubricant Viscosity Calculated with Equilibrium Molecular Dynamics Simulations. Lubricants 2023, 11 (4) , 183. https://doi.org/10.3390/lubricants11040183
    53. Sainan Sun, Zhi Yang, Bowen Sheng, Yunxiao Wang, Yanxing Zhao, Xueqiang Dong, Maoqiong Gong. The viscosity of liquid ethene: Measurement and molecular dynamic simulation. The Journal of Chemical Thermodynamics 2023, 178 , 106957. https://doi.org/10.1016/j.jct.2022.106957
    54. Daniel J. Carlson, Neil F. Giles, W. Vincent Wilding, Thomas A. Knotts. Improved liquid viscosity prediction with the novel TLVMie force field for branched hydrocarbons. Fluid Phase Equilibria 2023, 566 , 113681. https://doi.org/10.1016/j.fluid.2022.113681
    55. Sven Pohl, Robin Fingerhut, Monika Thol, Jadran Vrabec, Roland Span. Equation of state for the Mie ( λ r,6) fluid with a repulsive exponent from 11 to 13. The Journal of Chemical Physics 2023, 158 (8) https://doi.org/10.1063/5.0133412
    56. Daniel J. Carlson, Neil F. Giles, W. Vincent Wilding, Thomas A. Knotts. Liquid viscosity oriented parameterization of the Mie potential for reliable predictions of normal alkanes and alkylbenzenes. Fluid Phase Equilibria 2022, 561 , 113522. https://doi.org/10.1016/j.fluid.2022.113522
    57. Tomás Rego, Gonçalo M.C. Silva, Michel Goldmann, Eduardo J.M. Filipe, Pedro Morgado. Optimized all-atom force field for alkynes within the OPLS-AA framework. Fluid Phase Equilibria 2022, 554 , 113314. https://doi.org/10.1016/j.fluid.2021.113314
    58. L. Dai, P. P. Rutkevych, S. Chakraborty, G. Wu, J. Ye, Y. H. Lau, H. Ramanarayan, D. T. Wu. Molecular dynamics simulation of octacosane for phase diagrams and properties via the united-atom scheme. Physical Chemistry Chemical Physics 2021, 23 (37) , 21262-21271. https://doi.org/10.1039/D1CP02720D
    59. Fariborz Shaahmadi, Ruan M. Hurter, Andries J. Burger, Jamie T. Cripwell. Improving the SAFT-γ Mie equation of state to account for functional group interactions in a structural (s-SAFT-γ Mie) framework: Linear and branched alkanes. The Journal of Chemical Physics 2021, 154 (24) https://doi.org/10.1063/5.0048315
    60. Thijs van Westen. Algebraic second virial coefficient of the Mie m − 6 intermolecular potential based on perturbation theory. The Journal of Chemical Physics 2021, 154 (23) https://doi.org/10.1063/5.0050659
    61. B. Ibarra-Tandi, J.A. Moreno-Razo, J. Munguía-Valadez, J. López-Lemus, M.A. Chávez-Rojo. Effects of the repulsive and attractive forces on phase equilibrium and critical properties of two-dimensional non-conformal simple fluids. Journal of Molecular Liquids 2021, 326 , 115234. https://doi.org/10.1016/j.molliq.2020.115234
    62. Thijs van Westen, Joachim Gross. Accurate first-order perturbation theory for fluids: uf -theory. The Journal of Chemical Physics 2021, 154 (4) https://doi.org/10.1063/5.0031545
    63. Richard J. Sadus. Effect of the range of particle cohesion on the phase behavior and thermodynamic properties of fluids. The Journal of Chemical Physics 2020, 153 (24) https://doi.org/10.1063/5.0031517
    64. Richard J. Sadus. Vapor–liquid equilibria and cohesive r −4 interactions. The Journal of Chemical Physics 2020, 153 (20) https://doi.org/10.1063/5.0029552
    65. Aleksey Vishnyakov, Tim Weathers, Ashvin Hosangadi, Yee C. Chiew. Molecular models for phase equilibria of alkanes with air components and combustion products I. Alkane mixtures with nitrogen, CO2 and water. Fluid Phase Equilibria 2020, 514 , 112553. https://doi.org/10.1016/j.fluid.2020.112553
    66. Pedro Morgado, Beatriz Colaço, Vera Santos, George Jackson, Eduardo J. M. Filipe. Modelling the thermodynamic properties and fluid-phase equilibria of n -perfluoroalkanes and their binary mixtures with the SAFT- γ Mie group contribution equation of state. Molecular Physics 2020, 118 (9-10) , e1722270. https://doi.org/10.1080/00268976.2020.1722270
    67. E. M. Apfelbaum, V. S. Vorob’ev. Systematization of the Critical Parameters of Substances due to Their Connection with Heat of Evaporation and Boyle Temperature. International Journal of Thermophysics 2020, 41 (1) https://doi.org/10.1007/s10765-019-2581-6
    68. S. Mostafa Razavi, Richard A. Messerly, J. Richard Elliott. Coexistence calculation using the isothermal-isochoric integration method. Fluid Phase Equilibria 2019, 501 , 112236. https://doi.org/10.1016/j.fluid.2019.06.026
    69. Richard A. Messerly, Michelle C. Anderson, S. Mostafa Razavi, J. Richard Elliott. Mie 16–6 force field predicts viscosity with faster-than-exponential pressure dependence for 2,2,4-trimethylhexane. Fluid Phase Equilibria 2019, 495 , 76-85. https://doi.org/10.1016/j.fluid.2019.05.013
    70. Dominik Weidler, Joachim Gross. Phase equilibria of binary mixtures with alkanes, ketones, and esters based on the Transferable Anisotropic Mie force field. Fluid Phase Equilibria 2019, 490 , 123-132. https://doi.org/10.1016/j.fluid.2019.02.009
    71. Mohammad Soroush Barhaghi, Jeffrey J. Potoff. Prediction of phase equilibria and Gibbs free energies of transfer using molecular exchange Monte Carlo in the Gibbs ensemble. Fluid Phase Equilibria 2019, 486 , 106-118. https://doi.org/10.1016/j.fluid.2018.12.032
    72. Jörg Baz, Niels Hansen, Joachim Gross. On the use of transport properties to discriminate Mie-type molecular models for 1-propanol optimized against VLE data. The European Physical Journal Special Topics 2019, 227 (14) , 1529-1545. https://doi.org/10.1140/epjst/e2019-800178-4
    73. Richard A. Messerly, Michelle C. Anderson, S. Mostafa Razavi, J. Richard Elliott. Improvements and limitations of Mie λ-6 potential for prediction of saturated and compressed liquid viscosity. Fluid Phase Equilibria 2019, 483 , 101-115. https://doi.org/10.1016/j.fluid.2018.11.002
    74. Pedro Morgado, Luís F. G. Martins, Eduardo J. M. Filipe. From nano-emulsions to phase separation: evidence of nano-segregation in (alkane + perfluoroalkane) mixtures using 129 Xe NMR Spectroscopy. Physical Chemistry Chemical Physics 2019, 21 (7) , 3742-3751. https://doi.org/10.1039/C8CP06509H
    75. Richard J. Sadus. Two-body intermolecular potentials from second virial coefficient properties. The Journal of Chemical Physics 2019, 150 (2) https://doi.org/10.1063/1.5080308
    76. Younes Nejahi, Mohammad Soroush Barhaghi, Jason Mick, Brock Jackman, Kamel Rushaidat, Yuanzhe Li, Loren Schwiebert, Jeffrey Potoff. GOMC: GPU Optimized Monte Carlo for the simulation of phase equilibria and physical properties of complex fluids. SoftwareX 2019, 9 , 20-27. https://doi.org/10.1016/j.softx.2018.11.005
    77. Richard A. Messerly, Michael R. Shirts, Andrei F. Kazakov. Uncertainty quantification confirms unreliable extrapolation toward high pressures for united-atom Mie λ -6 force field. The Journal of Chemical Physics 2018, 149 (11) https://doi.org/10.1063/1.5039504
    78. Mohammad Soroush Barhaghi, Korosh Torabi, Younes Nejahi, Loren Schwiebert, Jeffrey J. Potoff. Molecular exchange Monte Carlo: A generalized method for identity exchanges in grand canonical Monte Carlo simulations. The Journal of Chemical Physics 2018, 149 (7) https://doi.org/10.1063/1.5025184
    79. Richard J. Sadus. Second virial coefficient properties of the n - m Lennard-Jones/Mie potential. The Journal of Chemical Physics 2018, 149 (7) https://doi.org/10.1063/1.5041320
    80. Dominik Weidler, Joachim Gross. Individualized force fields for alkanes, olefins, ethers and ketones based on the transferable anisotropic Mie potential. Fluid Phase Equilibria 2018, 470 , 101-108. https://doi.org/10.1016/j.fluid.2018.02.012
    81. Christian Waibel, Rolf Stierle, Joachim Gross. Transferability of cross-interaction pair potentials: Vapor-liquid phase equilibria of n-alkane/nitrogen mixtures using the TAMie force field. Fluid Phase Equilibria 2018, 456 , 124-130. https://doi.org/10.1016/j.fluid.2017.09.024
    82. Himanshu Goel, Zachary W. Windom, Charles L. Butler, Neeraj Rai. Phase Equilibria and Condensed Phase Properties of Fluorinated Alkanes via First Principles Simulations. ChemistrySelect 2017, 2 (36) , 11969-11976. https://doi.org/10.1002/slct.201701972
    83. Mansi S. Shah, J. Ilja Siepmann, Michael Tsapatsis. Transferable potentials for phase equilibria. Improved united‐atom description of ethane and ethylene. AIChE Journal 2017, 63 (11) , 5098-5110. https://doi.org/10.1002/aic.15816
    84. Stephan Werth, Katrin Stöbener, Martin Horsch, Hans Hasse. Simultaneous description of bulk and interfacial properties of fluids by the Mie potential. Molecular Physics 2017, 115 (9-12) , 1017-1030. https://doi.org/10.1080/00268976.2016.1206218
    85. Jeremy R. Phifer, Courtney E. Cox, Larissa Ferreira da Silva, Gabriel Gonçalves Nogueira, Ana Karolyne Pereira Barbosa, Ryan T. Ley, Samantha M. Bozada, Elizabeth J. O’Loughlin, Andrew S. Paluch. Predicting the equilibrium solubility of solid polycyclic aromatic hydrocarbons and dibenzothiophene using a combination of MOSCED plus molecular simulation or electronic structure calculations. Molecular Physics 2017, 115 (9-12) , 1286-1300. https://doi.org/10.1080/00268976.2017.1284356
    86. Mohammad Soroush Barhaghi, Jason R. Mick, Jeffrey J. Potoff. Optimised Mie potentials for phase equilibria: application to alkynes. Molecular Physics 2017, 115 (9-12) , 1378-1388. https://doi.org/10.1080/00268976.2017.1297862
    87. Richard A. Messerly, Thomas A. Knotts, W. Vincent Wilding. Uncertainty quantification and propagation of errors of the Lennard-Jones 12-6 parameters for n -alkanes. The Journal of Chemical Physics 2017, 146 (19) https://doi.org/10.1063/1.4983406
    88. I.M. Zerón, L.A. Padilla, F. Gámez, J. Torres-Arenas, A.L. Benavides. Discrete perturbation theory for Mie potentials. Journal of Molecular Liquids 2017, 229 , 125-136. https://doi.org/10.1016/j.molliq.2016.12.026
    89. Paul A. Mountford, Mark A. Borden. On the thermodynamics and kinetics of superheated fluorocarbon phase-change agents. Advances in Colloid and Interface Science 2016, 237 , 15-27. https://doi.org/10.1016/j.cis.2016.08.007
    90. Juan Carlos Castro-Palacio, Robert Hellmann, Velisa Vesovic. Dilute gas viscosity of n -alkanes represented by rigid Lennard-Jones chains. Molecular Physics 2016, 114 (21) , 3171-3182. https://doi.org/10.1080/00268976.2016.1222456
    91. Richard A. Messerly, Thomas A. Knotts, Richard L. Rowley, W. Vincent Wilding. An improved approach for predicting the critical constants of large molecules with Gibbs Ensemble Monte Carlo simulation. Fluid Phase Equilibria 2016, 425 , 432-442. https://doi.org/10.1016/j.fluid.2016.06.041
    92. Pedro Morgado, Olga Lobanova, Erich A. Müller, George Jackson, Miguel Almeida, Eduardo J. M. Filipe. SAFT-γ force field for the simulation of molecular fluids: 8. Hetero-segmented coarse-grained models of perfluoroalkylalkanes assessed with new vapour–liquid interfacial tension data. Molecular Physics 2016, 114 (18) , 2597-2614. https://doi.org/10.1080/00268976.2016.1218077
    93. James Ewen, Chiara Gattinoni, Foram Thakkar, Neal Morgan, Hugh Spikes, Daniele Dini. A Comparison of Classical Force-Fields for Molecular Dynamics Simulations of Lubricants. Materials 2016, 9 (8) , 651. https://doi.org/10.3390/ma9080651
    94. Minhua Zhang, Lihang Chen, Huaming Yang, Xijiang Sha, Jing Ma. Gibbs ensemble Monte Carlo simulation using an optimized potential model: pure acetic acid and a mixture of it with ethylene. Journal of Molecular Modeling 2016, 22 (7) https://doi.org/10.1007/s00894-016-3033-x
    95. Carmelo Herdes, Esther Forte, George Jackson, Erich A Müller. Predicting the adsorption of n -perfluorohexane in BAM-P109 standard activated carbon by molecular simulation using SAFT- γ Mie coarse-grained force fields. Adsorption Science & Technology 2016, 34 (1) , 64-78. https://doi.org/10.1177/0263617415619528
    96. Aleksandra Gonciaruk, Louis Runcieman, Carlos Avendaño, Flor R Siperstein. 8th Industrial Fluid Properties Simulation Challenge: n -Perfluorohexane adsorption prediction on activated carbon BAM-P109 by molecular simulation. Adsorption Science & Technology 2016, 34 (1) , 93-109. https://doi.org/10.1177/0263617415619537
    97. Jason R. Mick, Mohammad Soroush Barhaghi, Brock Jackman, Kamel Rushaidat, Loren Schwiebert, Jeffrey J. Potoff. Optimized Mie potentials for phase equilibria: Application to noble gases and their mixtures with n-alkanes. The Journal of Chemical Physics 2015, 143 (11) https://doi.org/10.1063/1.4930138
    98. N.S. Ramrattan, C. Avendaño, E.A. Müller, A. Galindo. A corresponding-states framework for the description of the Mie family of intermolecular potentials. Molecular Physics 2015, 113 (9-10) , 932-947. https://doi.org/10.1080/00268976.2015.1025112
    99. Stephanie Delage-Santacreu, Guillaume Galliero, Hai Hoang, Jean-Patrick Bazile, Christian Boned, Josefa Fernandez. Thermodynamic scaling of the shear viscosity of Mie n -6 fluids and their binary mixtures. The Journal of Chemical Physics 2015, 142 (17) https://doi.org/10.1063/1.4919296
    100. Hector Dominguez. The non-ideal behaviour of the interfacial tension of the n-heptane+perfluoro-n-hexane mixture: A computational study. Chemical Physics Letters 2015, 627 , 77-81. https://doi.org/10.1016/j.cplett.2015.03.039
    Load all citations

    The Journal of Physical Chemistry B

    Cite this: J. Phys. Chem. B 2009, 113, 44, 14725–14731
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp9072137
    Published October 13, 2009
    Copyright © 2009 American Chemical Society

    Article Views

    1803

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.