ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Quantum Modeling of Hydrogen Retention in Beryllium Bulk and Vacancies

View Author Information
Physique des Interactions Ioniques et Moléculaires, CNRS and Université de Provence, Campus de Saint Jérôme, service 242, 13397 Marseille Cedex 20, France
Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, 85748 Garching bei München, Germany
* To whom correspondence should be addressed. E-mail: [email protected] (A.A.), [email protected] (Ch.L.).
Cite this: J. Phys. Chem. C 2010, 114, 8, 3588–3598
Publication Date (Web):February 9, 2010
https://doi.org/10.1021/jp910806j
Copyright © 2010 American Chemical Society

    Article Views

    695

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    Numerous experiments have been performed in the past few years on solid hydride deposition under beryllium-seeded plasma action or on energetic hydrogen implantation into metallic beryllium. This article reports on calculations carried out using first-principles density functional theory (DFT) and discusses the results with respect to thermal desorption experiments. The structures of amorphous beryllium hydride were investigated for various H/Be ratios. They were compared to the structure of the organized BeH2 crystal as a test for the validity of this model. The formation and reactivity of atomic vacancies were also investigated, together with atomic hydrogen trapping. Hints are proposed for hydrogen detrapping mechanisms.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 49 publications.

    1. Emmanuel N. Koukaras, Aris P. Sgouros, and Michael M. Sigalas . Fully Hydrogenated Beryllium Nanoclusters. Journal of the American Chemical Society 2016, 138 (9) , 3218-3227. https://doi.org/10.1021/jacs.6b00135
    2. A. Allouche . Quantum Modeling of Water and Oxygen Adsorption on Beryllium Surface. The Journal of Physical Chemistry C 2012, 116 (7) , 4662-4670. https://doi.org/10.1021/jp2105677
    3. A. Allouche . Quantum Modeling of Beryllium Surface Oxidation and Hydrogen Adsorption. The Journal of Physical Chemistry C 2011, 115 (16) , 8233-8239. https://doi.org/10.1021/jp2014379
    4. L. Ferry, F. Virot, Y. Ferro, M. Barrachin. Energy landscape of hydrogen in the vicinity of monovacancy in beryllium. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2024, 549 , 165261. https://doi.org/10.1016/j.nimb.2024.165261
    5. Zeyang Kuang, Zhichao Han, Chengjin Wang, Yixiao Xia, Yutong Sun, Boyu Ju, Wenshu Yang, Dongli Sun, Guoqin Chen, Gaohui Wu. Effects of Cu, Si and Mg additions on the interfacial properties and mechanical properties of Be/Al composites: First-principles calculations and experimental studies. Surfaces and Interfaces 2024, 46 , 103971. https://doi.org/10.1016/j.surfin.2024.103971
    6. Zeyang Kuang, Yixiao Xia, Boyu Ju, Zhichao Han, Yutong Sun, Guoqin Chen, Dongli Sun, Wenshu Yang, Gaohui Wu. Effect of interfacial BeO content on microstructure and mechanical properties of beryllium/aluminum composites. Materials Science and Engineering: A 2024, 893 , 146123. https://doi.org/10.1016/j.msea.2024.146123
    7. A. Bafekry, M. Faraji, S. Karbasizadeh, A. Bagheri Khatibani, A. Abdolahzadeh Ziabari, D. Gogova, M. Ghergherehchi. Point defects in two-dimensional BeO monolayer: a first-principles study on electronic and magnetic properties. Physical Chemistry Chemical Physics 2021, 23 (42) , 24301-24312. https://doi.org/10.1039/D1CP03421A
    8. Behnaz Abyaz, Zabiollah Mahdavifar, Georg Schreckenbach, Yang Gao. Prediction of beryllium clusters (Be n ; n = 3–25) from first principles. Physical Chemistry Chemical Physics 2021, 23 (35) , 19716-19728. https://doi.org/10.1039/D1CP02513A
    9. Gregory De Temmerman, Kalle Heinola, Dmitriy Borodin, Sebastijan Brezinsek, Russell P. Doerner, Marek Rubel, Elżbieta Fortuna-Zaleśna, Christian Linsmeier, Daisuke Nishijima, Kai Nordlund, Michael Probst, Juri Romazanov, Elnaz Safi, Thomas Schwarz-Selinger, Anna Widdowson, Bastiaan J. Braams, Hyun-Kyung Chung, Christian Hill. Data on erosion and hydrogen fuel retention in Beryllium plasma-facing materials. Nuclear Materials and Energy 2021, 27 , 100994. https://doi.org/10.1016/j.nme.2021.100994
    10. Maryam Zarghami Dehaghani, Azam Salmankhani, Amin Hamed Mashhadzadeh, Sajjad Habibzadeh, Otman Abida, Mohammad Reza Saeb. Fracture mechanics of polycrystalline beryllium oxide nanosheets: A theoretical basis. Engineering Fracture Mechanics 2021, 244 , 107552. https://doi.org/10.1016/j.engfracmech.2021.107552
    11. Marisol Ibarra-Rodríguez, Mario Sánchez. Theoretical study of boron, beryllium and lithium clusters (n=2–6), adsorption on graphitic carbon nitride and the study of acceptor-donor orbital of the coordination of a styrene molecule on [cluster/g-C3N4] systems. Journal of Molecular Graphics and Modelling 2021, 102 , 107772. https://doi.org/10.1016/j.jmgm.2020.107772
    12. Maryam Zarghami Dehaghani, Amin Hamed Mashhadzadeh, Azam Salmankhani, Zohre Karami, Sajjad Habibzadeh, Mohammad Reza Ganjali, Mohammad Reza Saeb. Fracture toughness and crack propagation behavior of nanoscale beryllium oxide graphene-like structures: A molecular dynamics simulation analysis. Engineering Fracture Mechanics 2020, 235 , 107194. https://doi.org/10.1016/j.engfracmech.2020.107194
    13. Y. Rostamiyan, V. Mohammadi, Amin Hamed Mashhadzadeh. Mechanical, electronic and stability properties of multi-walled beryllium oxide nanotubes and nanopeapods: a density functional theory study. Journal of Molecular Modeling 2020, 26 (4) https://doi.org/10.1007/s00894-020-4328-5
    14. L. Ferry, F. Virot, Y. Ferro, D. Matveev, Ch. Linsmeier, M. Barrachin. Diffusivity of hydrogen and properties of point defects in beryllium investigated by DFT. Journal of Nuclear Materials 2019, 524 , 323-329. https://doi.org/10.1016/j.jnucmat.2019.07.016
    15. D. Matveev, P. Hansen, T. Dittmar, H.R. Koslowski, Ch. Linsmeier. Modeling of H/D isotope-exchange in crystalline beryllium. Nuclear Materials and Energy 2019, 20 , 100682. https://doi.org/10.1016/j.nme.2019.100682
    16. Enamul Haque, Catherine Stampfl, M. Anwar Hossain. Prediction of the fundamental properties of novel Be-B-Ta-based ternary compounds from first-principles calculations. Physical Review Materials 2019, 3 (8) https://doi.org/10.1103/PhysRevMaterials.3.084804
    17. A. Hamed Mashhadzadeh, M. Ghorbanzadeh Ahangari, A. Dadrasi, M. Fathalian. Theoretical studies on the mechanical and electronic properties of 2D and 3D structures of Beryllium-Oxide graphene and graphene nanobud. Applied Surface Science 2019, 476 , 36-48. https://doi.org/10.1016/j.apsusc.2019.01.083
    18. C. Makepeace, C. Pardanaud, P. Roubin, I. Borodkina, C. Ayres, P. Coad, A. Baron-Wiechec, I. Jepu, K. Heinola, A. Widdowson, S. Lozano-Perez, J.E.T. Contributors. The effect of beryllium oxide on retention in JET ITER-like wall tiles. Nuclear Materials and Energy 2019, 19 , 346-351. https://doi.org/10.1016/j.nme.2019.02.022
    19. D.V. Bachurin, P.V. Vladimirov. Ab initio study of Be and Be12Ti for fusion applications. Intermetallics 2018, 100 , 163-170. https://doi.org/10.1016/j.intermet.2018.06.009
    20. D. Matveev, M. Wensing, L. Ferry, F. Virot, M. Barrachin, Y. Ferro, Ch. Linsmeier. Reaction-diffusion modeling of hydrogen transport and surface effects in application to single-crystalline Be. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2018, 430 , 23-30. https://doi.org/10.1016/j.nimb.2018.05.037
    21. Junquan Zhou, Maolin Bo, Lei Li, Zhongkai Huang, Meizi Tian, Chuang Yao, Cheng Peng. Bond−Energy−Electron Relaxation of Be N Nanoclusters and BeX Alloys. Advanced Theory and Simulations 2018, 1 (8) https://doi.org/10.1002/adts.201800035
    22. Daniel Labanc, Martin Šulka, Michal Pitoňák, Ivan Černušák, Miroslav Urban, Pavel Neogrády. Benchmark CCSD(T) and DFT study of binding energies in Be 7 − 12 : in search of reliable DFT functional for beryllium clusters. Molecular Physics 2018, 116 (10) , 1259-1274. https://doi.org/10.1080/00268976.2017.1420259
    23. Feng Li, Urs Aeberhard, Hong Wu, Man Qiao, Yafei Li. Global minimum beryllium hydride sheet with novel negative Poisson's ratio: first-principles calculations. RSC Advances 2018, 8 (35) , 19432-19436. https://doi.org/10.1039/C8RA02492H
    24. Xia Liu, Xinlu Cheng, Yuping Lu. Barrier effect of oxide on Cu permeation on Be surface. Physics Letters A 2017, 381 (37) , 3211-3216. https://doi.org/10.1016/j.physleta.2017.08.018
    25. L. Ferry, F. Virot, M. Barrachin, Y. Ferro, C. Pardanaud, D. Matveev, M. Wensing, T. Dittmar, M. Koppen, C. Linsmeier. Theoretical investigation on the point defect formation energies in beryllium and comparison with experiments. Nuclear Materials and Energy 2017, 12 , 453-457. https://doi.org/10.1016/j.nme.2017.05.012
    26. M.I. Rusu, C. Pardanaud, Y. Ferro, G. Giacometti, C. Martin, Y. Addab, P. Roubin, M. Minissale, L. Ferri, F. Virot, M. Barrachin, C.P. Lungu, C. Porosnicu, P. Dinca, M. Lungu, M. Köppen, P. Hansen, Ch. Linsmeier. Preparing the future post-mortem analysis of beryllium-based JET and ITER samples by multi-wavelengths Raman spectroscopy on implanted Be, and co-deposited Be. Nuclear Fusion 2017, 57 (7) , 076035. https://doi.org/10.1088/1741-4326/aa70bb
    27. Jin-Li Cao, Bing-Ling He, Wei Xiao, Li-Gen Wang. Effects of the Be 22 W phase formation on hydrogen retention and blistering in mixed Be/W systems. Chinese Physics B 2017, 26 (7) , 076801. https://doi.org/10.1088/1674-1056/26/7/076801
    28. E Safi, G Valles, A Lasa, K Nordlund. Multi-scale modelling to relate beryllium surface temperature, deuterium concentration and erosion in fusion reactor environment. Journal of Physics D: Applied Physics 2017, 50 (20) , 204003. https://doi.org/10.1088/1361-6463/aa6967
    29. P.A. Burr, S.C. Middleburgh, R.W. Grimes. Solubility and partitioning of impurities in Be alloys. Journal of Alloys and Compounds 2016, 688 , 382-385. https://doi.org/10.1016/j.jallcom.2016.07.014
    30. F.Y. Naumkin, D.J. Wales. Trapping of hydrogen atoms inside small beryllium clusters and their ions. Chemical Physics Letters 2016, 659 , 282-288. https://doi.org/10.1016/j.cplett.2016.07.054
    31. D Kogut, D Douai, M J Baldwin, R P Doerner, D Sinelnikov, N Mamedov, V Kurnaev, H W Becker, T Schwarz-Selinger. Hydrogen isotope exchange in beryllium co-deposits: modelling and experiment. Physica Scripta 2016, T167 , 014062. https://doi.org/10.1088/0031-8949/T167/1/014062
    32. C Pardanaud, M I Rusu, C Martin, G Giacometti, P Roubin, Y Ferro, A Allouche, M Oberkofler, M Köppen, T Dittmar, Ch Linsmeier. Hydrogen retention in beryllium: concentration effect and nanocrystalline growth. Journal of Physics: Condensed Matter 2015, 27 (47) , 475401. https://doi.org/10.1088/0953-8984/27/47/475401
    33. A. Allouche, M. Oberkofler, M. Köppen, Ch. Linsmeier. DFT studies of hydrogen retention in beryllium nitride. International Journal of Hydrogen Energy 2015, 40 (46) , 16419-16428. https://doi.org/10.1016/j.ijhydene.2015.09.074
    34. A. Allouche, Y. Ferro. First-Principles Study of hydrogen retention and diffusion in beryllium oxide. Solid State Ionics 2015, 272 , 91-100. https://doi.org/10.1016/j.ssi.2015.01.008
    35. Changzeng Fan, Ye Jin, Jian Li, Xu Dong. A Stable Binary BeB2 phase. Scientific Reports 2014, 4 (1) https://doi.org/10.1038/srep06993
    36. A Allouche, N Fernandez, Y Ferro. Hydrogen retention and diffusion in tungsten beryllide. Journal of Physics: Condensed Matter 2014, 26 (31) , 315012. https://doi.org/10.1088/0953-8984/26/31/315012
    37. Pengbo Zhang, Jijun Zhao. Interactions of extrinsic interstitial atoms (H, He, O, C) with vacancies in beryllium from first-principles. Computational Materials Science 2014, 90 , 116-122. https://doi.org/10.1016/j.commatsci.2014.04.028
    38. Aristides D. Zdetsis, Michael M. Sigalas, Emmanuel N. Koukaras. Ab initio theoretical investigation of beryllium and beryllium hydride nanoparticles and nanocrystals with implications for the corresponding infinite systems. Phys. Chem. Chem. Phys. 2014, 16 (27) , 14172-14182. https://doi.org/10.1039/C4CP01587H
    39. E. D. Marenkov, R. D. Smirnov, S. I. Krasheninnikov. On gas desorption from the tokamak first wall during edge localized modes. Plasma Physics Reports 2013, 39 (11) , 867-872. https://doi.org/10.1134/S1063780X13100085
    40. R. Piechoczek, M. Reinelt, M. Oberkofler, A. Allouche, Ch. Linsmeier. Deuterium trapping and release in Be(0001), Be(11–20) and polycrystalline beryllium. Journal of Nuclear Materials 2013, 438 , S1072-S1075. https://doi.org/10.1016/j.jnucmat.2013.01.235
    41. A Allouche. Nitrogen reactivity toward beryllium: surface reactions. Journal of Physics: Condensed Matter 2013, 25 (22) , 225002. https://doi.org/10.1088/0953-8984/25/22/225002
    42. A. Allouche. Carbon monoxide adsorption on beryllium surfaces. Surface Science 2013, 608 , 265-274. https://doi.org/10.1016/j.susc.2012.10.018
    43. A.Yu. Pigarov, P. Krstic, S.I. Krasheninnikov, R. Doerner, T.D. Rognlien. Dynamic Models for Plasma-Wall Interactions. Contributions to Plasma Physics 2012, 52 (5-6) , 465-477. https://doi.org/10.1002/ctpp.201210035
    44. Martin Šulka, Daniel Labanc, Martin Kováč, Michal Pitoňák, Ivan Černušák, Pavel Neogrády. Ab initio study of the stability of beryllium clusters: accurate calculations for Be 2 − 6. Journal of Physics B: Atomic, Molecular and Optical Physics 2012, 45 (8) , 085102. https://doi.org/10.1088/0953-4075/45/8/085102
    45. Pengbo Zhang, Jijun Zhao, Bin Wen. Vacancy trapping mechanism for multiple hydrogen and helium in beryllium: a first-principles study. Journal of Physics: Condensed Matter 2012, 24 (9) , 095004. https://doi.org/10.1088/0953-8984/24/9/095004
    46. S.C. Middleburgh, R.W. Grimes. Defects and transport processes in beryllium. Acta Materialia 2011, 59 (18) , 7095-7103. https://doi.org/10.1016/j.actamat.2011.07.064
    47. A. Allouche. Quantum modeling of hydrogen retention on partially oxidized beryllium. Journal of Nuclear Materials 2011, 415 (1) , S721-S723. https://doi.org/10.1016/j.jnucmat.2010.10.084
    48. M. Oberkofler, M. Reinelt, Ch. Linsmeier. Retention and release mechanisms of deuterium implanted into beryllium. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2011, 269 (11) , 1266-1270. https://doi.org/10.1016/j.nimb.2010.11.058
    49. M. Oberkofler, Ch. Linsmeier. Properties of nitrogen-implanted beryllium and its interaction with energetic deuterium. Nuclear Fusion 2010, 50 (12) , 125001. https://doi.org/10.1088/0029-5515/50/12/125001

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect