ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Preparation and Physicochemical Characteristics of Luminescent Apatite-Based Colloids

View Author Information
CIRIMAT Carnot Institute, University of Toulouse, CNRS/INPT/UPS, ENSIACET, 4 allée Emile Monso, BP 44362, 31432 Toulouse cedex 4, France, CIRIMAT Carnot Institute, University of Toulouse, CNRS/INPT/UPS, LCMIE, Université Paul Sabatier, 118 route de Narbonne, Bât. 2R1, 31062 Toulouse cedex 9, France, and CEMES 29, rue Jeanne Marvig, BP 94347, 31055 Toulouse cedex 4, France
* To whom correspondence should be addressed. Phone: +33 (0)5 34 32 34 50 (A.A.), +33 (0)5 34 32 34 11 (C.D.). Fax: +33 (0)5 34 32 33 99 (A.A.), +33 (0)5 34 32 33 99 (C.D.). E-mail: [email protected] (A.A.), [email protected] (C.D.).
†CIRIMAT Carnot Institute, University of Toulouse, CNRS/INPT/UPS, ENSIACET.
‡CIRIMAT Carnot Institute, University of Toulouse, CNRS/INPT/UPS, LCMIE, Université Paul Sabatier.
§CEMES 29.
Cite this: J. Phys. Chem. C 2010, 114, 7, 2918–2924
Publication Date (Web):February 2, 2010
https://doi.org/10.1021/jp910923g
Copyright © 2010 American Chemical Society

    Article Views

    940

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Luminescent colloidal nanosystems based on europium-doped biomimetic apatite were prepared and investigated. The colloids were synthesized by soft chemistry in the presence of a phospholipid moiety, 2-aminoethylphosphoric acid (AEP), with varying europium doping rates. Physicochemical features, including compositional, structural, morphological, and luminescence properties, were examined. Experimental evidence showed that suspensions prepared from an initial Eu/(Eu + Ca) molar ratio up to 2% consisted of single-phased biomimetic apatite nanocrystals covered with AEP molecules. The mean particle size was found to depend closely on the AEP content, enabling the production of apatite colloids with a controlled size down to ca. 30 nm. The colloids showed luminescence properties typical of europium-doped systems with narrow emission bands and long luminescence lifetimes of the order to the millisecond, and the data suggested the location of Eu3+ ions in a common crystallographic environment for all the colloids. These systems, stable over time and capable of being excited in close-to-visible or visible light domains, may raise interest in the future in the field of medical imaging.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Emission spectra of apatite colloids doped with Eu/(Ca + Eu) initial molar ratios of 1, 1.5, and 2% Eu under excitation at 392.8 nm; luminescence decay profiles of the 5D0 (Eu3+) level for three apatite colloids—1, 1.5, and 2% Eu—under excitation at 392.8 nm and at ambient temperature; and TEM micrograph for apatite colloids prepared from Eu/(Ca + Eu) = 1.5%. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 52 publications.

    1. Iori Yamada, Daichi Noda, Kenji Shinozaki, Tania Guadalupe Peñaflor Galindo, Motohiro Tagaya. Synthesis of Luminescent Eu(III)-Doped Octacalcium Phosphate Particles Hybridized with Succinate Ions and Their Reactive Behavior in Simulated Body Fluid. Crystal Growth & Design 2021, 21 (4) , 2005-2018. https://doi.org/10.1021/acs.cgd.0c01369
    2. Ayumu Isobe, Satoru Takeshita, and Tetsuhiko Isobe . Composites of Eu3+-Doped Calcium Apatite Nanoparticles and Silica Particles: Comparative Study of Two Preparation Methods. Langmuir 2015, 31 (5) , 1811-1819. https://doi.org/10.1021/la503652w
    3. Alberto Escudero, Mauricio E. Calvo, Sara Rivera-Fernández, Jesús M. de la Fuente, and Manuel Ocaña . Microwave-Assisted Synthesis of Biocompatible Europium-Doped Calcium Hydroxyapatite and Fluoroapatite Luminescent Nanospindles Functionalized with Poly(acrylic acid). Langmuir 2013, 29 (6) , 1985-1994. https://doi.org/10.1021/la304534f
    4. Mathilde Guérin, Aurélien Lebrun, Liisa Kuhn, Thierry Azaïs, Guillaume Laurent, Olivier Marsan, Christophe Drouet, Gilles Subra. One‐Pot Synthesis of Bioinspired Peptide‐Decorated Apatite Nanoparticles for Nanomedicine. Small 2023, 59 https://doi.org/10.1002/smll.202306358
    5. María del Carmen De Lama-Odría, Luis J. del Valle, Jordi Puiggalí. Hydroxyapatite Biobased Materials for Treatment and Diagnosis of Cancer. International Journal of Molecular Sciences 2022, 23 (19) , 11352. https://doi.org/10.3390/ijms231911352
    6. Kathleen R. Stepien, Claude H. Yoder. Europium-Doped Carbonated Apatites. Minerals 2022, 12 (5) , 503. https://doi.org/10.3390/min12050503
    7. Jaime Gómez-Morales, Raquel Fernández-Penas, Francisco Javier Acebedo-Martínez, Ismael Romero-Castillo, Cristóbal Verdugo-Escamilla, Duane Choquesillo-Lazarte, Lorenzo Degli Esposti, Yaiza Jiménez-Martínez, Jorge Fernando Fernández-Sánchez, Michele Iafisco, Houria Boulaiz. Luminescent Citrate-Functionalized Terbium-Substituted Carbonated Apatite Nanomaterials: Structural Aspects, Sensitized Luminescence, Cytocompatibility, and Cell Uptake Imaging. Nanomaterials 2022, 12 (8) , 1257. https://doi.org/10.3390/nano12081257
    8. Lauany M. Pontes, Leonardo L. de Carvalho, Lucas A. Rocha, Natália H. Ferreira, Denise C. Tavares, FernandaG.G. Dias, Eduardo J. Nassar, JorgeV.L. da Silva, Marcelo F. de Oliveira, Izaque A. Maia. Hydroxyapatite incorporation into polyamide membrane. Materials Chemistry and Physics 2021, 271 , 124877. https://doi.org/10.1016/j.matchemphys.2021.124877
    9. Ahmed Al-Kattan, David Grojo, Christophe Drouet, Alexandros Mouskeftaras, Philippe Delaporte, Adrien Casanova, Jérôme D. Robin, Frédérique Magdinier, Patricia Alloncle, Catalin Constantinescu, Vincent Motto-Ros, Jörg Hermann. Short-Pulse Lasers: A Versatile Tool in Creating Novel Nano-/Micro-Structures and Compositional Analysis for Healthcare and Wellbeing Challenges. Nanomaterials 2021, 11 (3) , 712. https://doi.org/10.3390/nano11030712
    10. Christophe Drouet, Christèle Combes. Apatitic and Tricalcic Calcium Phosphate-Based Bioceramics: Overview and Perspectives. 2021, 575-594. https://doi.org/10.1016/B978-0-12-803581-8.12090-9
    11. Inmaculada Ortiz-Gómez, Gloria B. Ramírez-Rodríguez, Luis F. Capitán-Vallvey, Alfonso Salinas-Castillo, José M. Delgado-López. Highly stable luminescent europium-doped calcium phosphate nanoparticles for creatinine quantification. Colloids and Surfaces B: Biointerfaces 2020, 196 , 111337. https://doi.org/10.1016/j.colsurfb.2020.111337
    12. Kumaravelu Thanigai Arul, Jayapalan Ramana Ramya, Subbaraya Narayana Kalkura. Impact of Dopants on the Electrical and Optical Properties of Hydroxyapatite. 2020https://doi.org/10.5772/intechopen.93092
    13. Maëla Choimet, Audrey Tourrette, Olivier Marsan, Giovanna Rassu, Christophe Drouet. Bio-inspired apatite particles limit skin penetration of drugs for dermatology applications. Acta Biomaterialia 2020, 111 , 418-428. https://doi.org/10.1016/j.actbio.2020.05.010
    14. Christophe Drouet, Christian Rey. Nanostructured calcium phosphates for hard tissue engineering and nanomedicine. 2020, 223-254. https://doi.org/10.1016/B978-0-08-102594-9.00008-5
    15. V. I. Putlyaev, T. V. Safronova. Chemical Transformations of Calcium Phosphates during Production of Ceramic Materials on Their Basis. Inorganic Materials 2019, 55 (13) , 1328-1341. https://doi.org/10.1134/S0020168519130028
    16. Pranjita Zantye, Fiona Fernandes, Sutapa Roy Ramanan, Meenal Kowshik. Rare Earth Doped Hydroxyapatite Nanoparticles for In Vitro Bioimaging Applications. Current Physical Chemistry 2019, 9 (2) , 94-109. https://doi.org/10.2174/1877946809666190828104812
    17. Ecaterina Andronescu, Daniela Predoi, Ionela Andreea Neacsu, Andrei Viorel Paduraru, Adina Magdalena Musuc, Roxana Trusca, Ovidiu Oprea, Eugenia Tanasa, Otilia Ruxandra Vasile, Adrian Ionut Nicoara, Adrian Vasile Surdu, Florin Iordache, Alexandra Catalina Birca, Simona Liliana Iconaru, Bogdan Stefan Vasile. Photoluminescent Hydroxylapatite: Eu3+ Doping Effect on Biological Behaviour. Nanomaterials 2019, 9 (9) , 1187. https://doi.org/10.3390/nano9091187
    18. Jaime Gómez-Morales, Cristóbal Verdugo-Escamilla, Raquel Fernández-Penas, Carmen Maria Parra-Milla, Christophe Drouet, Michele Iafisco, Francesca Oltolina, Maria Prat, Jorge Fernando Fernández-Sánchez. Bioinspired crystallization, sensitized luminescence and cytocompatibility of citrate-functionalized Ca-substituted europium phosphate monohydrate nanophosphors. Journal of Colloid and Interface Science 2019, 538 , 174-186. https://doi.org/10.1016/j.jcis.2018.11.083
    19. Qingguo Xing, Xiaojun Zhang, Dulan Wu, Yingchao Han, M. Nirmali Wickramaratne, Honglian Dai, Xinyu Wang. Ultrasound-Assisted Synthesis and Characterization of Heparin-Coated Eu3+ Doped Hydroxyapatite Luminescent Nanoparticles. Colloid and Interface Science Communications 2019, 29 , 17-25. https://doi.org/10.1016/j.colcom.2019.01.001
    20. . Design of Hydroxyapatite-Based Multifunctional Nanoparticles for Cell Labelling and Cell Growth Inhibition. Regenerative Medicine Frontiers 2019https://doi.org/10.20900/rmf20200001
    21. Yuxin Li, Congcong Shen, Xiaoqing Li, Minghui Yang, Chunsheng Shao. Hydroxyapatite nanoparticle based fluorometric determination and imaging of cysteine and homocysteine in living cells. Microchimica Acta 2018, 185 (5) https://doi.org/10.1007/s00604-018-2801-y
    22. Kaina Zhang, Ke Zeng, Congcong Shen, Shiyu Tian, Minghui Yang. Determination of protein kinase A activity and inhibition by using hydroxyapatite nanoparticles as a fluorescent probe. Microchimica Acta 2018, 185 (4) https://doi.org/10.1007/s00604-018-2754-1
    23. Sergey V. Dorozhkin. Nanodimensional and Nanocrystalline Calcium Orthophosphates. 2018, 355-448. https://doi.org/10.1007/978-981-10-5975-9_9
    24. Jaime Gómez-Morales, Cristóbal Verdugo-Escamilla, Raquel Fernández-Penas, Carmen María Parra-Milla, Christophe Drouet, Françoise Maube-Bosc, Francesca Oltolina, Maria Prat, Jorge Fernando Fernández-Sánchez. Luminescent biomimetic citrate-coated europium-doped carbonated apatite nanoparticles for use in bioimaging: physico-chemistry and cytocompatibility. RSC Advances 2018, 8 (5) , 2385-2397. https://doi.org/10.1039/C7RA12536D
    25. Wangmei He, Yunfei Xie, Qingguo Xing, Peilong Ni, Yingchao Han, Honglian Dai. Sol-gel synthesis of biocompatible Eu3+/Gd3+ co-doped calcium phosphate nanocrystals for cell bioimaging. Journal of Luminescence 2017, 192 , 902-909. https://doi.org/10.1016/j.jlumin.2017.08.033
    26. Martin Stefanic, Kevin Ward, Harvey Tawfik, Ralf Seemann, Vladimir Baulin, Yachong Guo, Jean-Baptiste Fleury, Christophe Drouet. Apatite nanoparticles strongly improve red blood cell cryopreservation by mediating trehalose delivery via enhanced membrane permeation. Biomaterials 2017, 140 , 138-149. https://doi.org/10.1016/j.biomaterials.2017.06.018
    27. Jun Xu, Xiaoke Shen, Lei Jia, Zhouqing Xu, Tao Zhou, Xiaohui Li, Tieliang Ma, Huijun Li, Yuan Wang, Taofeng Zhu. Facile synthesis of folic acid-conjugated fluorapatite nanocrystals for targeted cancer cell fluorescence imaging. Materials Letters 2017, 203 , 37-41. https://doi.org/10.1016/j.matlet.2017.05.102
    28. Francesca Ridi, Ilaria Meazzini, Benedetta Castroflorio, Massimo Bonini, Debora Berti, Piero Baglioni. Functional calcium phosphate composites in nanomedicine. Advances in Colloid and Interface Science 2017, 244 , 281-295. https://doi.org/10.1016/j.cis.2016.03.006
    29. Qianwen Li, Tiange Cai, Yinghong Huang, Xi Xia, Susan Cole, Yu Cai. A Review of the Structure, Preparation, and Application of NLCs, PNPs, and PLNs. Nanomaterials 2017, 7 (6) , 122. https://doi.org/10.3390/nano7060122
    30. C Rey, C Combes, C Drouet, D Grossin, G Bertrand, J Soulié. 1.11 Bioactive Calcium Phosphate Compounds: Physical Chemistry ☆. 2017, 244-290. https://doi.org/10.1016/B978-0-12-803581-8.10171-7
    31. Maëla Choimet, Kim Hyoung-Mi, Oh Jae-Min, Audrey Tourrette, Christophe Drouet. Nanomedicine: Interaction of biomimetic apatite colloidal nanoparticles with human blood components. Colloids and Surfaces B: Biointerfaces 2016, 145 , 87-94. https://doi.org/10.1016/j.colsurfb.2016.04.038
    32. Chao Shi, Jianyong Gao, Ming Wang, Jingke Fu, Dalin Wang, Yingchun Zhu. Ultra-trace silver-doped hydroxyapatite with non-cytotoxicity and effective antibacterial activity. Materials Science and Engineering: C 2015, 55 , 497-505. https://doi.org/10.1016/j.msec.2015.05.078
    33. Sasidharanpillai S. Syamchand, George Sony. Multifunctional hydroxyapatite nanoparticles for drug delivery and multimodal molecular imaging. Microchimica Acta 2015, 182 (9-10) , 1567-1589. https://doi.org/10.1007/s00604-015-1504-x
    34. Ming-Hsien Chan, Hsiu-Mei Lin. Preparation and identification of multifunctional mesoporous silica nanoparticles for in vitro and in vivo dual-mode imaging, theranostics, and targeted tracking. Biomaterials 2015, 46 , 149-158. https://doi.org/10.1016/j.biomaterials.2014.12.034
    35. Christina G. Weber, Michaela Mueller, Nicolas Vandecandelaere, Iris Trick, Anke Burger-Kentischer, Tanja Maucher, Christophe Drouet. Enzyme-functionalized biomimetic apatites: concept and perspectives in view of innovative medical approaches. Journal of Materials Science: Materials in Medicine 2014, 25 (3) , 595-606. https://doi.org/10.1007/s10856-013-5097-9
    36. M. Tourbin, A. Al-Kattan, C. Drouet. Study on the stability of suspensions based on biomimetic apatites aimed at biomedical applications. Powder Technology 2014, 255 , 17-22. https://doi.org/10.1016/j.powtec.2013.08.008
    37. N. Vandecandelaere, F. Bosc, C. Rey, C. Drouet. Peroxide-doped apatites: Preparation and effect of synthesis parameters. Powder Technology 2014, 255 , 3-9. https://doi.org/10.1016/j.powtec.2013.09.015
    38. Shuyun Qi, Yanlin Huang, Taiju Tsuboi, Wei Huang, Hyo Jin Seo. Versatile luminescence of Eu^2+,3+-activated fluorosilicate apatites M_2Y_3[SiO_4]_3F (M = Sr, Ba) suitable for white light emitting diodes. Optical Materials Express 2014, 4 (2) , 396. https://doi.org/10.1364/OME.4.000396
    39. Rajendra K. Singh, Tae-Hyun Kim, Kapil D. Patel, Jung-Ju Kim, Hae-Won Kim. Development of biocompatible apatite nanorod-based drug-delivery system with in situ fluorescence imaging capacity. Journal of Materials Chemistry B 2014, 2 (14) , 2039. https://doi.org/10.1039/c3tb21156h
    40. Ahmed Al-Kattan, Veronique Santran, Pascal Dufour, Jeannette Dexpert-Ghys, Christophe Drouet. Novel contributions on luminescent apatite-based colloids intended for medical imaging. Journal of Biomaterials Applications 2014, 28 (5) , 697-707. https://doi.org/10.1177/0885328212473510
    41. Ryo Asakura, Tetsuhiko Isobe. Surface modification of YAG:Ce3+ nanoparticles by poly(acrylic acid) and their biological application. Journal of Materials Science 2013, 48 (23) , 8228-8234. https://doi.org/10.1007/s10853-013-7634-9
    42. Jaime Gómez-Morales, Michele Iafisco, José Manuel Delgado-López, Stéphanie Sarda, Christophe Drouet. Progress on the preparation of nanocrystalline apatites and surface characterization: Overview of fundamental and applied aspects. Progress in Crystal Growth and Characterization of Materials 2013, 59 (1) , 1-46. https://doi.org/10.1016/j.pcrysgrow.2012.11.001
    43. Michele Iafisco, Nicola Margiotta. Silica xerogels and hydroxyapatite nanocrystals for the local delivery of platinum–bisphosphonate complexes in the treatment of bone tumors: A mini-review. Journal of Inorganic Biochemistry 2012, 117 , 237-247. https://doi.org/10.1016/j.jinorgbio.2012.06.004
    44. Sergey V. Dorozhkin. Biological and Medical Significance of Nanodimensional and Nanocrystalline Calcium Orthophosphates. 2012, 19-99. https://doi.org/10.1002/9781118523025.ch2
    45. Feng Chen, Peng Huang, Ying-Jie Zhu, Jin Wu, Da-Xiang Cui. Multifunctional Eu3+/Gd3+ dual-doped calcium phosphate vesicle-like nanospheres for sustained drug release and imaging. Biomaterials 2012, 33 (27) , 6447-6455. https://doi.org/10.1016/j.biomaterials.2012.05.059
    46. Ahmed Al-Kattan, Sophie Girod-Fullana, Cédric Charvillat, Hélène Ternet-Fontebasso, Pascal Dufour, Jeannette Dexpert-Ghys, Véronique Santran, Julie Bordère, Bernard Pipy, José Bernad, Christophe Drouet. Biomimetic nanocrystalline apatites: Emerging perspectives in cancer diagnosis and treatment. International Journal of Pharmaceutics 2012, 423 (1) , 26-36. https://doi.org/10.1016/j.ijpharm.2011.07.005
    47. Amra Tabaković, Mark Kester, James H. Adair. Calcium phosphate‐based composite nanoparticles in bioimaging and therapeutic delivery applications. WIREs Nanomedicine and Nanobiotechnology 2012, 4 (1) , 96-112. https://doi.org/10.1002/wnan.163
    48. Feng Chen, Ying-Jie Zhu, Kui-Hua Zhang, Jin Wu, Ke-Wei Wang, Qi-Li Tang, Xiu-Mei Mo. Europium-doped amorphous calcium phosphate porous nanospheres: preparation and application as luminescent drug carriers. Nanoscale Research Letters 2011, 6 (1) https://doi.org/10.1186/1556-276X-6-67
    49. Feng Chen, Peng Huang, Ying-Jie Zhu, Jin Wu, Chun-Lei Zhang, Da-Xiang Cui. The photoluminescence, drug delivery and imaging properties of multifunctional Eu3+/Gd3+ dual-doped hydroxyapatite nanorods. Biomaterials 2011, 32 (34) , 9031-9039. https://doi.org/10.1016/j.biomaterials.2011.08.032
    50. Ahmed Al-kattan, Pascal Dufour, Christophe Drouet. Purification of biomimetic apatite-based hybrid colloids intended for biomedical applications: A dialysis study. Colloids and Surfaces B: Biointerfaces 2011, 82 (2) , 378-384. https://doi.org/10.1016/j.colsurfb.2010.09.022
    51. O. A. Pinto, A. Tabaković, T. M. Goff, Y. Liu, J. H. Adair. Calcium Phosphate and Calcium Phosphosilicate Mediated Drug Delivery and Imaging. 2011, 713-744. https://doi.org/10.1007/978-94-007-1248-5_23
    52. Yanlin Huang, Jiuhui Gan, Rui Zhu, Xigang Wang, Hyo Jin Seo. Structural Phase Formation and Tunable Luminescence of Eu2+-Activated Apatite-Type (Ca,Sr,Ba)5(PO4)2(SiO4). Journal of The Electrochemical Society 2011, 158 (11) , J334. https://doi.org/10.1149/2.026111jes

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect