ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Femtosecond Real-Time Probing of Reactions. 19. Nonlinear (DFWM) Techniques for Probing Transition States of Uni- and Bimolecular Reactions

View Author Information
Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125
Cite this: J. Phys. Chem. 1996, 100, 14, 5620–5633
Publication Date (Web):April 4, 1996
https://doi.org/10.1021/jp960265t
Copyright © 1996 American Chemical Society

    Article Views

    794

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (636 KB)

    Abstract

    Degenerate four-wave mixing (DFWM), using ∼60 femtosecond (fs) laser pulses, is introduced to study transition-state dynamics of chemical reactions in the gas phase. The ultrafast techniques are applied to a range of systems, atomic, unimolecular, and bimolecular. It is shown how fs DFWM can be incorporated in different temporal pulse schemes to extract the dynamics. The DFWM beams are configured in a folded boxcar geometry, producing a spatially separated, background-free, femtosecond signal pulse. Aspects of the technique, such as absorption, are investigated. We have taken advantage of the relatively broad spectral width of the fs pulses and extended the techniques to two-color grating experiments in the gas phase. The unimolecular system, NaI, provided a means of testing this new approach. Our experimental observations of the wave packet motion are in excellent agreement with results obtained using laser-induced fluorescence (LIF). A control experiment was also performed on this system, demonstrating the advantages of the nonlinear technique. Bimolecular reactions were initiated for the system Na+H2. Atomic sodium was investigated with fs DFWM and the oscillatory wave packet behavior (2 ps period) was observed, corresponding to the fine structure splitting of the 3p level (17.2 cm-1). We also explored the application of fs DFWM to the reactive and nonreactive collisions of the Na+H2 system, which serves as a good model for studying dynamics of nonadiabatic quenching processes and collision complexes.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

     Abstract published in Advance ACS Abstracts, March 15, 1996.

    Cited By

    This article is cited by 135 publications.

    1. Baxter Abraham, Luis G. C. Rego, Lars Gundlach. Electronic–Vibrational Coupling and Electron Transfer. The Journal of Physical Chemistry C 2019, 123 (39) , 23760-23772. https://doi.org/10.1021/acs.jpcc.9b03849
    2. Jan Philip Kraack, Marcus Motzkus, Tiago Buckup. Excited State Vibrational Spectra of All-trans Retinal Derivatives in Solution Revealed By Pump-DFWM Experiments. The Journal of Physical Chemistry B 2018, 122 (51) , 12271-12281. https://doi.org/10.1021/acs.jpcb.8b08495
    3. Baxter Abraham, Hao Fan, Elena Galoppini, and Lars Gundlach . Vibrational Spectroscopy on Photoexcited Dye-Sensitized Films via Pump-Degenerate Four-Wave Mixing. The Journal of Physical Chemistry A 2018, 122 (8) , 2039-2045. https://doi.org/10.1021/acs.jpca.7b10652
    4. Juha Koivistoinen, Pasi Myllyperkiö, and Mika Pettersson . Time-Resolved Coherent Anti-Stokes Raman Scattering of Graphene: Dephasing Dynamics of Optical Phonon. The Journal of Physical Chemistry Letters 2017, 8 (17) , 4108-4112. https://doi.org/10.1021/acs.jpclett.7b01711
    5. Johannes Flick, Heiko Appel, and Angel Rubio . Nonadiabatic and Time-Resolved Photoelectron Spectroscopy for Molecular Systems. Journal of Chemical Theory and Computation 2014, 10 (4) , 1665-1676. https://doi.org/10.1021/ct4010933
    6. Mahesh Namboodiri, Jörg Liebers, Ulrich Kleinekathöfer, and Arnulf Materny . Selective Probing of Vibrational Hot States in Bromine Using Time-Resolved Coherent Anti-Stokes Raman Scattering. The Journal of Physical Chemistry A 2012, 116 (46) , 11341-11346. https://doi.org/10.1021/jp305579t
    7. Marie S. Marek, Tiago Buckup, and Marcus Motzkus . Direct Observation of a Dark State in Lycopene Using Pump-DFWM. The Journal of Physical Chemistry B 2011, 115 (25) , 8328-8337. https://doi.org/10.1021/jp202753j
    8. Maxim F. Gelin, Dassia Egorova, and Wolfgang Domcke . Optical N-Wave-Mixing Spectroscopy with Strong and Temporally Well-Separated Pulses: The Doorway−Window Representation. The Journal of Physical Chemistry B 2011, 115 (18) , 5648-5658. https://doi.org/10.1021/jp112055h
    9. Jürgen Hauer,, Tiago Buckup, and, Marcus Motzkus. Pump-Degenerate Four Wave Mixing as a Technique for Analyzing Structural and Electronic Evolution:  Multidimensional Time-Resolved Dynamics near a Conical Intersection. The Journal of Physical Chemistry A 2007, 111 (42) , 10517-10529. https://doi.org/10.1021/jp073727j
    10. Marcos Dantus and, Vadim V. Lozovoy. Experimental Coherent Laser Control of Physicochemical Processes. Chemical Reviews 2004, 104 (4) , 1813-1860. https://doi.org/10.1021/cr020668r
    11. Bruna I. Grimberg,, Vadim V. Lozovoy, and, Marcos Dantus, , Shaul Mukamel. Ultrafast Nonlinear Spectroscopic Techniques in the Gas Phase and Their Density Matrix Representation. The Journal of Physical Chemistry A 2002, 106 (5) , 697-718. https://doi.org/10.1021/jp010451l
    12. M. Schmitt,, G. Knopp,, A. Materny, and, W. Kiefer. The Application of Femtosecond Time-Resolved Coherent Anti-Stokes Raman Scattering for the Investigation of Ground and Excited State Molecular Dynamics of Molecules in the Gas Phase. The Journal of Physical Chemistry A 1998, 102 (23) , 4059-4065. https://doi.org/10.1021/jp972213p
    13. M. Ben-Nun,, T. J. Martínez, and, R. D. Levine. Dynamical Stereochemistry on Several Electronic States:  A Computational Study of Na* + H2. The Journal of Physical Chemistry A 1997, 101 (41) , 7522-7529. https://doi.org/10.1021/jp971058b
    14. G. Knopp,, M. Schmitt,, A. Materny, and, W. Kiefer. Femtosecond Time-Resolved Pump−Probe Spectroscopy of NaI in Rare-Gas Environment. The Journal of Physical Chemistry A 1997, 101 (27) , 4852-4859. https://doi.org/10.1021/jp970629x
    15. C. Jouvet,, S. Martrenchard,, D. Solgadi, and, C. Dedonder-Lardeux, , M. Mons,, G. Grégoire,, I. Dimicoli,, F. Piuzzi,, J. P. Visticot,, J. M. Mestdagh,, P. D'Oliveira,, P. Meynadier, and, M. Perdrix. Experimental Femtosecond Photoionization of NaI. The Journal of Physical Chemistry A 1997, 101 (14) , 2555-2560. https://doi.org/10.1021/jp9639049
    16. Ahmed H. Zewail. Femtochemistry:  Recent Progress in Studies of Dynamics and Control of Reactions and Their Transition States. The Journal of Physical Chemistry 1996, 100 (31) , 12701-12724. https://doi.org/10.1021/jp960658s
    17. Donatas Zigmantas, Tomáš Polívka, Petter Persson, Villy Sundström. Ultrafast laser spectroscopy uncovers mechanisms of light energy conversion in photosynthesis and sustainable energy materials. Chemical Physics Reviews 2022, 3 (4) https://doi.org/10.1063/5.0092864
    18. Woojae Kim, Andrew J. Musser. Tracking ultrafast reactions in organic materials through vibrational coherence: vibronic coupling mechanisms in singlet fission. Advances in Physics: X 2021, 6 (1) https://doi.org/10.1080/23746149.2021.1918022
    19. Ali Hosseinnia, Maria Ruchkina, Pengji Ding, Per-Erik Bengtsson, Joakim Bood. Simultaneous temporally and spectrally resolved Raman coherences with single-shot fs/ns rotational CARS. Optics Letters 2020, 45 (2) , 308. https://doi.org/10.1364/OL.380247
    20. Yuki Kobayashi, Tao Zeng, Daniel M. Neumark, Stephen R. Leone. NaI revisited: Theoretical investigation of predissociation via ultrafast XUV transient absorption spectroscopy. The Journal of Chemical Physics 2019, 151 (20) https://doi.org/10.1063/1.5128105
    21. Tengfei Jiao, Xuemei Cheng, Qian Zhang, Weilong Li, Zhaoyu Ren. Multi-wave mixing using a single vector optical field. Applied Physics Letters 2019, 115 (20) https://doi.org/10.1063/1.5121785
    22. Hyungwoo Choi, Dongyu Chen, Fan Du, Rene Zeto, Andrea Armani. Low threshold anti-Stokes Raman laser on-chip. Photonics Research 2019, 7 (8) , 926. https://doi.org/10.1364/PRJ.7.000926
    23. Zhaopeng Sun, Hongbin Yao, Chunyang Wang, Wenkai Zhao, Chuanlu Yang. Quantum interference in the femtosecond photoionization spectra of NaI molecules. Laser Physics Letters 2019, 16 (1) , 016001. https://doi.org/10.1088/1612-202X/aaf176
    24. Partha Pratim Roy, Youshitoka Kato, Rei Abe-Yoshizumi, Elisa Pieri, Nicolas Ferré, Hideki Kandori, Tiago Buckup. Mapping the ultrafast vibrational dynamics of all- trans and 13- cis retinal isomerization in Anabaena Sensory Rhodopsin. Physical Chemistry Chemical Physics 2018, 20 (48) , 30159-30173. https://doi.org/10.1039/C8CP05469J
    25. Tiago Buckup, Jérémie Léonard. Multidimensional Vibrational Coherence Spectroscopy. Topics in Current Chemistry 2018, 376 (5) https://doi.org/10.1007/s41061-018-0213-4
    26. Jan Philip Kraack. Ultrafast structural molecular dynamics investigated with 2D infrared spectroscopy methods. Topics in Current Chemistry 2017, 375 (6) https://doi.org/10.1007/s41061-017-0172-1
    27. Andreas Ehn, Joakim Bood, Zheming Li, Edouard Berrocal, Marcus Aldén, Elias Kristensson. FRAME: femtosecond videography for atomic and molecular dynamics. Light: Science & Applications 2017, 6 (9) , e17045-e17045. https://doi.org/10.1038/lsa.2017.45
    28. Andreas Ehn, Jiajian Zhu, Xuesong Li, Johannes Kiefer. Advanced Laser-Based Techniques for Gas-Phase Diagnostics in Combustion and Aerospace Engineering. Applied Spectroscopy 2017, 71 (3) , 341-366. https://doi.org/10.1177/0003702817690161
    29. Hans U. Stauffer, Sukesh Roy, Jacob B. Schmidt, Paul J. Wrzesinski, James R. Gord. Two-color vibrational, femtosecond, fully resonant electronically enhanced CARS (FREE-CARS) of gas-phase nitric oxide. The Journal of Chemical Physics 2016, 145 (12) , 124308. https://doi.org/10.1063/1.4962834
    30. Moussa Gueye, Julien Nillon, Olivier Crégut, Jérémie Léonard. Broadband UV-Vis vibrational coherence spectrometer based on a hollow fiber compressor. Review of Scientific Instruments 2016, 87 (9) , 093109. https://doi.org/10.1063/1.4962699
    31. Karina Becker, Johannes Kiefer. Combined spontaneous Stokes and coherent anti-Stokes Raman scattering spectroscopy. Applied Physics B 2016, 122 (5) https://doi.org/10.1007/s00340-016-6401-4
    32. Takeshi Miki, Tiago Buckup, Marie S. Krause, June Southall, Richard J. Cogdell, Marcus Motzkus. Vibronic coupling in the excited-states of carotenoids. Physical Chemistry Chemical Physics 2016, 18 (16) , 11443-11453. https://doi.org/10.1039/C5CP07542D
    33. G. Krishna Podagatlapalli, Syed Hamad, Md. Ahamad Mohiddon, S. Venugopal Rao. Effect of oblique incidence on silver nanomaterials fabricated in water via ultrafast laser ablation for photonics and explosives detection. Applied Surface Science 2014, 303 , 217-232. https://doi.org/10.1016/j.apsusc.2014.02.152
    34. Tiago Buckup, Marcus Motzkus. Multidimensional Time-Resolved Spectroscopy of Vibrational Coherence in Biopolyenes. Annual Review of Physical Chemistry 2014, 65 (1) , 39-57. https://doi.org/10.1146/annurev-physchem-040513-103619
    35. Tiago Buckup, Jan P. Kraack, Marie S. Marek, Marcus Motzkus. On the Investigation of Excited State Dynamics with (Pump-)Degenerate Four Wave Mixing. 2014, 205-230. https://doi.org/10.1007/978-3-319-02051-8_9
    36. Yunlong Liu, Chunfeng Zhang, Huichao Zhang, Rui Wang, Zheng Hua, Xiaoyong Wang, Jiayu Zhang, Min Xiao. Broadband Optical Non-linearity Induced by Charge-Transfer Excitons in Type-II CdSe/ZnTe Nanocrystals. Advanced Materials 2013, 25 (32) , 4397-4402. https://doi.org/10.1002/adma.201301559
    37. Marie S. Marek, Tiago Buckup, June Southall, Richard J. Cogdell, Marcus Motzkus. Highlighting short-lived excited electronic states with pump-degenerate-four-wave-mixing. The Journal of Chemical Physics 2013, 139 (7) https://doi.org/10.1063/1.4818164
    38. Jan Philip Kraack, Amir Wand, Tiago Buckup, Marcus Motzkus, Sanford Ruhman. Mapping multidimensional excited state dynamics using pump-impulsive-vibrational-spectroscopy and pump-degenerate-four-wave-mixing. Physical Chemistry Chemical Physics 2013, 15 (34) , 14487. https://doi.org/10.1039/c3cp50871d
    39. Aleksei Zheltikov, Anne LʼHuillier, Ferenc Krausz. Nonlinear Optics. 2012, 161-251. https://doi.org/10.1007/978-3-642-19409-2_4
    40. Andrey Shalit, Yehiam Prior. Time resolved polarization dependent single shot four wave mixing. Physical Chemistry Chemical Physics 2012, 14 (40) , 13989. https://doi.org/10.1039/c2cp42112g
    41. Jan Philip Kraack, Marcus Motzkus, Tiago Buckup. Selective nonlinear response preparation using femtosecond spectrally resolved four-wave-mixing. The Journal of Chemical Physics 2011, 135 (22) https://doi.org/10.1063/1.3666846
    42. Ping He, Rongwei Fan, Deying Chen, Xiaohui Li, Yuanqin Xia, Xin Yu, Yong Yao. Ultrafast time-resolved coherent degenerate four-wave-mixing spectroscopy for investigating molecular dynamics in different states. Optics & Laser Technology 2011, 43 (8) , 1458-1461. https://doi.org/10.1016/j.optlastec.2011.04.020
    43. G. Knopp, P. P. Radi, Y. Sych, T. Gerber. Dissection of dispersed off‐resonant femtosecond degenerate four‐wave mixing of O 2. Journal of Raman Spectroscopy 2011, 42 (10) , 1848-1853. https://doi.org/10.1002/jrs.2921
    44. Ping He, Sining Li, Rongwei Fan, Yuanqin Xia, Xin Yu, Yong Yao, Deying Chen. Molecular dynamics in low vibrational states investigated by fs time-resolved coherent anti-Stokes Raman spectroscopy technique. Optics Communications 2011, 284 (19) , 4677-4682. https://doi.org/10.1016/j.optcom.2011.05.040
    45. Tiago Buckup, Jürgen Hauer, Judith Voll, Regina Vivie-Riedle, Marcus Motzkus. A General control mechanism of energy flow in the excited state of polyenic biochromophores. Faraday Discussions 2011, 153 , 213. https://doi.org/10.1039/c1fd00037c
    46. Mitsuru Sugisaki, Daisuke Kosumi, Keisuke Saito, Richard J. Cogdell, Hideki Hashimoto. Strong coherent coupling of vibronic oscillations in spheroidene. Physics Procedia 2011, 13 , 74-77. https://doi.org/10.1016/j.phpro.2011.02.018
    47. V. Namboodiri, M. Namboodiri, G. Flachenecker, A. Materny. Two-photon resonances in femtosecond time-resolved four-wave mixing spectroscopy: β-carotene. The Journal of Chemical Physics 2010, 133 (5) https://doi.org/10.1063/1.3466750
    48. Maksim Kunitski, Christoph Riehn, Victor V. Matylitsky, Pilarisetty Tarakeshwar, Bernhard Brutschy. Pseudorotation in pyrrolidine: rotational coherence spectroscopy and ab initio calculations of a large amplitude intramolecular motion. Phys. Chem. Chem. Phys. 2010, 12 (1) , 72-81. https://doi.org/10.1039/B917362E
    49. Jörg Liebers, Abraham Scaria, Arnulf Materny, Ulrich Kleinekathöfer. Probing the vibrational dynamics of high-lying electronic states using pump-degenerate four-wave mixing. Phys. Chem. Chem. Phys. 2010, 12 (6) , 1351-1356. https://doi.org/10.1039/B917967D
    50. Jörg Liebers, Abraham Scaria, Arnulf Materny, Ulrich Kleinekathöfer. Ultrafast vibrational dynamics in higher electronic excited states of iodine. Journal of Raman Spectroscopy 2009, 40 (7) , 822-827. https://doi.org/10.1002/jrs.2221
    51. Tiago Buckup, Jürgen Hauer, Jens Möhring, Marcus Motzkus. Multidimensional spectroscopy of β-carotene: Vibrational cooling in the excited state. Archives of Biochemistry and Biophysics 2009, 483 (2) , 219-223. https://doi.org/10.1016/j.abb.2008.10.031
    52. V. Namboodiri, A. Scaria, M. Namboodiri, A. Materny. Investigation of molecular dynamics in β-carotene using femtosecond pump-FWM spectroscopy. Laser Physics 2009, 19 (2) , 154-161. https://doi.org/10.1134/S1054660X09020029
    53. Andreas M. Walser, Margarete Meisinger, Peter P. Radi, Thomas Gerber, Gregor Knopp. Resonant UV-fs-TCFWM spectroscopy on formaldehyde. Physical Chemistry Chemical Physics 2009, 11 (38) , 8456. https://doi.org/10.1039/b907133d
    54. Y Xiao, A A Senin, B J Ricconi, R Kogler, C J Zhu, J G Eden. Molecular dissociation and nascent product state distributions detected with atomic wavepacket interferometry and parametric four-wave mixing: Rb 2 predissociation observed by quantum beating in Rb at 18.2 THz. Journal of Physics B: Atomic, Molecular and Optical Physics 2008, 41 (18) , 185101. https://doi.org/10.1088/0953-4075/41/18/185101
    55. Jürgen Hauer, Tiago Buckup, Marcus Motzkus. Quantum control spectroscopy of vibrational modes: Comparison of control scenarios for ground and excited states in β-carotene. Chemical Physics 2008, 350 (1-3) , 220-229. https://doi.org/10.1016/j.chemphys.2008.03.021
    56. Liu Yu-Fang, Zhai Hong-Sheng, Gao Ya-Li, Liu Rui-Qiong. Theoretical Investigation of Femtosecond-Resolved Photoelectron Spectrum of NaI Molecules. Chinese Physics Letters 2008, 25 (6) , 2016-2019. https://doi.org/10.1088/0256-307X/25/6/025
    57. X. Y. Miao, J. F. Zhang, X. F. Jia. Probing the process of photodissociation of the NaI molecule with pump-probe femtosecond spectroscopy. EPL (Europhysics Letters) 2008, 82 (3) , 33001. https://doi.org/10.1209/0295-5075/82/33001
    58. Miao Xiang-Yang, Li Xin, Song He-Shan. Probing Wave Packet Dynamics of I 2 − Anions with Pump–Probe Femtosecond Spectroscopy. Chinese Physics Letters 2008, 25 (3) , 915-918. https://doi.org/10.1088/0256-307X/25/3/030
    59. Mitsuru Sugisaki, Ritsuko Fujii, Richard J. Cogdell, Hideki Hashimoto. Linear and nonlinear optical responses in bacteriochlorophyll a. Photosynthesis Research 2008, 95 (2-3) , 309-316. https://doi.org/10.1007/s11120-007-9266-x
    60. J.G. Eden, B.J. Ricconi, Y. Xiao, F. Shen, A.A. Senin. Interactions Between Thermal Ground or Excited Atoms in the Vapor Phase: Many-Body Dipole–Dipole Effects, Molecular Dissociation, and Photoassociation Probed By Laser Spectroscopy. 2008, 49-118. https://doi.org/10.1016/S1049-250X(08)00011-6
    61. Bernhard von Vacano, Marcus Motzkus. Time-resolving molecular vibration for microanalytics: single laser beam nonlinear Raman spectroscopy in simulation and experiment. Phys. Chem. Chem. Phys. 2008, 10 (5) , 681-691. https://doi.org/10.1039/B715391K
    62. A. Scaria, V. Namboodiri, J. Konradi, A. Materny. Ultrafast vibrational dynamics observed in higher electronic excited states of iodine using pump-UV DFWM spectroscopy. Phys. Chem. Chem. Phys. 2008, 10 (7) , 983-989. https://doi.org/10.1039/B715814A
    63. A. Scaria, V. Namboodiri, J. Konradi, A. Materny. Vibrational dynamics of excited electronic states of molecular iodine. The Journal of Chemical Physics 2007, 127 (14) https://doi.org/10.1063/1.2790438
    64. Bernhard von Vacano, Marcus Motzkus. Molecular discrimination of a mixture with single-beam Raman control. The Journal of Chemical Physics 2007, 127 (14) https://doi.org/10.1063/1.2789435
    65. Xiang-Yang Miao, Lei Wang, He-Shan Song. Theoretical study of the femtosecond photoionization of the NaI molecule. Physical Review A 2007, 75 (4) https://doi.org/10.1103/PhysRevA.75.042512
    66. Mitsuru Sugisaki, Kazuhiro Yanagi, Richard J. Cogdell, Hideki Hashimoto. Unified explanation for linear and nonlinear optical responses in β -carotene: A sub- 20 − fs degenerate four-wave mixing spectroscopic study. Physical Review B 2007, 75 (15) https://doi.org/10.1103/PhysRevB.75.155110
    67. A. M. Walser, P. Beaud, P. P. Radi, M. Tulej, T. Gerber, G. Knopp. Time-resolved investigation of the ν1 ro-vibrational Raman band of H2CO with fs-CARS. Journal of Raman Spectroscopy 2007, 38 (2) , 147-153. https://doi.org/10.1002/jrs.1613
    68. Aleksei Zheltikov, Anne LʼHuillier, Ferenc Krausz. Nonlinear Optics. 2007, 157-248. https://doi.org/10.1007/978-0-387-30420-5_4
    69. Patrick Nuernberger, Gerhard Vogt, Tobias Brixner, Gustav Gerber. Femtosecond quantum control of molecular dynamics in the condensed phase. Physical Chemistry Chemical Physics 2007, 9 (20) , 2470. https://doi.org/10.1039/b618760a
    70. D.A. Akimov, A.A. Ivanov, M.V. Alfimov, A.M. Zheltikov. Photonic-crystal fiber sources for nonlinear spectroscopy. Vibrational Spectroscopy 2006, 42 (1) , 33-40. https://doi.org/10.1016/j.vibspec.2006.04.015
    71. Benjamin D. Prince, Abhijit Chakraborty, Beth M. Prince, Hans U. Stauffer. Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra. The Journal of Chemical Physics 2006, 125 (4) https://doi.org/10.1063/1.2219439
    72. Hsueh-Ying Chen, I-Ren Lee, Po-Yuan Cheng. Gas-phase femtosecond transient absorption spectroscopy. Review of Scientific Instruments 2006, 77 (7) https://doi.org/10.1063/1.2221545
    73. Jürgen Hauer, Hrvoje Skenderovic, Karl-Ludwig Kompa, Marcus Motzkus. Enhancement of Raman modes by coherent control in β-carotene. Chemical Physics Letters 2006, 421 (4-6) , 523-528. https://doi.org/10.1016/j.cplett.2006.01.115
    74. T. Siebert, M. Schmitt, S. Gräfe, Volker Engel. Ground state vibrational wave‐packet and recovery dynamics studied by time‐resolved CARS and pump‐CARS spectroscopy. Journal of Raman Spectroscopy 2006, 37 (1-3) , 397-403. https://doi.org/10.1002/jrs.1441
    75. Dominique S. Kummli, Hans M. Frey, Michael Keller, Samuel Leutwyler. Femtosecond degenerate four-wave mixing of cyclopropane. The Journal of Chemical Physics 2005, 123 (5) https://doi.org/10.1063/1.1990117
    76. Thomas Hornung, Hrvoje Skenderović, Marcus Motzkus. Observation of all-trans-β-carotene wavepacket motion on the electronic ground and excited dark state using degenerate four-wave mixing (DFWM) and pump–DFWM. Chemical Physics Letters 2005, 402 (4-6) , 283-288. https://doi.org/10.1016/j.cplett.2004.11.135
    77. Thomas Hornung, Hrvoje Skenderović, Karl-Ludwig Kompa, Marcus Motzkus. Observation and control of all-trans-β-carotene wavepacket motion using pump-degenerate four-wave mixing. 2005, 595-597. https://doi.org/10.1007/3-540-27213-5_181
    78. Thomas Hornung, Hrvoje Skenderovi?, Karl-Ludwig Kompa, Marcus Motzkus. Prospect of temperature determination using degenerate four-wave mixing with sub-20 fs pulses. Journal of Raman Spectroscopy 2004, 35 (11) , 934-938. https://doi.org/10.1002/jrs.1234
    79. S. O. Konorov, D. A. Akimov, E. E. Serebryannikov, A. A. Ivanov, M. V. Alfimov, A. M. Zheltikov. Cross-correlation frequency-resolved optical gating coherent anti-Stokes Raman scattering with frequency-converting photonic-crystal fibers. Physical Review E 2004, 70 (5) https://doi.org/10.1103/PhysRevE.70.057601
    80. Bruno Lavorel, Ha Tran, Edouard Hertz, Olivier Faucher, Pierre Joubert, Marcus Motzkus, Tiago Buckup, Tobias Lang, Hrvoje Skenderovi, Gregor Knopp, Paul Beaud, Hans M. Frey. Femtosecond Raman time-resolved molecular spectroscopy. Comptes Rendus Physique 2004, 5 (2) , 215-229. https://doi.org/10.1016/j.crhy.2004.01.013
    81. H.M. Frey, D. Kummli, M. Keller, R. Leist, S. Leutwyler. Femtosecond degenerate four-wave mixing of cycloalkanes. 2004, 261-264. https://doi.org/10.1016/B978-044451656-5/50053-0
    82. A.A. Senin, H.C. Tran, J. Gao, Z.H. Lu, C.J. Zhu, A.L. Oldenburg, J.R. Allen, J.G. Eden. Molecular dissociation observed with an atomic wavepacket and parametric four-wave mixing. Chemical Physics Letters 2003, 381 (1-2) , 53-59. https://doi.org/10.1016/j.cplett.2003.09.075
    83. A.N. Naumov, A.M. Zheltikov. Frequency–time and time–space mappings with broadband and supercontinuum chirped pulses in coherent wave mixing and pump–probe techniques. Applied Physics B 2003, 77 (2-3) , 369-376. https://doi.org/10.1007/s00340-003-1215-6
    84. G. Knopp, P. Radi, M. Tulej, T. Gerber, P. Beaud. Collision induced rotational energy transfer probed by time-resolved coherent anti-Stokes Raman scattering. The Journal of Chemical Physics 2003, 118 (18) , 8223-8233. https://doi.org/10.1063/1.1566437
    85. P. Beaud, G. Knopp. Scaling rotationally inelastic collisions with an effective angular momentum parameter. Chemical Physics Letters 2003, 371 (1-2) , 194-201. https://doi.org/10.1016/S0009-2614(03)00243-4
    86. H. M. Frey, A. Müller, Samuel Leutwyler. Femtosecond degenerate four‐wave mixing of pyridine and its biologically relevant derivatives. Journal of Raman Spectroscopy 2002, 33 (11-12) , 855-860. https://doi.org/10.1002/jrs.943
    87. G. Knopp, P. Beaud, P. Radi, M. Tulej, B. Bougie, D. Cannavo, T. Gerber. Pressure‐dependent N 2 Q‐branch fs‐CARS measurements. Journal of Raman Spectroscopy 2002, 33 (11-12) , 861-865. https://doi.org/10.1002/jrs.949
    88. A. B. Fedotov, Ping Zhou, A. P. Tarasevitch, K. V. Dukel'skii, Yu. N. Kondrat'ev, V. S. Shevandin, V. B. Smirnov, D. von der Linde, A. M. Zheltikov. Microstructure‐fiber sources of mode‐separable supercontinuum emission for wave‐mixing spectroscopy. Journal of Raman Spectroscopy 2002, 33 (11-12) , 888-895. https://doi.org/10.1002/jrs.935
    89. T. Siebert, R. Maksimenka, A. Materny, V. Engel, W. Kiefer, M. Schmitt. The role of specific normal modes during non‐Born–Oppenheimer dynamics: the S 1 –S 0 internal conversion of β‐carotene interrogated on a femtosecond time‐scale with coherent anti‐Stokes Raman scattering. Journal of Raman Spectroscopy 2002, 33 (11-12) , 844-854. https://doi.org/10.1002/jrs.926
    90. Torsten Siebert, Michael Schmitt, Volker Engel, Arnulf Materny, Wolfgang Kiefer. Population Dynamics in Vibrational Modes during Non-Born−Oppenheimer Processes:  CARS Spectroscopy Used as a Mode-Selective Filter. Journal of the American Chemical Society 2002, 124 (22) , 6242-6243. https://doi.org/10.1021/ja0173831
    91. M. Schmitt, M. Heid, S. Schlücker, W. Kiefer. Femtosecond coherent Raman spectroscopy and its application to porphyrins. Biopolymers 2002, 67 (4-5) , 226-232. https://doi.org/10.1002/bip.10097
    92. A.M. Zheltikov, . Introduction to Nonlinear Raman Spectrometry. 2001https://doi.org/10.1002/0470027320.s0409
    93. A. N. Naumov, A. M. Zheltikov. Frequency-time and time-space mappings for single-shot coherent four-wave mixing with chirped pulses and broad beams. Journal of Raman Spectroscopy 2001, 32 (11) , 960-970. https://doi.org/10.1002/jrs.759
    94. T. Lang, M. Motzkus, H. M. Frey, P. Beaud. High resolution femtosecond coherent anti-Stokes Raman scattering: Determination of rotational constants, molecular anharmonicity, collisional line shifts, and temperature. The Journal of Chemical Physics 2001, 115 (12) , 5418-5426. https://doi.org/10.1063/1.1397325
    95. P. Beaud, H.-M. Frey, T. Lang, M. Motzkus. Flame thermometry by femtosecond CARS. Chemical Physics Letters 2001, 344 (3-4) , 407-412. https://doi.org/10.1016/S0009-2614(01)00819-3
    96. Vadim V. Lozovoy, Bruna I. Grimberg, Igor Pastirk, Marcos Dantus. The role of microscopic and macroscopic coherence in laser control. Chemical Physics 2001, 267 (1-3) , 99-114. https://doi.org/10.1016/S0301-0104(01)00219-1
    97. T. Hornung, R. Meier, R. de Vivie-Riedle, M. Motzkus. Coherent control of the molecular four-wave-mixing response by phase and amplitude shaped pulses. Chemical Physics 2001, 267 (1-3) , 261-276. https://doi.org/10.1016/S0301-0104(01)00254-3
    98. E. F. McCormack, E. Sarajlic. Polarization effects in quantum coherences probed by two-color, resonant four-wave mixing in the time domain. Physical Review A 2001, 63 (2) https://doi.org/10.1103/PhysRevA.63.023406
    99. A. M. Zheltikov. Coherent anti-Stokes Raman scattering: from proof-of-the-principle experiments to femtosecond CARS and higher order wave-mixing generalizations. Journal of Raman Spectroscopy 2000, 31 (8-9) , 653-667. https://doi.org/10.1002/1097-4555(200008/09)31:8/9<653::AID-JRS597>3.0.CO;2-W
    100. T. Hornung, R. Meier, M. Motzkus. Optimal control of molecular states in a learning loop with a parameterization in frequency and time domain. Chemical Physics Letters 2000, 326 (5-6) , 445-453. https://doi.org/10.1016/S0009-2614(00)00810-1
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect