ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Ab Initio Molecular Dynamics Simulations

View Author Information
Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
Cite this: J. Phys. Chem. 1996, 100, 31, 12878–12887
Publication Date (Web):August 1, 1996
https://doi.org/10.1021/jp960480+
Copyright © 1996 American Chemical Society

    Article Views

    3011

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Over the past decade, new simulation methodologies, such as the Car−Parrinello ab initio molecular dynamics technique, have become increasingly important as tools to study and characterize condensed phase molecular systems. We emphasize the versatility of these new approaches to simulation by reviewing selected applications to molecular crystals, liquids, and clusters, which highlight a range of interesting phenomena. The molecular crystals white phosphorus, nitromethane, and hydrogen chloride dihydrate exhibit molecular reorientation phenomena, methyl torsional motion, and proton-hopping events, respectively. We indicate how, in the latter examples, it is now possible to include quantum effects in the simulation of the proton motion. Ionic solvation and proton transport in water are used to illustrate the current status of simulations of liquid systems. The final topic in our survey deals with the possibility of including the quantum nature of nuclear motions into the simulation methodology of clusters.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

     Abstract published in Advance ACS Abstracts, July 1, 1996.

    Cited By

    This article is cited by 170 publications.

    1. Zehui Yang, Xiaodong Li, Peng Ai, Hao Wang, Tuo Zheng, Yuehui Chen, Shulin Bai, Shuwei Tang. Thermoelectric Properties of Layered BaFZnP Material in Consideration of Fourth-Order Anharmonicity and Multiple Carrier Scattering Rates: First-Principles Calculations. ACS Applied Nano Materials 2024, Article ASAP.
    2. Heera T. Nair, Manikandan Kandasamy, Prafulla K. Jha, Brahmananda Chakraborty. Ca Functionalization of the Polyaramid System for Reversible Hydrogen Storage: A DFT Study. ACS Applied Energy Materials 2024, 7 (7) , 2579-2592. https://doi.org/10.1021/acsaem.3c02070
    3. Bin Xi, Man Kit Chan, Kejie Bao, Wenjing Zhao, Ho Ming Chan, Hang Chen, Junyi Zhu. Parameter-Free and Electron Counting Satisfied Material Representation for Machine Learning Potential Energy and Force Fields. The Journal of Physical Chemistry Letters 2024, 15 (6) , 1636-1643. https://doi.org/10.1021/acs.jpclett.3c03250
    4. Srinivasan S. Iyengar, Juncheng Harry Zhang, Debadrita Saha, Timothy C. Ricard. Graph-|Q⟩⟨C|: A Quantum Algorithm with Reduced Quantum Circuit Depth for Electronic Structure. The Journal of Physical Chemistry A 2023, 127 (44) , 9334-9345. https://doi.org/10.1021/acs.jpca.3c04261
    5. Abolfazl Alizadeh Sahraei, Dariush Azizi, Abdol Hadi Mokarizadeh, Daria Camilla Boffito, Faïçal Larachi. Emerging Trends of Computational Chemistry and Molecular Modeling in Froth Flotation: A Review. ACS Engineering Au 2023, 3 (3) , 128-164. https://doi.org/10.1021/acsengineeringau.2c00053
    6. Harender S. Dhattarwal, Ang Gao, Richard C. Remsing. Dielectric Saturation in Water from a Long-Range Machine Learning Model. The Journal of Physical Chemistry B 2023, 127 (16) , 3663-3671. https://doi.org/10.1021/acs.jpcb.3c00390
    7. Qiman Liu, Manli Zhang, Xing Gao, Longjiu Cheng. Planar σ-Aromaticity in Ga-Doped Au Clusters. The Journal of Physical Chemistry A 2023, 127 (12) , 2697-2704. https://doi.org/10.1021/acs.jpca.2c08741
    8. Anup Kumar, Nicole DeGregorio, Timothy Ricard, Srinivasan S. Iyengar. Graph-Theoretic Molecular Fragmentation for Potential Surfaces Leads Naturally to a Tensor Network Form and Allows Accurate and Efficient Quantum Nuclear Dynamics. Journal of Chemical Theory and Computation 2022, 18 (12) , 7243-7259. https://doi.org/10.1021/acs.jctc.2c00484
    9. Diana L. Reese, Ryan P. Steele. Molecular Motion in the Interconverting σ-H2, Di-, and Tri-hydride Regimes: Mo(PH3)5H2. The Journal of Physical Chemistry A 2022, 126 (39) , 6834-6848. https://doi.org/10.1021/acs.jpca.2c03397
    10. Xiao Zhu, Srinivasan S. Iyengar. Graph Theoretic Molecular Fragmentation for Multidimensional Potential Energy Surfaces Yield an Adaptive and General Transfer Machine Learning Protocol. Journal of Chemical Theory and Computation 2022, 18 (9) , 5125-5144. https://doi.org/10.1021/acs.jctc.1c01241
    11. Xue−Mei Chen, Hao-Ran Li, Xi−Lai Feng, Hao-Tong Wang, Xu-Hui Sun. Prediction of •OH-Initiated and •NO3-Initiated Transformation Products of Polycyclic Aromatic Hydrocarbons by Electronic Structure Approaches. ACS Omega 2022, 7 (29) , 24942-24950. https://doi.org/10.1021/acsomega.1c06447
    12. Joseph P. Heindel, Sotiris S. Xantheas. Molecular Dynamics Driven by the Many-Body Expansion (MBE-MD). Journal of Chemical Theory and Computation 2021, 17 (12) , 7341-7352. https://doi.org/10.1021/acs.jctc.1c00780
    13. Anup Kumar, Nicole DeGregorio, Srinivasan S. Iyengar. Graph-Theory-Based Molecular Fragmentation for Efficient and Accurate Potential Surface Calculations in Multiple Dimensions. Journal of Chemical Theory and Computation 2021, 17 (11) , 6671-6690. https://doi.org/10.1021/acs.jctc.1c00065
    14. Austin David Clark, Wan Luan Lee, Andrew Russell Solano, Tyler Bruce Williams, Gabriel Scott Meyer, Granite J. Tait, Ben C. Battraw, Stella D. Nickerson. Complexation of Mo in FLiNaK Molten Salt: Insight from Ab Initio Molecular Dynamics. The Journal of Physical Chemistry B 2021, 125 (1) , 211-218. https://doi.org/10.1021/acs.jpcb.0c07354
    15. Robson S. Oliboni, Han Yan, Hao Fan, Baxter Abraham, Joseph P. Avenoso, Elena Galoppini, Victor S. Batista, Lars Gundlach, Luis G. C. Rego. Vibronic Effects in the Ultrafast Interfacial Electron Transfer of Perylene-Sensitized TiO2 Surfaces. The Journal of Physical Chemistry C 2019, 123 (20) , 12599-12607. https://doi.org/10.1021/acs.jpcc.9b02106
    16. Bálint Aradi, Anders M. N. Niklasson, and Thomas Frauenheim . Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids. Journal of Chemical Theory and Computation 2015, 11 (7) , 3357-3363. https://doi.org/10.1021/acs.jctc.5b00324
    17. Weihua Zhu and Heming Xiao . Ab Initio Molecular Dynamics Study of Temperature Effects on the Structure and Stability of Energetic Solid Silver Azide. The Journal of Physical Chemistry C 2011, 115 (42) , 20782-20787. https://doi.org/10.1021/jp206290k
    18. Jaakko Saukkoriipi and Kari Laasonen . Theoretical Study of the Hydrolysis of Pentameric Aluminum Complexes. Journal of Chemical Theory and Computation 2010, 6 (4) , 993-1007. https://doi.org/10.1021/ct900670a
    19. Jaakko J. Saukkoriipi and Kari Laasonen . Density Functional Studies of the Hydrolysis of Aluminum (Chloro)Hydroxide in Water with CPMD and COSMO. The Journal of Physical Chemistry A 2008, 112 (43) , 10873-10880. https://doi.org/10.1021/jp804176v
    20. Benedetta Mennucci and Clarissa O. da Silva . A Quantum Mechanical Strategy to Investigate the Structure of Liquids: The Cases of Acetonitrile, Formamide, and Their Mixture. The Journal of Physical Chemistry B 2008, 112 (22) , 6803-6813. https://doi.org/10.1021/jp8009657
    21. Masashi Hamaguchi,, Masahiro Nakaishi,, Toshikazu Nagai,, Takeshi Nakamura, and, Manabu Abe. Notable Effect of an Electron-Withdrawing Group at C3 on the Selective Formation of Alkylidenecyclobutanes in the Thermal Denitrogenation of 4-Spirocyclopropane-1-pyrazolines. Nonstatistical Dynamics Effects in the Denitrogenation Reactions. Journal of the American Chemical Society 2007, 129 (43) , 12981-12988. https://doi.org/10.1021/ja068513e
    22. Bing Gao and, Zhi-feng Liu. First Principles Study on the Solvation and Structure of C2O42-(H2O)n, n = 6−12. The Journal of Physical Chemistry A 2005, 109 (40) , 9104-9111. https://doi.org/10.1021/jp052968t
    23. Jacopo Tomasi,, Benedetta Mennucci, and, Roberto Cammi. Quantum Mechanical Continuum Solvation Models. Chemical Reviews 2005, 105 (8) , 2999-3094. https://doi.org/10.1021/cr9904009
    24. Theo Kurten,, Małgorzata Biczysko,, Timo Rajamäki,, Kari Laasonen, and, Lauri Halonen. Computational Study of the Adsorption Energetics and Vibrational Wavenumbers of NH3 Adsorbed on the Ni(111) Surface. The Journal of Physical Chemistry B 2005, 109 (18) , 8954-8960. https://doi.org/10.1021/jp044326w
    25. Jing Wang,, Szczepan Roszak,, Jiande Gu, and, Jerzy Leszczynski. Comprehensive Global Energy Minimum Modeling of the Sarin−Serine Adduct. The Journal of Physical Chemistry B 2005, 109 (2) , 1006-1014. https://doi.org/10.1021/jp040574g
    26. Julia M. Khalack and, Alexander P. Lyubartsev. Solvation Structure of Hydroxyl Radical by Car−Parrinello Molecular Dynamics. The Journal of Physical Chemistry A 2005, 109 (2) , 378-386. https://doi.org/10.1021/jp0461807
    27. Weihua Zhu,, Ping Wu,, Hong Mei Jin, and, Hong Lin Liu. Effects of Ag and Ni Additives on Zn Diffusion in Steel Hot-Dip Galvanizing:  An ab Initio Molecular Dynamics Simulation. Chemistry of Materials 2004, 16 (26) , 5567-5573. https://doi.org/10.1021/cm0488635
    28. Vinayak N. Kabadi, , Betsy M. Rice. Molecular Dynamics Simulations of Normal Mode Vibrational Energy Transfer in Liquid Nitromethane. The Journal of Physical Chemistry A 2004, 108 (4) , 532-540. https://doi.org/10.1021/jp035975v
    29. Wai-Leung Yim,, X. G. Gong, and, Zhi-Feng Liu. Chemisorption of NO2 on Carbon Nanotubes. The Journal of Physical Chemistry B 2003, 107 (35) , 9363-9369. https://doi.org/10.1021/jp027647l
    30. Bin Chen,, Ivaylo Ivanov,, Jung Mee Park,, Michele Parrinello, and, Michael L. Klein. Solvation Structure and Mobility Mechanism of OH-:  A Car−Parrinello Molecular Dynamics Investigation of Alkaline Solutions. The Journal of Physical Chemistry B 2002, 106 (46) , 12006-12016. https://doi.org/10.1021/jp026504w
    31. Atte J. Sillanpää,, Christian Simon,, Michael L. Klein, and, Kari Laasonen. Structural and Spectral Properties of Aqueous Hydrogen Fluoride Studied Using ab Initio Molecular Dynamics. The Journal of Physical Chemistry B 2002, 106 (43) , 11315-11322. https://doi.org/10.1021/jp0260088
    32. Chi-Kit Siu,, Zhi-Feng Liu, and, John S. Tse. Ab Initio Studies on Al+(H2O)n, HAlOH+(H2O)n-1, and the Size-Dependent H2 Elimination Reaction. Journal of the American Chemical Society 2002, 124 (36) , 10846-10860. https://doi.org/10.1021/ja0117579
    33. Nicole W. C. Hon,, Zhi-Da Chen, and, Zhi-Feng Liu. Ab Initio Studies on the Thermal Dissociation Channels of cis- and trans-Azomethane. The Journal of Physical Chemistry A 2002, 106 (29) , 6792-6801. https://doi.org/10.1021/jp013406m
    34. Atte J. Sillanpää,, Juha T. Päivärinta,, Matti J. Hotokka,, Jarl B. Rosenholm, and, Kari E. Laasonen. A Computational Study of Aluminum Hydroxide Solvation. The Journal of Physical Chemistry A 2001, 105 (44) , 10111-10122. https://doi.org/10.1021/jp012171b
    35. Wai-Leung Yim and, Zhi-feng Liu. Application of Ab Initio Molecular Dynamics for A Priori Elucidation of the Mechanism in Unimolecular Decomposition:  The Case of 5-Nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO). Journal of the American Chemical Society 2001, 123 (10) , 2243-2250. https://doi.org/10.1021/ja0019023
    36. Dongsup Kim and, Michael L. Klein. Ab Initio Molecular Dynamics Study of the Superacid System SbF5/HF Solution. The Journal of Physical Chemistry B 2000, 104 (43) , 10074-10079. https://doi.org/10.1021/jp002619t
    37. Sergei Skokov and, Ralph A. Wheeler. Ab Initio Molecular Dynamics Shows Low-Frequency Mode Manifolds Mediate CO + CO+ ⇌ CO+ + CO Electron Exchange. The Journal of Physical Chemistry A 2000, 104 (26) , 6314-6323. https://doi.org/10.1021/jp993909g
    38. K. C. Hass and, W. F. Schneider, , A. Curioni and, W. Andreoni. First-Principles Molecular Dynamics Simulations of H2O on α-Al2O3 (0001). The Journal of Physical Chemistry B 2000, 104 (23) , 5527-5540. https://doi.org/10.1021/jp000040p
    39. M. Ben-Nun,, Jason Quenneville, and, Todd J. Martínez. Ab Initio Multiple Spawning:  Photochemistry from First Principles Quantum Molecular Dynamics. The Journal of Physical Chemistry A 2000, 104 (22) , 5161-5175. https://doi.org/10.1021/jp994174i
    40. David A. Micha. Time-Dependent Many-Electron Treatment of Electronic Energy and Charge Transfer in Atomic Collisions. The Journal of Physical Chemistry A 1999, 103 (38) , 7562-7574. https://doi.org/10.1021/jp9906839
    41. Vladimir M. Gun'ko and, Vladimir V. Turov. Structure of Hydrogen Bonds and 1H NMR Spectra of Water at the Interface of Oxides. Langmuir 1999, 15 (19) , 6405-6415. https://doi.org/10.1021/la9809372
    42. Gilles H. Peslherbe,, Branka M. Ladanyi, and, James T. Hynes. Cluster Ion Thermodynamic Properties:  The Liquid Drop Model Revisited. The Journal of Physical Chemistry A 1999, 103 (15) , 2561-2571. https://doi.org/10.1021/jp983550g
    43. Ettore Fois and, Aldo Gamba. Dynamical Host/Guest Interactions in Zeolites:  Framework Isotope Effects on Proton Transfer Studied by Car−Parrinello Molecular Dynamics. The Journal of Physical Chemistry B 1999, 103 (11) , 1794-1799. https://doi.org/10.1021/jp981569d
    44. Hsiao S. Mei,, Mark E. Tuckerman,, Diane E. Sagnella, and, Michael L. Klein. Quantum Nuclear ab Initio Molecular Dynamics Study of Water Wires. The Journal of Physical Chemistry B 1998, 102 (50) , 10446-10458. https://doi.org/10.1021/jp982623t
    45. Marcus Svanberg and, Jan B. C. Pettersson. Structure and Thermodynamics of H+(H2O)n (n = 9, 21, 40) Clusters between 0 and 300 K. A Monte Carlo Study. The Journal of Physical Chemistry A 1998, 102 (10) , 1865-1872. https://doi.org/10.1021/jp980052z
    46. Han Wang, Zonggang Qiu, Jiyuan Guo, Huabing Shu, Qin Wei. Unravelling the anchoring effects of Hd-Graphene for lithium‑sulfur batteries: A first-principles calculation. Journal of Energy Storage 2024, 90 , 111842. https://doi.org/10.1016/j.est.2024.111842
    47. Huijuan Li, Enli Zhang, Ming Yuan, Qiman Liu, Changqing Liu. Structure growth, stability and adsorption properties of (AgZn 3 ) n clusters. Molecular Physics 2024, https://doi.org/10.1080/00268976.2024.2341961
    48. Shuwei Tang, Peng Ai, Shulin Bai, Da Wan, Xiaodong Li, Wanrong Guo, Tuo Zheng, Hao Wang. Weak interatomic interactions induced low lattice thermal conductivity in 2D/2D PbSe/SnSe vdW heterostructure. Materials Today Physics 2024, 43 , 101398. https://doi.org/10.1016/j.mtphys.2024.101398
    49. Luca Capriotti, Mike Giles. 15 years of Adjoint Algorithmic Differentiation (AAD) in finance. Quantitative Finance 2024, 18 , 1-27. https://doi.org/10.1080/14697688.2024.2325158
    50. Manli Zhang, Xuemei Wang, Xia Bao, Qiman Liu, Longjiu Cheng. Oxygen locations and electronic structures of oxygenated coinage-metal clusters. Physica Scripta 2024, 99 (3) , 035408. https://doi.org/10.1088/1402-4896/ad275b
    51. Manli Zhang, Qiman Liu. The potential energy surface and superatomic properties of the octahedral PtSn 5 cluster. Molecular Physics 2024, https://doi.org/10.1080/00268976.2024.2317447
    52. Renhao Xu, Zonggang Qiu, Jiyuan Guo. Theoretical evaluation of gas sensing and capturing characteristics on the point defective diboron dinitride monolayer. Journal of Physics and Chemistry of Solids 2024, 184 , 111695. https://doi.org/10.1016/j.jpcs.2023.111695
    53. Ying Meng, Qiman Liu, Longjiu Cheng. Structural Features, Superatomic Properties, and Adsorptions of Zn–Cd Nanoalloy. Journal of Cluster Science 2024, 35 (1) , 159-166. https://doi.org/10.1007/s10876-023-02472-1
    54. Da Wan, Shulin Bai, Xiaodong Li, Peng Ai, Wanrong Guo, Jingyi Zhang, Shuwei Tang. Anharmonicity and weak bonding-driven extraordinary thermoelectric performance in wrinkled SnSe monolayer with low lattice thermal conductivity. Ceramics International 2023, 49 https://doi.org/10.1016/j.ceramint.2023.12.278
    55. Da Wan, Shulin Bai, Xiaodong Li, Jingyi Zhang, Peng Ai, Wanrong Guo, Shuwei Tang. Rattling-like behavior and band convergence induced ultra-low lattice thermal conductivity in MgAl2Te4 monolayer. Journal of Materiomics 2023, 116 https://doi.org/10.1016/j.jmat.2023.11.001
    56. Shuwei Tang, Xiaodong Li, Shulin Bai, Da Wan, Jingyi Zhang, Mengxiu Wu, Dongming Luo. First-principles study of wrinkled SnTe monolayer as p-type thermoelectric material. Vacuum 2023, 217 , 112533. https://doi.org/10.1016/j.vacuum.2023.112533
    57. Salim Barbhuiya, Bibhuti Bhusan Das. Molecular dynamics simulation in concrete research: A systematic review of techniques, models and future directions. Journal of Building Engineering 2023, 76 , 107267. https://doi.org/10.1016/j.jobe.2023.107267
    58. Han Wang, Fan Kong, Zonggang Qiu, Jiyuan Guo, Huabing Shu, Qin Wei. Theoretical prediction of 2D biphenylene as a potential anchoring material for lithium–sulfur batteries. Physical Chemistry Chemical Physics 2023, 25 (37) , 25240-25250. https://doi.org/10.1039/D3CP02863A
    59. Weijie Yang, Zhenhe Jia, Liugang Chen, Binghui Zhou, Di Zhang, Yulan Han, Zhengyang Gao, Hao Li. Effects of intermetal distance on the electrochemistry-induced surface coverage of M–N–C dual-atom catalysts. Chemical Communications 2023, 59 (72) , 10761-10764. https://doi.org/10.1039/D3CC03208F
    60. M. Idrees, M.W. Khurami, B. Amin, Yuanping Chen, Xiaohong Yan. Interfacial characteristics, metal-semiconductor contact and optical properties of CSe and BX (X=B, As and Sb) monolayers. Materials Science in Semiconductor Processing 2023, 163 , 107593. https://doi.org/10.1016/j.mssp.2023.107593
    61. Jianhua Wang, Hongkuan Yuan, Wenhong Wang, Guangqian Ding, Xiao-Ping Li, Xiaotian Wang. Fully spin-polarized hourglass charge-three Weyl points and sextuple-helicoid surface arcs in P 6 3 22 -type BaNiIO 6 . Physical Review B 2023, 108 (5) https://doi.org/10.1103/PhysRevB.108.054424
    62. Ying Meng, Qiman Liu. New Insights into Adsorption Properties of the Tubular Au26 from AIMD Simulations and Electronic Interactions. Molecules 2023, 28 (7) , 2916. https://doi.org/10.3390/molecules28072916
    63. Ze Liu, Guang Wang, Xiujuan Mao, Linyang Li, Jia Li. High Curie temperature Chern insulator and spin-gapless semiconducting ferromagnetic h-CrC monolayer: A first-principles study. Computational Materials Science 2023, 220 , 112070. https://doi.org/10.1016/j.commatsci.2023.112070
    64. Pengyue Shan, Xue Bai, Qi Jiang, Yunjian Chen, Sen Lu, Pei Song, Zepeng Jia, Taiyang Xiao, Yang Han, Yazhou Wang, Tong Liu, Hong Cui, Rong Feng, Qin Kang, Zhiyong Liang, Hongkuan Yuan. Bilayer MN4-O-MN4 by bridge-bonded oxygen ligands: Machine learning to accelerate the design of bifunctional electrocatalysts. Renewable Energy 2023, 203 , 445-454. https://doi.org/10.1016/j.renene.2022.12.059
    65. Ying Yang, Chengwu Xie, Yuting Cui, Xiaotian Wang, Weikang Wu. Maximally charged single-pair multi-Weyl point phonons in P 23 -type BeH 2 . Physical Review B 2023, 107 (5) https://doi.org/10.1103/PhysRevB.107.054310
    66. Huaxiao Xie, Zhentao Zhou, Heng Xiong, Xiumin Chen, Pan Deng, Yizhao Wang, Huan Yang, Chaosong Meng. Theoretical calculation and experimental study on the separation mechanism of PbS-Sb2S3. Journal of Molecular Structure 2023, 1273 , 134327. https://doi.org/10.1016/j.molstruc.2022.134327
    67. Manli Zhang, Qiyong Zhu, Qiman Liu, Longjiu Cheng. The nature of stability and adsorption interactions of binary Au–Li clusters with bridge adsorption structures. Physical Chemistry Chemical Physics 2023, 25 (3) , 2265-2273. https://doi.org/10.1039/D2CP04716K
    68. Shulin Bai, Mengxiu Wu, Jingyi Zhang, Dongming Luo, Da Wan, Xiaodong Li, Shuwei Tang. Stacking pattern induced high ZTs in monolayer SnSSe and bilayer SnXY (X/Y = S, Se) materials with strong anharmonic phonon scattering. Chemical Engineering Journal 2023, 455 , 140832. https://doi.org/10.1016/j.cej.2022.140832
    69. Yongqiang Mao, Jingyi Zhang, Shulin Bai, Mengxiu Wu, Dongming Luo, Shuwei Tang. The electronic, mechanical properties and in-plane negative Poisson’s ratio in novel pentagonal NiX2 (X = S, Se, Te) monolayers with strong anisotropy: A first-principles prediction. Computational Materials Science 2023, 216 , 111873. https://doi.org/10.1016/j.commatsci.2022.111873
    70. Shulin Bai, Shuwei Tang, Mengxiu Wu, Dongming Luo, Jingyi Zhang, Da Wan, Xiaodong Li. Chromium ditelluride monolayer: A novel promising 2H phase thermoelectric material with direct bandgap and ultralow lattice thermal conductivity. Journal of Alloys and Compounds 2023, 930 , 167485. https://doi.org/10.1016/j.jallcom.2022.167485
    71. Luca Capriotti, Michael B. Giles. 15 Years of Adjoint Algorithmic Differentiation in Finance. SSRN Electronic Journal 2023, 18 https://doi.org/10.2139/ssrn.4588939
    72. Shuwei Tang, Shulin Bai, Mengxiu Wu, Dongming Luo, Jingyi Zhang, Dongyang Wang, Shaobin Yang, Li-Dong Zhao. Improving thermoelectric performance of asymmetrical Janus 1T-SnSSe monolayer by the synergistic effect of band convergence and crystal lattice softening under strain engineering. Materials Today Physics 2022, 29 , 100923. https://doi.org/10.1016/j.mtphys.2022.100923
    73. Ang Gao, Richard C. Remsing. Self-consistent determination of long-range electrostatics in neural network potentials. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-29243-2
    74. Yongshun Gao, Juanxia Jiao, Ying Meng, Qiman Liu, Longjiu Cheng. Structural growth, stability and electronic characteristics of Al-Sc clusters. Computational and Theoretical Chemistry 2022, 1218 , 113942. https://doi.org/10.1016/j.comptc.2022.113942
    75. Shuwei Tang, Mengxiu Wu, Shulin Bai, Dongming Luo, Jingyi Zhang, Da Wan, Xiaodong Li. SnSe 2 monolayer with square lattice structure: a promising p-type thermoelectric material with an indirect bandgap and low lattice thermal conductivity. Journal of Materials Chemistry C 2022, 10 (42) , 16116-16125. https://doi.org/10.1039/D2TC03587A
    76. Shankar Prasad Mitra, Rinki Bhowmick, Ajit Biswas, Mausumi Chattopadhyaya, Sayantanu Koley, Sabyasachi Sen. π-Stacked (Cn-C6H6–Fe–C6H6–C13-n)n=2: A spin operated thermoelectric nanodevice. Journal of Physics and Chemistry of Solids 2022, 170 , 110900. https://doi.org/10.1016/j.jpcs.2022.110900
    77. Minrui Yang, Lei Chen, Fan Kong, Jia Wan, Jiyuan Guo, Huabing Shu, Jun Dai. Rational design of intrinsic and defective BGe monolayer as the anode material for Li-ion batteries. Journal of Solid State Chemistry 2022, 314 , 123418. https://doi.org/10.1016/j.jssc.2022.123418
    78. Shulin Bai, Shuwei Tang, Mengxiu Wu, Dongming Luo, Jingyi Zhang, Da Wan, Shaobin Yang. Unravelling the thermoelectric properties and suppression of bipolar effect under strain engineering for the asymmetric Janus SnSSe and PbSSe monolayers. Applied Surface Science 2022, 599 , 153962. https://doi.org/10.1016/j.apsusc.2022.153962
    79. Shuwei Tang, Mengxiu Wu, Shulin Bai, Dongming Luo, Jingyi Zhang, Shaobin Yang. Honeycomb-like puckered PbTe monolayer: A promising n-type thermoelectric material with ultralow lattice thermal conductivity. Journal of Alloys and Compounds 2022, 907 , 164439. https://doi.org/10.1016/j.jallcom.2022.164439
    80. Qiman Liu, Manli Zhang, Dawen Zhang, Yunhu Hu, Qiyong Zhu, Longjiu Cheng. Adsorption properties of pyramidal superatomic molecules based on the structural framework of the Au 20 cluster. Physical Chemistry Chemical Physics 2022, 24 (20) , 12410-12418. https://doi.org/10.1039/D2CP01552H
    81. ShuWei Tang, Shulin Bai, Mengxiu Wu, Dongming Luo, Jingyi Zhang, Wen Sun, Shaobin Yang. Low-cost pentagonal NiX 2 (X = S, Se, and Te) monolayers with strong anisotropy as potential thermoelectric materials. Physical Chemistry Chemical Physics 2022, 24 (8) , 5185-5198. https://doi.org/10.1039/D1CP05671A
    82. Shuwei Tang, Shulin Bai, Mengxiu Wu, Dongming Luo, Dongyang Wang, Shaobin Yang, Li-Dong Zhao. Honeycomb-like puckered PbSe with wide bandgap as promising thermoelectric material: a first-principles prediction. Materials Today Energy 2022, 23 , 100914. https://doi.org/10.1016/j.mtener.2021.100914
    83. Ze Liu, Xiujuan Mao, Linyang Li, Fuli He, Guang Wang, Jia Li. Quantum Anomalous Hall Effect in Monolayer Ferromagnetic Crc with Extremly High Curie Temperature. SSRN Electronic Journal 2022, 61 https://doi.org/10.2139/ssrn.4097401
    84. Tim J. Zuehlsdorff, Sapana V. Shedge, Shao-Yu Lu, Hanbo Hong, Vincent P. Aguirre, Liang Shi, Christine M. Isborn. Vibronic and Environmental Effects in Simulations of Optical Spectroscopy. Annual Review of Physical Chemistry 2021, 72 (1) , 165-188. https://doi.org/10.1146/annurev-physchem-090419-051350
    85. Muhammad Ihsan-Ul-Haq, He Huang, Junxiong Wu, Nauman Mubarak, Alessandro Susca, Zhengtang Luo, Baoling Huang, Jang-Kyo Kim. Unveiling solid electrolyte interface morphology and electrochemical kinetics of amorphous Sb2Se3/CNT composite anodes for ultrafast sodium storage. Carbon 2021, 171 , 119-129. https://doi.org/10.1016/j.carbon.2020.09.011
    86. Abdulmujeeb T. Onawole, Ibnelwaleed A. Hussein, Musa E.M. Ahmed, Mohammed A. Saad, Santiago Aparicio. Ab Initio molecular dynamics of the dissolution of oilfield pyrite scale using borax. Journal of Molecular Liquids 2020, 302 , 112500. https://doi.org/10.1016/j.molliq.2020.112500
    87. He Huang, Hong-Hui Wu, Cheng Chi, Jiaming Zhu, Baoling Huang, Tong-Yi Zhang. Out-of-plane ion transport makes nitrogenated holey graphite a promising high-rate anode for both Li and Na ion batteries. Nanoscale 2019, 11 (40) , 18758-18768. https://doi.org/10.1039/C9NR06011A
    88. Sheng-Ying Yue, Ming Hu. Insight of the thermal conductivity of ϵ-iron at Earth’s core conditions from the newly developed direct ab initio methodology. Journal of Applied Physics 2019, 125 (4) https://doi.org/10.1063/1.5055389
    89. Jyeshtharaj B. Joshi, Krishnaswamy Nandakumar, Ashwin W. Patwardhan, Arun K. Nayak, Vishnu Pareek, Monica Gumulya, Chunliang Wu, Nitin Minocha, Eshita Pal, Mukesh Kumar, Vishal Bhusare, Shashank Tiwari, Dhiraj Lote, Chaitanya Mali, Ameya Kulkarni, Sarang Tamhankar. Computational fluid dynamics. 2019, 21-238. https://doi.org/10.1016/B978-0-08-102337-2.00002-X
    90. Barak Hirshberg, R. Benny Gerber, Anna I. Krylov. Autocorrelation of electronic wave-functions: a new approach for describing the evolution of electronic structure in the course of dynamics. Molecular Physics 2018, 116 (19-20) , 2512-2523. https://doi.org/10.1080/00268976.2018.1464675
    91. Giorgia Fugallo, Luciano Colombo. Calculating lattice thermal conductivity: a synopsis. Physica Scripta 2018, 93 (4) , 043002. https://doi.org/10.1088/1402-4896/aaa6f3
    92. Johannes Stefanski, Christian Schmidt, Sandro Jahn. Aqueous sodium hydroxide (NaOH) solutions at high pressure and temperature: insights from in situ Raman spectroscopy and ab initio molecular dynamics simulations. Physical Chemistry Chemical Physics 2018, 20 (33) , 21629-21639. https://doi.org/10.1039/C8CP00376A
    93. He Huang, Hong-Hui Wu, Xinjiang Wang, Baoling Huang, Tong-Yi Zhang. Enhancing sodium ionic conductivity in tetragonal-Na 3 PS 4 by halogen doping: a first principles investigation. Physical Chemistry Chemical Physics 2018, 20 (31) , 20525-20533. https://doi.org/10.1039/C8CP02383B
    94. Chun-Sheng Liu, Zi-Wei Teng, Xiao-Juan Ye, Xiao-Hong Yan. Two-dimensional tetragonal AlP monolayer: strain-tunable direct–indirect band-gap and semiconductor–metal transitions. Journal of Materials Chemistry C 2017, 5 (24) , 5999-6004. https://doi.org/10.1039/C7TC00822H
    95. Errol G. Lewars. Some “Special” Topics: (Section 8.1) Solvation, (Section 8.2) Singlet Diradicals, (Section 8.3) A Note on Heavy Atoms and Transition Metals. 2016, 565-612. https://doi.org/10.1007/978-3-319-30916-3_8
    96. Sebastian Fernandez-Alberti, Dmitry V. Makhov, Sergei Tretiak, Dmitrii V. Shalashilin. Non-adiabatic excited state molecular dynamics of phenylene ethynylene dendrimer using a multiconfigurational Ehrenfest approach. Physical Chemistry Chemical Physics 2016, 18 (15) , 10028-10040. https://doi.org/10.1039/C5CP07332D
    97. Anders M. N. Niklasson, Marc J. Cawkwell. Generalized extended Lagrangian Born-Oppenheimer molecular dynamics. The Journal of Chemical Physics 2014, 141 (16) https://doi.org/10.1063/1.4898803
    98. Dmitry V. Makhov, William J. Glover, Todd J. Martinez, Dmitrii V. Shalashilin. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics. The Journal of Chemical Physics 2014, 141 (5) https://doi.org/10.1063/1.4891530
    99. Nathan Luehr, Thomas E. Markland, Todd J. Martínez. Multiple time step integrators in ab initio molecular dynamics. The Journal of Chemical Physics 2014, 140 (8) https://doi.org/10.1063/1.4866176
    100. Lin Lin, Jianfeng Lu, Sihong Shao. Analysis of Time Reversible Born-Oppenheimer Molecular Dynamics. Entropy 2014, 16 (1) , 110-137. https://doi.org/10.3390/e16010110
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect