ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Parametrized Models of Aqueous Free Energies of Solvation Based on Pairwise Descreening of Solute Atomic Charges from a Dielectric Medium

View Author Information
Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431
Cite this: J. Phys. Chem. 1996, 100, 51, 19824–19839
Publication Date (Web):December 19, 1996
https://doi.org/10.1021/jp961710n
Copyright © 1996 American Chemical Society

    Article Views

    2652

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    The pairwise descreening approximation provides a rapid computational algorithm for the evaluation of solute shape effects on electrostatic contributions to solvation energies. In this article we show that solvation models based on this algorithm are useful for predicting free energies of solvation across a wide range of solute functionalities, and we present six new general parametrizations of aqueous free energies of solvation based on this approach. The first new model is based on SM2-type atomic surface tensions, the AM1 model for the solute, and Mulliken charges. The next two new models are based on SM5-type surface tensions, either the AM1 or the PM3 model for the solute, and Mulliken charges. The final three models are based on SM5-type atomic surface tensions and are parametrized using the AM1 or the PM3 model for the solute and CM1 charges. The parametrizations are based on experimental data for a set of 219 neutral solute molecules containing a wide range of organic functional groups and the atom types H, C, N, O, F, P, S, Cl, Br, and I and on data for 42 ions containing the same elements. The average errors relative to experiment are slightly better than previous methods, butmore significantlythe computational cost is reduced for large molecules, and the methods are well suited to using analytic derivatives.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

     Abstract published in Advance ACS Abstracts, November 15, 1996.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    A discussion of how we obtained phosphorus parameters and results for several phosphorus-containing neutral and ionic solutes are presented. In addition, a table of the surface tension coefficients obtained for the SM5.4PD/U model is included. Finally, a table of the values of ΔG°S calculated for all 219 neutral solutes by the SM2.2PD/A, SM5.2PD/A, SM5.2PD/P, SM5.4PD/A, and SM5.4PD/P models is presented, and the results are compared to experimental data37-39 for all molecules in the test suite (16 pages). Ordering information is given on any current masthead page.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 776 publications.

    1. Ryo Kanada, Atsushi Tokuhisa, Yusuke Nagasaka, Shingo Okuno, Koichiro Amemiya, Shuntaro Chiba, Gert-Jan Bekker, Narutoshi Kamiya, Koichiro Kato, Yasushi Okuno. Enhanced Coarse-Grained Molecular Dynamics Simulation with a Smoothed Hybrid Potential Using a Neural Network Model. Journal of Chemical Theory and Computation 2024, 20 (1) , 7-17. https://doi.org/10.1021/acs.jctc.3c00889
    2. Lewis Bass, Luke H. Elder, Dan E. Folescu, Negin Forouzesh, Igor S. Tolokh, Anuj Karpatne, Alexey V. Onufriev. Improving the Accuracy of Physics-Based Hydration-Free Energy Predictions by Machine Learning the Remaining Error Relative to the Experiment. Journal of Chemical Theory and Computation 2024, 20 (1) , 396-410. https://doi.org/10.1021/acs.jctc.3c00981
    3. Anthony T. Bogetti, Jeremy M. G. Leung, Lillian T. Chong. LPATH: A Semiautomated Python Tool for Clustering Molecular Pathways. Journal of Chemical Information and Modeling 2023, 63 (24) , 7610-7616. https://doi.org/10.1021/acs.jcim.3c01318
    4. Sergei F. Vyboishchikov. Predicting Solvation Free Energies Using Electronegativity-Equalization Atomic Charges and a Dense Neural Network: A Generalized-Born Approach. Journal of Chemical Theory and Computation 2023, 19 (22) , 8340-8350. https://doi.org/10.1021/acs.jctc.3c00858
    5. Haixia Ge, Beihong Ji, Jiahui Fang, Jiayang Wang, Jing Li, Junmei Wang. Discovery of Potent and Selective CB2 Agonists Utilizing a Function-Based Computational Screening Protocol. ACS Chemical Neuroscience 2023, 14 (21) , 3941-3958. https://doi.org/10.1021/acschemneuro.3c00580
    6. Sergei F. Vyboishchikov. Dense Neural Network for Calculating Solvation Free Energies from Electronegativity-Equalization Atomic Charges. Journal of Chemical Information and Modeling 2023, 63 (20) , 6283-6292. https://doi.org/10.1021/acs.jcim.3c00922
    7. David A. Case, Hasan Metin Aktulga, Kellon Belfon, David S. Cerutti, G. Andrés Cisneros, Vinícius Wilian D. Cruzeiro, Negin Forouzesh, Timothy J. Giese, Andreas W. Götz, Holger Gohlke, Saeed Izadi, Koushik Kasavajhala, Mehmet C. Kaymak, Edward King, Tom Kurtzman, Tai-Sung Lee, Pengfei Li, Jian Liu, Tyler Luchko, Ray Luo, Madushanka Manathunga, Matias R. Machado, Hai Minh Nguyen, Kurt A. O’Hearn, Alexey V. Onufriev, Feng Pan, Sergio Pantano, Ruxi Qi, Ali Rahnamoun, Ali Risheh, Stephan Schott-Verdugo, Akhil Shajan, Jason Swails, Junmei Wang, Haixin Wei, Xiongwu Wu, Yongxian Wu, Shi Zhang, Shiji Zhao, Qiang Zhu, Thomas E. Cheatham, III, Daniel R. Roe, Adrian Roitberg, Carlos Simmerling, Darrin M. York, Maria C. Nagan, Kenneth M. Merz, Jr.. AmberTools. Journal of Chemical Information and Modeling 2023, 63 (20) , 6183-6191. https://doi.org/10.1021/acs.jcim.3c01153
    8. Song Luo, Danyang Xiong, Xiaoyu Zhao, Lili Duan. An Attempt of Seeking Favorable Binding Free Energy Prediction Schemes Considering the Entropic Effect on Fis-DNA Binding. The Journal of Physical Chemistry B 2023, 127 (6) , 1312-1324. https://doi.org/10.1021/acs.jpcb.2c07811
    9. Saikat Pal, Amit Kumar, Harish Vashisth. Role of Dynamics and Mutations in Interactions of a Zinc Finger Antiviral Protein with CG-rich Viral RNA. Journal of Chemical Information and Modeling 2023, 63 (3) , 1002-1011. https://doi.org/10.1021/acs.jcim.2c01487
    10. Lakshmikumar Kunche, Upendra Natarajan. Conformations and Solvation of Synthetic Polymers in Water by Generalized Born Implicit-Solvent Molecular Dynamics Simulations: Stereoisomers of Poly(acrylic acid) and Poly(methacrylic acid). The Journal of Physical Chemistry B 2023, 127 (5) , 1244-1253. https://doi.org/10.1021/acs.jpcb.2c06658
    11. Klaudia Mráziková, Holger Kruse, Vojtěch Mlýnský, Pascal Auffinger, Jiří Šponer. Multiscale Modeling of Phosphate···π Contacts in RNA U-Turns Exposes Differences between Quantum-Chemical and AMBER Force Field Descriptions. Journal of Chemical Information and Modeling 2022, 62 (23) , 6182-6200. https://doi.org/10.1021/acs.jcim.2c01064
    12. Kye Won Wang, Jumin Lee, Han Zhang, Donghyuk Suh, Wonpil Im. CHARMM-GUI Implicit Solvent Modeler for Various Generalized Born Models in Different Simulation Programs. The Journal of Physical Chemistry B 2022, 126 (38) , 7354-7364. https://doi.org/10.1021/acs.jpcb.2c05294
    13. Yixuan Li, Chen Li, Delu Gao, Dunyou Wang. Atomic-Level Mechanism, Solvent Effect, and Potential of the Mean Force of the F– + CH3CH2Cl SN2 Reaction in Aqueous Solution. The Journal of Physical Chemistry A 2022, 126 (33) , 5527-5533. https://doi.org/10.1021/acs.jpca.2c02105
    14. Dan E. Folescu, Alexey V. Onufriev. A Closed-Form, Analytical Approximation for Apparent Surface Charge and Electric Field of Molecules. ACS Omega 2022, 7 (30) , 26123-26136. https://doi.org/10.1021/acsomega.2c01484
    15. Na Shi, Qingchuan Zheng, Hongxing Zhang. Molecular Basis of the Recognition of Cholesterol by Cytochrome P450 46A1 along the Major Access Tunnel. ACS Chemical Neuroscience 2022, 13 (10) , 1526-1533. https://doi.org/10.1021/acschemneuro.1c00866
    16. Sebastian Spicher, Christoph Plett, Philipp Pracht, Andreas Hansen, Stefan Grimme. Automated Molecular Cluster Growing for Explicit Solvation by Efficient Force Field and Tight Binding Methods. Journal of Chemical Theory and Computation 2022, 18 (5) , 3174-3189. https://doi.org/10.1021/acs.jctc.2c00239
    17. Mario S. Valdés-Tresanco, Mario E. Valdés-Tresanco, Pedro A. Valiente, Ernesto Moreno. gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS. Journal of Chemical Theory and Computation 2021, 17 (10) , 6281-6291. https://doi.org/10.1021/acs.jctc.1c00645
    18. Xuejiao Dong, Jianan Sun, Weili Miao, Chia-en A. Chang, Yinsheng Wang. Proteome-Wide Characterizations of N6-Methyl-Adenosine Triphosphate- and N6-Furfuryl-Adenosine Triphosphate-Binding Capabilities of Kinases. Analytical Chemistry 2021, 93 (39) , 13251-13259. https://doi.org/10.1021/acs.analchem.1c02565
    19. Sergei F. Vyboishchikov, Alexander A. Voityuk. Solvation Free Energies for Aqueous and Nonaqueous Solutions Computed Using PM7 Atomic Charges. Journal of Chemical Information and Modeling 2021, 61 (9) , 4544-4553. https://doi.org/10.1021/acs.jcim.1c00885
    20. Hamed S. Hayatshahi, Robert R. Luedtke, Michelle Taylor, Peng-Jen Chen, Benjamin E. Blass, Jin Liu. Factors Governing Selectivity of Dopamine Receptor Binding Compounds for D2R and D3R Subtypes. Journal of Chemical Information and Modeling 2021, 61 (6) , 2829-2843. https://doi.org/10.1021/acs.jcim.1c00036
    21. Ercheng Wang, Weitao Fu, Dejun Jiang, Huiyong Sun, Junmei Wang, Xujun Zhang, Gaoqi Weng, Hui Liu, Peng Tao, Tingjun Hou. VAD-MM/GBSA: A Variable Atomic Dielectric MM/GBSA Model for Improved Accuracy in Protein–Ligand Binding Free Energy Calculations. Journal of Chemical Information and Modeling 2021, 61 (6) , 2844-2856. https://doi.org/10.1021/acs.jcim.1c00091
    22. Manuel Glaser, Neil J. Bruce, Sungho Bosco Han, Rebecca C. Wade. Simulation of the Positive Inotropic Peptide S100A1ct in Aqueous Environment by Gaussian Accelerated Molecular Dynamics. The Journal of Physical Chemistry B 2021, 125 (18) , 4654-4666. https://doi.org/10.1021/acs.jpcb.1c00902
    23. Jin Cheng, Maozi Chen, Siyi Wang, Tianjian Liang, Hui Chen, Chih-Jung Chen, Zhiwei Feng, Xiang-Qun Xie. Binding Characterization of Agonists and Antagonists by MCCS: A Case Study from Adenosine A2A Receptor. ACS Chemical Neuroscience 2021, 12 (9) , 1606-1620. https://doi.org/10.1021/acschemneuro.1c00082
    24. Rae A. Corrigan, Guowei Qi, Andrew C. Thiel, Jack R. Lynn, Brandon D. Walker, Thomas L. Casavant, Louis Lagardere, Jean-Philip Piquemal, Jay W. Ponder, Pengyu Ren, Michael J. Schnieders. Implicit Solvents for the Polarizable Atomic Multipole AMOEBA Force Field. Journal of Chemical Theory and Computation 2021, 17 (4) , 2323-2341. https://doi.org/10.1021/acs.jctc.0c01286
    25. Steven Blake, Isabel Hemming, Julian Ik-Tsen Heng, Mark Agostino. Structure-Based Approaches to Classify the Functional Impact of ZBTB18 Missense Variants in Health and Disease. ACS Chemical Neuroscience 2021, 12 (6) , 979-989. https://doi.org/10.1021/acschemneuro.0c00758
    26. Thomas J. Oweida, Ho Shin Kim, Johnny M. Donald, Abhishek Singh, Yaroslava G. Yingling. Assessment of AMBER Force Fields for Simulations of ssDNA. Journal of Chemical Theory and Computation 2021, 17 (2) , 1208-1217. https://doi.org/10.1021/acs.jctc.0c00931
    27. Klaudia Mráziková, Vojtěch Mlýnský, Petra Kührová, Pavlína Pokorná, Holger Kruse, Miroslav Krepl, Michal Otyepka, Pavel Banáš, Jiří Šponer. UUCG RNA Tetraloop as a Formidable Force-Field Challenge for MD Simulations. Journal of Chemical Theory and Computation 2020, 16 (12) , 7601-7617. https://doi.org/10.1021/acs.jctc.0c00801
    28. Jonas Dittrich, Michael Kather, Anna Holzberger, Andrij Pich, Holger Gohlke. Cumulative Submillisecond All-Atom Simulations of the Temperature-Induced Coil-to-Globule Transition of Poly(N-vinylcaprolactam) in Aqueous Solution. Macromolecules 2020, 53 (22) , 9793-9810. https://doi.org/10.1021/acs.macromol.0c01896
    29. Zhiwei Feng, Tianjian Liang, Siyi Wang, Maozi Chen, Tianling Hou, Jack Zhao, Hui Chen, Yuehan Zhou, Xiang-Qun Xie. Binding Characterization of GPCRs-Modulator by Molecular Complex Characterizing System (MCCS). ACS Chemical Neuroscience 2020, 11 (20) , 3333-3345. https://doi.org/10.1021/acschemneuro.0c00457
    30. Junmei Wang. Fast Identification of Possible Drug Treatment of Coronavirus Disease-19 (COVID-19) through Computational Drug Repurposing Study. Journal of Chemical Information and Modeling 2020, 60 (6) , 3277-3286. https://doi.org/10.1021/acs.jcim.0c00179
    31. Dragos Horvath, Gilles Marcou, Alexandre Varnek. “Big Data” Fast Chemoinformatics Model to Predict Generalized Born Radius and Solvent Accessibility as a Function of Geometry. Journal of Chemical Information and Modeling 2020, 60 (6) , 2951-2965. https://doi.org/10.1021/acs.jcim.9b01172
    32. Beihong Ji, Shuhan Liu, Xibing He, Viet Hoang Man, Xiang-Qun Xie, Junmei Wang. Prediction of the Binding Affinities and Selectivity for CB1 and CB2 Ligands Using Homology Modeling, Molecular Docking, Molecular Dynamics Simulations, and MM-PBSA Binding Free Energy Calculations. ACS Chemical Neuroscience 2020, 11 (8) , 1139-1158. https://doi.org/10.1021/acschemneuro.9b00696
    33. Xiaowei Bogetti, Shreya Ghosh, Austin Gamble Jarvi, Junmei Wang, Sunil Saxena. Molecular Dynamics Simulations Based on Newly Developed Force Field Parameters for Cu2+ Spin Labels Provide Insights into Double-Histidine-Based Double Electron–Electron Resonance. The Journal of Physical Chemistry B 2020, 124 (14) , 2788-2797. https://doi.org/10.1021/acs.jpcb.0c00739
    34. Yan Chen, Zhiwei Feng, Mingzhe Shen, Weiwei Lin, Yuanqiang Wang, Siyi Wang, Caifeng Li, Shengfeng Wang, Maozi Chen, Weiguang Shan, Xiang-Qun Xie. Insight into Ginkgo biloba L. Extract on the Improved Spatial Learning and Memory by Chemogenomics Knowledgebase, Molecular Docking, Molecular Dynamics Simulation, and Bioassay Validations. ACS Omega 2020, 5 (5) , 2428-2439. https://doi.org/10.1021/acsomega.9b03960
    35. V. Blair Journigan, Zhiwei Feng, Saifur Rahman, Yuanqiang Wang, A. R. M. Ruhul Amin, Colleen E. Heffner, Nicholas Bachtel, Siyi Wang, Sara Gonzalez-Rodriguez, Asia Fernández-Carvajal, Gregorio Fernández-Ballester, Jacob K. Hilton, Wade D. Van Horn, Antonio Ferrer-Montiel, Xiang-Qun Xie, Taufiq Rahman. Structure-Based Design of Novel Biphenyl Amide Antagonists of Human Transient Receptor Potential Cation Channel Subfamily M Member 8 Channels with Potential Implications in the Treatment of Sensory Neuropathies. ACS Chemical Neuroscience 2020, 11 (3) , 268-290. https://doi.org/10.1021/acschemneuro.9b00404
    36. Bin Sun, Darin Vaughan, Svetlana Tikunova, Trevor P. Creamer, Jonathan P. Davis, P. M. Kekenes-Huskey. Calmodulin–Calcineurin Interaction beyond the Calmodulin-Binding Region Contributes to Calcineurin Activation. Biochemistry 2019, 58 (39) , 4070-4085. https://doi.org/10.1021/acs.biochem.9b00626
    37. Ercheng Wang, Huiyong Sun, Junmei Wang, Zhe Wang, Hui Liu, John Z. H. Zhang, Tingjun Hou. End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. Chemical Reviews 2019, 119 (16) , 9478-9508. https://doi.org/10.1021/acs.chemrev.9b00055
    38. Jin Cheng, Siyi Wang, Weiwei Lin, Nan Wu, Yuanqiang Wang, Maozi Chen, Xiang-Qun Xie, Zhiwei Feng. Computational Systems Pharmacology-Target Mapping for Fentanyl-Laced Cocaine Overdose. ACS Chemical Neuroscience 2019, 10 (8) , 3486-3499. https://doi.org/10.1021/acschemneuro.9b00109
    39. Qiao Xue, Xian Liu, Xiu-Chang Liu, Wen-Xiao Pan, Jian-Jie Fu, Ai-Qian Zhang. The Effect of Structural Diversity on Ligand Specificity and Resulting Signaling Differences of Estrogen Receptor α. Chemical Research in Toxicology 2019, 32 (6) , 1002-1013. https://doi.org/10.1021/acs.chemrestox.8b00338
    40. Ruth H. Tichauer, Gilles Favre, Stéphanie Cabantous, Marie Brut. Hybrid QM/MM vs Pure MM Molecular Dynamics for Evaluating Water Distribution within p21N-ras and the Resulting GTP Electronic Density. The Journal of Physical Chemistry B 2019, 123 (18) , 3935-3944. https://doi.org/10.1021/acs.jpcb.9b02660
    41. María J. Beltrán-Leiva, Isabel Fuenzalida-Valdivia, Plinio Cantero-López, Ana Bulhões-Figueira, Jans Alzate-Morales, Dayán Páez-Hernández, Ramiro Arratia-Pérez. Classical and Quantum Mechanical Calculations of the Stacking Interaction of NdIII Complexes with Regular and Mismatched DNA Sequences. The Journal of Physical Chemistry B 2019, 123 (15) , 3219-3231. https://doi.org/10.1021/acs.jpcb.9b00703
    42. Maria Ortega, J. G. Vilhena, Pamela Rubio-Pereda, P. A. Serena, Rubén Pérez. Assessing the Accuracy of Different Solvation Models To Describe Protein Adsorption. Journal of Chemical Theory and Computation 2019, 15 (4) , 2548-2560. https://doi.org/10.1021/acs.jctc.8b01060
    43. Zhicheng Zuo, Jin Liu. Assessing the Performance of the Nonbonded Mg2+ Models in a Two-Metal-Dependent Ribonuclease. Journal of Chemical Information and Modeling 2019, 59 (1) , 399-408. https://doi.org/10.1021/acs.jcim.8b00627
    44. Dimas Suárez, Natalia Díaz. Affinity Calculations of Cyclodextrin Host–Guest Complexes: Assessment of Strengths and Weaknesses of End-Point Free Energy Methods. Journal of Chemical Information and Modeling 2019, 59 (1) , 421-440. https://doi.org/10.1021/acs.jcim.8b00805
    45. Sushil K. Mishra, Jaroslav Koča. Assessing the Performance of MM/PBSA, MM/GBSA, and QM–MM/GBSA Approaches on Protein/Carbohydrate Complexes: Effect of Implicit Solvent Models, QM Methods, and Entropic Contributions. The Journal of Physical Chemistry B 2018, 122 (34) , 8113-8121. https://doi.org/10.1021/acs.jpcb.8b03655
    46. Xi Chen, Qiang Gan, Changgen Feng, Xia Liu, Qian Zhang. Virtual Screening of Novel and Selective Inhibitors of Protein Tyrosine Phosphatase 1B over T-Cell Protein Tyrosine Phosphatase Using a Bidentate Inhibition Strategy. Journal of Chemical Information and Modeling 2018, 58 (4) , 837-847. https://doi.org/10.1021/acs.jcim.8b00040
    47. Saeed Izadi, Robert C. Harris, Marcia O. Fenley, Alexey V. Onufriev. Accuracy Comparison of Generalized Born Models in the Calculation of Electrostatic Binding Free Energies. Journal of Chemical Theory and Computation 2018, 14 (3) , 1656-1670. https://doi.org/10.1021/acs.jctc.7b00886
    48. Hsiao-Ching Yang, Yung-Chi Ge, Cheng-Han Yang, and Wei-Chih Chao . Substrate Channeling of Prostaglandin H2 on the Stereochemical Control of a Cascade Cyclization Route. ACS Catalysis 2018, 8 (3) , 2534-2545. https://doi.org/10.1021/acscatal.7b03687
    49. Huan-Xiang Zhou and Xiaodong Pang . Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation. Chemical Reviews 2018, 118 (4) , 1691-1741. https://doi.org/10.1021/acs.chemrev.7b00305
    50. Babitha Machireddy, Gurmannat Kalra, Subash Jonnalagadda, Kandalam Ramanujachary, and Chun Wu . Probing the Binding Pathway of BRACO19 to a Parallel-Stranded Human Telomeric G-Quadruplex Using Molecular Dynamics Binding Simulation with AMBER DNA OL15 and Ligand GAFF2 Force Fields. Journal of Chemical Information and Modeling 2017, 57 (11) , 2846-2864. https://doi.org/10.1021/acs.jcim.7b00287
    51. Haiyang Zhang, Yang Jiang, Hai Yan, Ziheng Cui, and Chunhua Yin . Comparative Assessment of Computational Methods for Free Energy Calculations of Ionic Hydration. Journal of Chemical Information and Modeling 2017, 57 (11) , 2763-2775. https://doi.org/10.1021/acs.jcim.7b00485
    52. Negin Forouzesh, Saeed Izadi, and Alexey V. Onufriev . Grid-Based Surface Generalized Born Model for Calculation of Electrostatic Binding Free Energies. Journal of Chemical Information and Modeling 2017, 57 (10) , 2505-2513. https://doi.org/10.1021/acs.jcim.7b00192
    53. Peng Liu, Chen Li, and Dunyou Wang . Multilevel Quantum Mechanics Theories and Molecular Mechanics Calculations of the Cl– + CH3I Reaction in Water. The Journal of Physical Chemistry A 2017, 121 (41) , 8012-8016. https://doi.org/10.1021/acs.jpca.7b08103
    54. Pham Dinh Quoc Huy, Nguyen Quoc Thai, Zuzana Bednarikova, Le Huu Phuc, Huynh Quang Linh, Zuzana Gazova, and Mai Suan Li . Bexarotene Does Not Clear Amyloid Beta Plaques but Delays Fibril Growth: Molecular Mechanisms. ACS Chemical Neuroscience 2017, 8 (9) , 1960-1969. https://doi.org/10.1021/acschemneuro.7b00107
    55. Yukinobu Mizuhara, Dan Parkin, Koji Umezawa, Jun Ohnuki, and Mitsunori Takano . Over-Destabilization of Protein–Protein Interaction in Generalized Born Model and Utility of Energy Density Integration Cutoff. The Journal of Physical Chemistry B 2017, 121 (18) , 4669-4677. https://doi.org/10.1021/acs.jpcb.7b01438
    56. Yang Jiang, Haiyang Zhang, Ziheng Cui, and Tianwei Tan . Modeling Coordination-Directed Self-Assembly of M2L4 Nanocapsule Featuring Competitive Guest Encapsulation. The Journal of Physical Chemistry Letters 2017, 8 (9) , 2082-2086. https://doi.org/10.1021/acs.jpclett.7b00773
    57. Hui Liu, Fu Chen, Huiyong Sun, Dan Li, and Tingjun Hou . Improving the Efficiency of Non-equilibrium Sampling in the Aqueous Environment via Implicit-Solvent Simulations. Journal of Chemical Theory and Computation 2017, 13 (4) , 1827-1836. https://doi.org/10.1021/acs.jctc.6b01139
    58. Jin Zhang, Haiyang Zhang, Tao Wu, Qi Wang, and David van der Spoel . Comparison of Implicit and Explicit Solvent Models for the Calculation of Solvation Free Energy in Organic Solvents. Journal of Chemical Theory and Computation 2017, 13 (3) , 1034-1043. https://doi.org/10.1021/acs.jctc.7b00169
    59. Hamed S. Hayatshahi, Daniel R. Roe, Rodrigo Galindo-Murillo, Kathleen B. Hall, and Thomas E. Cheatham, III . Computational Assessment of Potassium and Magnesium Ion Binding to a Buried Pocket in GTPase-Associating Center RNA. The Journal of Physical Chemistry B 2017, 121 (3) , 451-462. https://doi.org/10.1021/acs.jpcb.6b08764
    60. Inês C. M. Simões, Inês P. D. Costa, João T. S. Coimbra, Maria J. Ramos, and Pedro A. Fernandes . New Parameters for Higher Accuracy in the Computation of Binding Free Energy Differences upon Alanine Scanning Mutagenesis on Protein–Protein Interfaces. Journal of Chemical Information and Modeling 2017, 57 (1) , 60-72. https://doi.org/10.1021/acs.jcim.6b00378
    61. Saeed Izadi, Ramu Anandakrishnan, and Alexey V. Onufriev . Implicit Solvent Model for Million-Atom Atomistic Simulations: Insights into the Organization of 30-nm Chromatin Fiber. Journal of Chemical Theory and Computation 2016, 12 (12) , 5946-5959. https://doi.org/10.1021/acs.jctc.6b00712
    62. Phuong H. Nguyen, Fabio Sterpone, Ramon Pouplana, Philippe Derreumaux, and Josep M. Campanera . Dimerization Mechanism of Alzheimer Aβ40 Peptides: The High Content of Intrapeptide-Stabilized Conformations in A2V and A2T Heterozygous Dimers Retards Amyloid Fibril Formation. The Journal of Physical Chemistry B 2016, 120 (47) , 12111-12126. https://doi.org/10.1021/acs.jpcb.6b10722
    63. Melina K. Robinson, Jacob I. Monroe, and M. Scott Shell . Are AMBER Force Fields and Implicit Solvation Models Additive? A Folding Study with a Balanced Peptide Test Set. Journal of Chemical Theory and Computation 2016, 12 (11) , 5631-5642. https://doi.org/10.1021/acs.jctc.6b00788
    64. Noriko Shimba, Narutoshi Kamiya, and Haruki Nakamura . Model Building of Antibody–Antigen Complex Structures Using GBSA Scores. Journal of Chemical Information and Modeling 2016, 56 (10) , 2005-2012. https://doi.org/10.1021/acs.jcim.6b00066
    65. Haiyang Zhang, Chunhua Yin, Hai Yan, and David van der Spoel . Evaluation of Generalized Born Models for Large Scale Affinity Prediction of Cyclodextrin Host–Guest Complexes. Journal of Chemical Information and Modeling 2016, 56 (10) , 2080-2092. https://doi.org/10.1021/acs.jcim.6b00418
    66. Rafał Szabla, Marek Havrila, Holger Kruse, and Jiří Šponer . Comparative Assessment of Different RNA Tetranucleotides from the DFT-D3 and Force Field Perspective. The Journal of Physical Chemistry B 2016, 120 (41) , 10635-10648. https://doi.org/10.1021/acs.jpcb.6b07551
    67. Nathalie Duclert-Savatier, Guillaume Bouvier, Michael Nilges, and Thérèse E. Malliavin . Building Graphs To Describe Dynamics, Kinetics, and Energetics in the d-ALa:d-Lac Ligase VanA. Journal of Chemical Information and Modeling 2016, 56 (9) , 1762-1775. https://doi.org/10.1021/acs.jcim.6b00211
    68. Shengjie Ling, Nina Dinjaski, Davoud Ebrahimi, Joyce Y. Wong, David L. Kaplan, and Markus J. Buehler . Conformation Transitions of Recombinant Spidroins via Integration of Time-Resolved FTIR Spectroscopy and Molecular Dynamic Simulation. ACS Biomaterials Science & Engineering 2016, 2 (8) , 1298-1308. https://doi.org/10.1021/acsbiomaterials.6b00234
    69. J. G. Vilhena, Pamela Rubio-Pereda, Perceval Vellosillo, P. A. Serena, and Rubén Pérez . Albumin (BSA) Adsorption over Graphene in Aqueous Environment: Influence of Orientation, Adsorption Protocol, and Solvent Treatment. Langmuir 2016, 32 (7) , 1742-1755. https://doi.org/10.1021/acs.langmuir.5b03170
    70. Li-Li Pan, Zheng Zheng, Ting Wang, and Kenneth M. Merz, Jr. . Free Energy-Based Conformational Search Algorithm Using the Movable Type Sampling Method. Journal of Chemical Theory and Computation 2015, 11 (12) , 5853-5864. https://doi.org/10.1021/acs.jctc.5b00930
    71. Haiyang Zhang, Tianwei Tan, and David van der Spoel . Generalized Born and Explicit Solvent Models for Free Energy Calculations in Organic Solvents: Cyclodextrin Dimerization. Journal of Chemical Theory and Computation 2015, 11 (11) , 5103-5113. https://doi.org/10.1021/acs.jctc.5b00620
    72. Tomohiko Hayashi, Hiraku Oshima, Satoshi Yasuda, and Masahiro Kinoshita . Mechanism of One-to-Many Molecular Recognition Accompanying Target-Dependent Structure Formation: For the Tumor Suppressor p53 Protein as an Example. The Journal of Physical Chemistry B 2015, 119 (44) , 14120-14129. https://doi.org/10.1021/acs.jpcb.5b08513
    73. Saeed Izadi, Boris Aguilar, and Alexey V. Onufriev . Protein–Ligand Electrostatic Binding Free Energies from Explicit and Implicit Solvation. Journal of Chemical Theory and Computation 2015, 11 (9) , 4450-4459. https://doi.org/10.1021/acs.jctc.5b00483
    74. Thana Sutthibutpong, Sarah A. Harris, and Agnes Noy . Comparison of Molecular Contours for Measuring Writhe in Atomistic Supercoiled DNA. Journal of Chemical Theory and Computation 2015, 11 (6) , 2768-2775. https://doi.org/10.1021/acs.jctc.5b00035
    75. Zheng Zheng, Ting Wang, Pengfei Li, and Kenneth M. Merz, Jr. . KECSA-Movable Type Implicit Solvation Model (KMTISM). Journal of Chemical Theory and Computation 2015, 11 (2) , 667-682. https://doi.org/10.1021/ct5007828
    76. Xingqing Xiao, Paul F. Agris, and Carol K. Hall . Designing Peptide Sequences in Flexible Chain Conformations to Bind RNA: A Search Algorithm Combining Monte Carlo, Self-Consistent Mean Field and Concerted Rotation Techniques. Journal of Chemical Theory and Computation 2015, 11 (2) , 740-752. https://doi.org/10.1021/ct5008247
    77. Olga Kononova, Yaroslav Kholodov, Kelly E. Theisen, Kenneth A. Marx, Ruxandra I. Dima, Fazly I. Ataullakhanov, Ekaterina L. Grishchuk, and Valeri Barsegov . Tubulin Bond Energies and Microtubule Biomechanics Determined from Nanoindentation in Silico. Journal of the American Chemical Society 2014, 136 (49) , 17036-17045. https://doi.org/10.1021/ja506385p
    78. Jacopo Sgrignani, Marta Bon, Giorgio Colombo, and Alessandra Magistrato . Computational Approaches Elucidate the Allosteric Mechanism of Human Aromatase Inhibition: A Novel Possible Route to Small-Molecule Regulation of CYP450s Activities?. Journal of Chemical Information and Modeling 2014, 54 (10) , 2856-2868. https://doi.org/10.1021/ci500425y
    79. Li-Li Pan, Yue Yang, and Kenneth M. Merz, Jr. . Origin of Product Selectivity in a Prenyl Transfer Reaction from the Same Intermediate: Exploration of Multiple FtmPT1-Catalyzed Prenyl Transfer Pathways. Biochemistry 2014, 53 (38) , 6126-6138. https://doi.org/10.1021/bi500747z
    80. Nils J. D. Drechsel, Christopher J. Fennell, Ken A. Dill, and Jordi Villà-Freixa . TRIFORCE: Tessellated Semianalytical Solvent Exposed Surface Areas and Derivatives. Journal of Chemical Theory and Computation 2014, 10 (9) , 4121-4132. https://doi.org/10.1021/ct5002818
    81. Fabian Zeller and Martin Zacharias . Evaluation of Generalized Born Model Accuracy for Absolute Binding Free Energy Calculations. The Journal of Physical Chemistry B 2014, 118 (27) , 7467-7474. https://doi.org/10.1021/jp5015934
    82. Ernesto Suárez, Steven Lettieri, Matthew C. Zwier, Carsen A. Stringer, Sundar Raman Subramanian, Lillian T. Chong, and Daniel M. Zuckerman . Simultaneous Computation of Dynamical and Equilibrium Information Using a Weighted Ensemble of Trajectories. Journal of Chemical Theory and Computation 2014, 10 (7) , 2658-2667. https://doi.org/10.1021/ct401065r
    83. Holger Kruse, Marek Havrila, and Jiřı́ Šponer . QM Computations on Complete Nucleic Acids Building Blocks: Analysis of the Sarcin–Ricin RNA Motif Using DFT-D3, HF-3c, PM6-D3H, and MM Approaches. Journal of Chemical Theory and Computation 2014, 10 (6) , 2615-2629. https://doi.org/10.1021/ct500183w
    84. Laurent Guillaud, Kevin T. Gray, Natalia Moroz, Caroline Pantazis, Edward Pate, and Alla S. Kostyukova . Role of Tropomodulin’s Leucine Rich Repeat Domain in the Formation of Neurite-like Processes. Biochemistry 2014, 53 (16) , 2689-2700. https://doi.org/10.1021/bi401431k
    85. Konstantinos Gkionis, Holger Kruse, James A. Platts, Arnošt Mládek, Jaroslav Koča, and Jiří Šponer . Ion Binding to Quadruplex DNA Stems. Comparison of MM and QM Descriptions Reveals Sizable Polarization Effects Not Included in Contemporary Simulations. Journal of Chemical Theory and Computation 2014, 10 (3) , 1326-1340. https://doi.org/10.1021/ct4009969
    86. Jason M. Swails, Darrin M. York, and Adrian E. Roitberg . Constant pH Replica Exchange Molecular Dynamics in Explicit Solvent Using Discrete Protonation States: Implementation, Testing, and Validation. Journal of Chemical Theory and Computation 2014, 10 (3) , 1341-1352. https://doi.org/10.1021/ct401042b
    87. Yu Kang, Stefanie Barbirz, Reinhard Lipowsky, and Mark Santer . Conformational Diversity of O-Antigen Polysaccharides of the Gram-Negative Bacterium Shigella flexneri Serotype Y. The Journal of Physical Chemistry B 2014, 118 (9) , 2523-2534. https://doi.org/10.1021/jp4111713
    88. Ilyas Yildirim, Ibrahim Eryazici, SonBinh T. Nguyen, and George C. Schatz . Hydrophobic Organic Linkers in the Self-Assembly of Small Molecule-DNA Hybrid Dimers: A Computational–Experimental Study of the Role of Linkage Direction in Product Distributions and Stabilities. The Journal of Physical Chemistry B 2014, 118 (9) , 2366-2376. https://doi.org/10.1021/jp501041m
    89. Jessica L. Spears, Xingqing Xiao, Carol K. Hall, and Paul F. Agris . Amino Acid Signature Enables Proteins to Recognize Modified tRNA. Biochemistry 2014, 53 (7) , 1125-1133. https://doi.org/10.1021/bi401174h
    90. Michael R. Jones, Cong Liu, and Angela K. Wilson . Molecular Dynamics Studies of the Protein–Protein Interactions in Inhibitor of κB Kinase-β. Journal of Chemical Information and Modeling 2014, 54 (2) , 562-572. https://doi.org/10.1021/ci400720n
    91. Guillaume Bouvier, Nathalie Duclert-Savatier, Nathan Desdouits, Djalal Meziane-Cherif, Arnaud Blondel, Patrice Courvalin, Michael Nilges, and Thérèse E. Malliavin . Functional Motions Modulating VanA Ligand Binding Unraveled by Self-Organizing Maps. Journal of Chemical Information and Modeling 2014, 54 (1) , 289-301. https://doi.org/10.1021/ci400354b
    92. Natalia Díaz, Dimas Suárez, and Haydeé Valdés . Unraveling the Molecular Structure of the Catalytic Domain of Matrix Metalloproteinase-2 in Complex with a Triple-Helical Peptide by Means of Molecular Dynamics Simulations. Biochemistry 2013, 52 (47) , 8556-8569. https://doi.org/10.1021/bi401144p
    93. Qiao Xue, Ji-Long Zhang, Qing-Chuan Zheng, Ying-Lu Cui, Lin Chen, Wen-Ting Chu, and Hong-Xing Zhang . Exploring the Molecular Basis of dsRNA Recognition by Mss116p Using Molecular Dynamics Simulations and Free-Energy Calculations. Langmuir 2013, 29 (35) , 11135-11144. https://doi.org/10.1021/la402354r
    94. Filippos Ioannou, Epameinondas Leontidis, and Georgios Archontis . Helix Formation by Alanine-Based Peptides in Pure Water and Electrolyte Solutions: Insights from Molecular Dynamics Simulations. The Journal of Physical Chemistry B 2013, 117 (34) , 9866-9876. https://doi.org/10.1021/jp406231g
    95. Jiří Šponer, Arnošt Mládek, Naďa Špačková, Xiaohui Cang, Thomas E. Cheatham, III, and Stefan Grimme . Relative Stability of Different DNA Guanine Quadruplex Stem Topologies Derived Using Large-Scale Quantum-Chemical Computations. Journal of the American Chemical Society 2013, 135 (26) , 9785-9796. https://doi.org/10.1021/ja402525c
    96. Nopporn Kaiyawet, Thanyada Rungrotmongkol, and Supot Hannongbua . Effect of Halogen Substitutions on dUMP to Stability of Thymidylate Synthase/dUMP/mTHF Ternary Complex Using Molecular Dynamics Simulation. Journal of Chemical Information and Modeling 2013, 53 (6) , 1315-1323. https://doi.org/10.1021/ci400131y
    97. Susanta Haldar, Vojtech Spiwok, and Pavel Hobza . On the Association of the Base Pairs on the Silica Surface Based on Free Energy Biased Molecular Dynamics Simulation and Quantum Mechanical Calculations. The Journal of Physical Chemistry C 2013, 117 (21) , 11066-11075. https://doi.org/10.1021/jp400198h
    98. Michal Kolář, Jindřich Fanfrlík, Martin Lepšík, Flavio Forti, F. Javier Luque, and Pavel Hobza . Assessing the Accuracy and Performance of Implicit Solvent Models for Drug Molecules: Conformational Ensemble Approaches. The Journal of Physical Chemistry B 2013, 117 (19) , 5950-5962. https://doi.org/10.1021/jp402117c
    99. Miroslav Krepl, Kamila Réblová, Jaroslav Koča, and Jiří Šponer . Bioinformatics and Molecular Dynamics Simulation Study of L1 Stalk Non-Canonical rRNA Elements: Kink-Turns, Loops, and Tetraloops. The Journal of Physical Chemistry B 2013, 117 (18) , 5540-5555. https://doi.org/10.1021/jp401482m
    100. Niel M. Henriksen, Daniel R. Roe, and Thomas E. Cheatham, III . Reliable Oligonucleotide Conformational Ensemble Generation in Explicit Solvent for Force Field Assessment Using Reservoir Replica Exchange Molecular Dynamics Simulations. The Journal of Physical Chemistry B 2013, 117 (15) , 4014-4027. https://doi.org/10.1021/jp400530e
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect