Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Spectroscopic Properties of Spheroidene Analogs Having Different Extents of π-Electron Conjugation

View Author Information
Department of Chemistry, 215 Glenbrook Road, University of Connecticut, Storrs, Connecticut 06269-4060, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands, Chemistry Division, Argonne National Laboratories, Argonne, Illinois 60439, and Department of Chemistry, Northwestern University, Evanston, Illinois 60208
Cite this: J. Phys. Chem. A 1997, 101, 2, 149–157
Publication Date (Web):January 9, 1997
https://doi.org/10.1021/jp962373l
Copyright © 1997 American Chemical Society

    Article Views

    469

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    The spectroscopic properties of spheroidene and a series of spheroidene analogs with extents of π-electron conjugation ranging from 7 to 13 carbon−carbon double bonds were studied using steady-state absorption, fluorescence, fluorescence excitation, and time-resolved absorption spectroscopy. The spheroidene analogs studied here were 5‘,6‘-dihydro-7‘,8‘-didehydrospheroidene, 7‘,8‘-didehydrospheroidene, and 1‘,2‘-dihydro-3‘,4‘,7‘,8‘-tetradehydrospheroidene and taken together with data from 3,4,7,8-tetrahydrospheroidene, 3,4,5,6-tetrahydrospheroidene, 3,4-dihydrospheroidene already published (DeCoster, B.; Christensen, R. L.; Gebhard, R.; Lugtenburg, J.; Farhoosh, R.; Frank, H. A. Biochim. Biophys. Acta1992, 1102, 107) provide a systematic series of molecules for understanding the molecular features that control energy transfer to bacteriochlorophyll in photosynthetic bacterial light-harvesting complexes. All of the molecules were purified by high-pressure liquid chromatographic techniques prior to the spectroscopic experiments. The absorption spectra of the molecules were observed to red-shift with increasing extent of π-electron conjugation. The room temperature fluorescence data show a systematic crossover from dominant S1 → S0 (2 1Ag → 11Ag) emission to dominant S2 → S0 (11Bu → 11Ag) with increasing extent of conjugation. The S2 fluorescence quantum yields of all the carotenoids in the series were measured here and indicate that 3,4-dihydrospheroidene with nine carbon−carbon double bonds has an S2 quantum yield of (2.7 ± 0.3) × 10-4 which is the highest value in the series. The lifetimes of the S1 states of the molecules were determined from time-resolved transient absorption spectroscopy and found to decrease as the conjugated chain length increases. The transient data are discussed in terms of the energy gap law for radiationless transitions which allows a prediction of the S1 energies of the molecules. The implications of these results for the process of light harvesting by carotenoids in photosynthesis are discussed.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

     University of Connecticut.

     Fax:  860−486−3772. E-mail:  [email protected].

    §

     Leiden University.

     Argonne National Laboratories.

     Northwestern University.

     Abstract published in Advance ACS Abstracts, December 15, 1996.

    Cited By

    This article is cited by 89 publications.

    1. Dilhan Manawadu, Timothy N. Georges, William Barford. Photoexcited State Dynamics and Singlet Fission in Carotenoids. The Journal of Physical Chemistry A 2023, 127 (5) , 1342-1352. https://doi.org/10.1021/acs.jpca.2c07781
    2. Elliot J. Taffet, Benjamin G. Lee, Zi S. D. Toa, Natalie Pace, Garry Rumbles, June Southall, Richard J. Cogdell, Gregory D. Scholes. Carotenoid Nuclear Reorganization and Interplay of Bright and Dark Excited States. The Journal of Physical Chemistry B 2019, 123 (41) , 8628-8643. https://doi.org/10.1021/acs.jpcb.9b04027
    3. Zi S. D. Toa, Mary H. deGolian, Chanelle C. Jumper, Roger G. Hiller, Gregory D. Scholes. Consistent Model of Ultrafast Energy Transfer in Peridinin Chlorophyll-a Protein Using Two-Dimensional Electronic Spectroscopy and Förster Theory. The Journal of Physical Chemistry B 2019, 123 (30) , 6410-6420. https://doi.org/10.1021/acs.jpcb.9b04324
    4. Soroush D. Khosravi, Michael M. Bishop, Amy M. LaFountain, Daniel B. Turner, George N. Gibson, Harry A. Frank, Nora Berrah. Addition of a Carbonyl End Group Increases the Rate of Excited-State Decay in a Carotenoid via Conjugation Extension and Symmetry Breaking. The Journal of Physical Chemistry B 2018, 122 (48) , 10872-10879. https://doi.org/10.1021/acs.jpcb.8b06732
    5. Hristina Staleva-Musto, Valentyna Kuznetsova, Robert G. West, Gürkan Keşan, Babak Minofar, Marcel Fuciman, David Bína, Radek Litvín, Tomáš Polívka. Nonconjugated Acyloxy Group Deactivates the Intramolecular Charge-Transfer State in the Carotenoid Fucoxanthin. The Journal of Physical Chemistry B 2018, 122 (11) , 2922-2930. https://doi.org/10.1021/acs.jpcb.8b00743
    6. Jordan A. Greco, Nicole L. Wagner, Harry A. Frank, and Robert R. Birge . The Forbidden 11Bu– Excited Singlet State in Peridinin and Peridinin Analogues. The Journal of Physical Chemistry A 2018, 122 (1) , 130-139. https://doi.org/10.1021/acs.jpca.7b10001
    7. Jordan A. Greco, Amy M. LaFountain, Naoto Kinashi, Tetsuro Shinada, Kazuhiko Sakaguchi, Shigeo Katsumura, Nikki Cecil M. Magdaong, Dariusz M. Niedzwiedzki, Robert R. Birge, and Harry A. Frank . Spectroscopic Investigation of the Carotenoid Deoxyperidinin: Direct Observation of the Forbidden S0 → S1 Transition. The Journal of Physical Chemistry B 2016, 120 (10) , 2731-2744. https://doi.org/10.1021/acs.jpcb.6b00439
    8. Soumen Ghosh, Michael M. Bishop, Jerome D. Roscioli, Jenny Jo Mueller, Nolan C. Shepherd, Amy M. LaFountain, Harry A. Frank, and Warren F. Beck . Femtosecond Heterodyne Transient-Grating Studies of Nonradiative Decay of the S2 (11Bu+) State of β-Carotene: Contributions from Dark Intermediates and Double-Quantum Coherences. The Journal of Physical Chemistry B 2015, 119 (47) , 14905-14924. https://doi.org/10.1021/acs.jpcb.5b09405
    9. Hristina Staleva, Muhammad Zeeshan, Pavel Chábera, Vassilia Partali, Hans-Richard Sliwka, and Tomáš Polívka . Ultrafast Dynamics of Long Homologues of Carotenoid Zeaxanthin. The Journal of Physical Chemistry A 2015, 119 (46) , 11304-11312. https://doi.org/10.1021/acs.jpca.5b08460
    10. Niklas Christensson, Karel Žídek, Nikki Cecil M. Magdaong, Amy M. LaFountain, Harry A. Frank, and Donatas Zigmantas . Origin of the Bathochromic Shift of Astaxanthin in Lobster Protein: 2D Electronic Spectroscopy Investigation of β-Crustacyanin. The Journal of Physical Chemistry B 2013, 117 (38) , 11209-11219. https://doi.org/10.1021/jp401873k
    11. Evgeny E. Ostroumov, Rachel M. Mulvaney, Jessica M. Anna, Richard J. Cogdell, and Gregory D. Scholes . Energy Transfer Pathways in Light-Harvesting Complexes of Purple Bacteria as Revealed by Global Kinetic Analysis of Two-Dimensional Transient Spectra. The Journal of Physical Chemistry B 2013, 117 (38) , 11349-11362. https://doi.org/10.1021/jp403028x
    12. Takao Itoh . Fluorescence and Phosphorescence from Higher Excited States of Organic Molecules. Chemical Reviews 2012, 112 (8) , 4541-4568. https://doi.org/10.1021/cr200166m
    13. Piotr Wasko, Rafal Luchowski, Krzysztof Tutaj, Wojciech Grudzinski, Przemyslaw Adamkiewicz, and Wieslaw I. Gruszecki . Toward Understanding of Toxic Side Effects of a Polyene Antibiotic Amphotericin B: Fluorescence Spectroscopy Reveals Widespread Formation of the Specific Supramolecular Structures of the Drug. Molecular Pharmaceutics 2012, 9 (5) , 1511-1520. https://doi.org/10.1021/mp300143n
    14. Mikhail Y. Berezin and Samuel Achilefu. Fluorescence Lifetime Measurements and Biological Imaging. Chemical Reviews 2010, 110 (5) , 2641-2684. https://doi.org/10.1021/cr900343z
    15. Yoonsoo Pang, Matthew A. Prantil, Aaron J. Van Tassle, Garth A. Jones and Graham R. Fleming. Excited-State Dynamics of 8′-Apo-β-caroten-8′-al and 7′,7′-Dicyano-7′-apo-β-carotene Studied by Femtosecond Time-Resolved Infrared Spectroscopy. The Journal of Physical Chemistry B 2009, 113 (39) , 13086-13095. https://doi.org/10.1021/jp905758e
    16. Dariusz Niedzwiedzki,, Jeremy F. Koscielecki,, Hong Cong,, James O. Sullivan,, George N. Gibson,, Robert R. Birge, and, Harry A. Frank. Ultrafast Dynamics and Excited State Spectra of Open-Chain Carotenoids at Room and Low Temperatures. The Journal of Physical Chemistry B 2007, 111 (21) , 5984-5998. https://doi.org/10.1021/jp070500f
    17. Florian Ehlers,, Duncan A. Wild,, Thomas Lenzer, and, Kawon Oum. Investigation of the S1/ICT → S0 Internal Conversion Lifetime of 4‘-apo-β-caroten-4‘-al and 8‘-apo-β-caroten-8‘-al:  Dependence on Conjugation Length and Solvent Polarity. The Journal of Physical Chemistry A 2007, 111 (12) , 2257-2265. https://doi.org/10.1021/jp0676888
    18. Zeus D. Pendon,, George N. Gibson,, Ineke van der Hoef,, Johan Lugtenburg, and, Harry A. Frank. Effect of Isomer Geometry on the Steady-State Absorption Spectra and Femtosecond Time-Resolved Dynamics of Carotenoids. The Journal of Physical Chemistry B 2005, 109 (44) , 21172-21179. https://doi.org/10.1021/jp0529117
    19. Robielyn P. Ilagan,, Ronald L. Christensen,, Timothy W. Chapp,, George N. Gibson,, Torbjörn Pascher,, Tomáš Polívka, and, Harry A. Frank. Femtosecond Time-Resolved Absorption Spectroscopy of Astaxanthin in Solution and in α-Crustacyanin. The Journal of Physical Chemistry A 2005, 109 (14) , 3120-3127. https://doi.org/10.1021/jp0444161
    20. Tomáš Polívka and, Villy Sundström. Ultrafast Dynamics of Carotenoid Excited States−From Solution to Natural and Artificial Systems. Chemical Reviews 2004, 104 (4) , 2021-2072. https://doi.org/10.1021/cr020674n
    21. Emmanouil Papagiannakis,, Ivo H. M. van Stokkum, and, Rienk van Grondelle, , Robert A. Niederman, , Donatas Zigmantas,, Villy Sundström, and, Tomáš Polívka. A Near-Infrared Transient Absorption Study of the Excited-State Dynamics of the Carotenoid Spirilloxanthin in Solution and in the LH1 Complex of Rhodospirillum rubrum. The Journal of Physical Chemistry B 2003, 107 (40) , 11216-11223. https://doi.org/10.1021/jp034931j
    22. Donatas Zigmantas,, Roger G. Hiller,, Arkady Yartsev,, Villy Sundström, and, Tomáš Polívka. Dynamics of Excited States of the Carotenoid Peridinin in Polar Solvents:  Dependence on Excitation Wavelength, Viscosity, and Temperature. The Journal of Physical Chemistry B 2003, 107 (22) , 5339-5348. https://doi.org/10.1021/jp0272318
    23. Jie Pan,, Gábor Benkö,, Yunhua Xu,, Torbjörn Pascher,, Licheng Sun,, Villy Sundström, and, Tomáš Polívka. Photoinduced Electron Transfer between a Carotenoid and TiO2 Nanoparticle. Journal of the American Chemical Society 2002, 124 (46) , 13949-13957. https://doi.org/10.1021/ja0279186
    24. Tomáš Polívka,, Donatas Zigmantas,, Jennifer L. Herek,, Zhi He,, Torbjörn Pascher,, Tõnu Pullerits,, Richard J. Cogdell,, Harry A. Frank, and, Villy Sundström. The Carotenoid S1 State in LH2 Complexes from Purple Bacteria Rhodobacter sphaeroides and Rhodopseudomonas acidophila:  S1 Energies, Dynamics, and Carotenoid Radical Formation. The Journal of Physical Chemistry B 2002, 106 (42) , 11016-11025. https://doi.org/10.1021/jp025752p
    25. Ritsuko Fujii,, Tatsuya Ishikawa,, Yasushi Koyama,, Miwa Taguchi,, Yoshie Isobe,, Hiroyoshi Nagae, and, Yasutaka Watanabe. Fluorescence Spectroscopy of All-trans-anhydrorhodovibrin and Spirilloxanthin:  Detection of the 1Bu- Fluorescence. The Journal of Physical Chemistry A 2001, 105 (22) , 5348-5355. https://doi.org/10.1021/jp010150b
    26. Peter J. E. Verdegem,, Menno C. F. Monnee, and, Johan Lugtenburg. Simple and Efficient Preparation of [10,20-13C2]- and [10-CH3,13-13C2]-10-Methylretinal:  Introduction of Substituents at the 2-Position of 2,3-Unsaturated Nitriles. The Journal of Organic Chemistry 2001, 66 (4) , 1269-1282. https://doi.org/10.1021/jo0009595
    27. Tomáš Polívka,, Donatas Zigmantas,, Harry A. Frank,, James A. Bautista,, Jennifer L. Herek,, Yasushi Koyama,, Ritsuko Fujii, and, Villy Sundström. Near-Infrared Time-Resolved Study of the S1 State Dynamics of the Carotenoid Spheroidene. The Journal of Physical Chemistry B 2001, 105 (5) , 1072-1080. https://doi.org/10.1021/jp002206s
    28. Zhangfei He,, Lowell D. Kispert,, Robert M. Metzger,, David Gosztola, and, Michael R. Wasielewski. Carotenoids in Liposomes:  Photodegradation, Excited State Lifetimes, and Energy Transfer. The Journal of Physical Chemistry B 2000, 104 (26) , 6302-6307. https://doi.org/10.1021/jp000064w
    29. Zhangfei He,, David Gosztola,, Yi Deng,, Guoqiang Gao,, Michael R. Wasielewski, and, Lowell D. Kispert. Effect of Terminal Groups, Polyene Chain Length, and Solvent on the First Excited Singlet States of Carotenoids. The Journal of Physical Chemistry B 2000, 104 (28) , 6668-6673. https://doi.org/10.1021/jp0008344
    30. Harry A. Frank,, James A. Bautista,, Jesusa Josue,, Zeus Pendon,, Roger G. Hiller,, Frank P. Sharples,, David Gosztola, and, Michael R. Wasielewski. Effect of the Solvent Environment on the Spectroscopic Properties and Dynamics of the Lowest Excited States of Carotenoids. The Journal of Physical Chemistry B 2000, 104 (18) , 4569-4577. https://doi.org/10.1021/jp000079u
    31. James A. Bautista,, Robert E. Connors,, B. Bangar Raju,, Roger G. Hiller,, Frank P. Sharples,, David Gosztola,, Michael R. Wasielewski, and, Harry A. Frank. Excited State Properties of Peridinin:  Observation of a Solvent Dependence of the Lowest Excited Singlet State Lifetime and Spectral Behavior Unique among Carotenoids. The Journal of Physical Chemistry B 1999, 103 (41) , 8751-8758. https://doi.org/10.1021/jp9916135
    32. James A. Bautista,, Roger G. Hiller,, Frank P. Sharples,, David Gosztola,, Michael Wasielewski, and, Harry A. Frank. Singlet and Triplet Energy Transfer in the Peridinin−Chlorophyll a−Protein from Amphidinium carterae. The Journal of Physical Chemistry A 1999, 103 (14) , 2267-2273. https://doi.org/10.1021/jp983943f
    33. Ruel Z. B. Desamero,, Veeradej Chynwat,, Ineke van der Hoef,, Frans Jos Jansen,, Johan Lugtenburg,, David Gosztola,, Michael R. Wasielewski,, Agnes Cua,, David F. Bocian, and, Harry A. Frank. Mechanism of Energy Transfer from Carotenoids to Bacteriochlorophyll:  Light-Harvesting by Carotenoids Having Different Extents of π-Electron Conjugation Incorporated into the B850 Antenna Complex from the Carotenoidless Bacterium Rhodobacter sphaeroides R-26.1. The Journal of Physical Chemistry B 1998, 102 (42) , 8151-8162. https://doi.org/10.1021/jp980911j
    34. Alisdair N. Macpherson and, Tomas Gillbro. Solvent Dependence of the Ultrafast S2−S1 Internal Conversion Rate of β-Carotene. The Journal of Physical Chemistry A 1998, 102 (26) , 5049-5058. https://doi.org/10.1021/jp980979z
    35. Martin P. Debreczeny,, Michael R. Wasielewski,, Satoshi Shinoda, and, Atsuhiro Osuka. Singlet−Singlet Energy Transfer Mechanisms in Covalently-Linked Fucoxanthin− and Zeaxanthin−Pyropheophorbide Molecules. Journal of the American Chemical Society 1997, 119 (27) , 6407-6414. https://doi.org/10.1021/ja970594e
    36. William Barford, Cameron A. Chambers. Theory of singlet fission in carotenoid dimers. The Journal of Chemical Physics 2023, 159 (8) https://doi.org/10.1063/5.0155476
    37. Donatas Zigmantas, Tomáš Polívka, Petter Persson, Villy Sundström. Ultrafast laser spectroscopy uncovers mechanisms of light energy conversion in photosynthesis and sustainable energy materials. Chemical Physics Reviews 2022, 3 (4) https://doi.org/10.1063/5.0092864
    38. Vincenzo Mascoli, Roberta Croce. Photosynthesis | Light-Harvesting Complex I and II - Pigments and Proteins. 2021, 236-244. https://doi.org/10.1016/B978-0-12-819460-7.00124-9
    39. Václav Šebelík, Miroslav Kloz, Mateusz Rebarz, Martin Přeček, Eun-Hye Kang, Tae-Lim Choi, Ronald L. Christensen, Tomáš Polívka. Spectroscopy and excited state dynamics of nearly infinite polyenes. Physical Chemistry Chemical Physics 2020, 22 (32) , 17867-17879. https://doi.org/10.1039/D0CP02465A
    40. Dariusz M. Niedzwiedzki, David J. K. Swainsbury, C. Neil Hunter. Carotenoid-to-(bacterio)chlorophyll energy transfer in LH2 antenna complexes from Rba. sphaeroides reconstituted with non-native (bacterio)chlorophylls. Photosynthesis Research 2020, 144 (2) , 155-169. https://doi.org/10.1007/s11120-019-00661-6
    41. Dariusz M. Niedzwiedzki, Robert E. Blankenship. Excited-state properties of the central-cis isomer of the carotenoid peridinin. Archives of Biochemistry and Biophysics 2018, 649 , 29-36. https://doi.org/10.1016/j.abb.2018.05.004
    42. Hideki Hashimoto, Chiasa Uragami, Nao Yukihira, Alastair T. Gardiner, Richard J. Cogdell. Understanding/unravelling carotenoid excited singlet states. Journal of The Royal Society Interface 2018, 15 (141) , 20180026. https://doi.org/10.1098/rsif.2018.0026
    43. Manuel J. Llansola-Portoles, Andrew A. Pascal, Bruno Robert. Electronic and vibrational properties of carotenoids: from in vitro to in vivo. Journal of The Royal Society Interface 2017, 14 (135) , 20170504. https://doi.org/10.1098/rsif.2017.0504
    44. Takao Itoh. Intramolecular Mechanisms for the Occurrence of Fluorescence from Upper Excited States of Aromatic Molecules and Linear Polyenes. 2016, 213-234. https://doi.org/10.1007/978-3-319-24609-3_9
    45. Warren F. Beck, Michael M. Bishop, Jerome D. Roscioli, Soumen Ghosh, Harry A. Frank. Excited state conformational dynamics in carotenoids: Dark intermediates and excitation energy transfer. Archives of Biochemistry and Biophysics 2015, 572 , 175-183. https://doi.org/10.1016/j.abb.2015.02.016
    46. Tomáš Polívka, Harry A. Frank. Spectroscopic Investigation of Carotenoids Involved in Non-Photochemical Fluorescence Quenching. 2014, 203-227. https://doi.org/10.1007/978-94-017-9032-1_8
    47. Evgeny E. Ostroumov, Yaser R. Khan, Gregory D. Scholes, Govindjee. Photophysics of Photosynthetic Pigment-Protein Complexes. 2014, 97-128. https://doi.org/10.1007/978-94-017-9032-1_4
    48. Evgeny E. Ostroumov, Rachel M. Mulvaney, Richard J. Cogdell, Gregory D. Scholes. Broadband 2D Electronic Spectroscopy Reveals a Carotenoid Dark State in Purple Bacteria. Science 2013, 340 (6128) , 52-56. https://doi.org/10.1126/science.1230106
    49. Silvije Vdović, Yingying Wang, Boxuan Li, Meng Qiu, Xuefei Wang, Qianjin Guo, Andong Xia. Excited state dynamics of β-carotene studied by means of transient absorption spectroscopy and multivariate curve resolution alternating least-squares analysis. Physical Chemistry Chemical Physics 2013, 15 (46) , 20026. https://doi.org/10.1039/c3cp53323a
    50. Daisuke Kosumi, Satoshi Maruta, Tomoko Horibe, Yuya Nagaoka, Ritsuko Fujii, Mitsuru Sugisaki, Richard J. Cogdell, Hideki Hashimoto. Ultrafast excited state dynamics of spirilloxanthin in solution and bound to core antenna complexes: Identification of the S* and T1 states. The Journal of Chemical Physics 2012, 137 (6) https://doi.org/10.1063/1.4737129
    51. Carolin König, Johannes Neugebauer. Quantum Chemical Description of Absorption Properties and Excited‐State Processes in Photosynthetic Systems. ChemPhysChem 2012, 13 (2) , 386-425. https://doi.org/10.1002/cphc.201100408
    52. Margherita Maiuri, Dario Polli, Daniele Brida, Larry Lüer, Amy M. LaFountain, Marcel Fuciman, Richard J. Cogdell, Harry A. Frank, Giulio Cerullo. Solvent-dependent activation of intermediate excited states in the energy relaxation pathways of spheroidene. Physical Chemistry Chemical Physics 2012, 14 (18) , 6312. https://doi.org/10.1039/c2cp23585d
    53. Dariusz M. Niedzwiedzki, Marcel Fuciman, Masayuki Kobayashi, Harry A. Frank, Robert E. Blankenship. Ultrafast time-resolved spectroscopy of the light-harvesting complex 2 (LH2) from the photosynthetic bacterium Thermochromatium tepidum. Photosynthesis Research 2011, 110 (1) , 49-60. https://doi.org/10.1007/s11120-011-9692-7
    54. Dariusz M. Niedzwiedzki, Marcel Fuciman, Harry A. Frank, Robert E. Blankenship. Energy transfer in an LH4-like light harvesting complex from the aerobic purple photosynthetic bacterium Roseobacter denitrificans. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2011, 1807 (5) , 518-528. https://doi.org/10.1016/j.bbabio.2011.03.004
    55. Marc G. Müller, Petar Lambrev, Michael Reus, Emilie Wientjes, Roberta Croce, Alfred R. Holzwarth. Singlet Energy Dissipation in the Photosystem II Light‐Harvesting Complex Does Not Involve Energy Transfer to Carotenoids. ChemPhysChem 2010, 11 (6) , 1289-1296. https://doi.org/10.1002/cphc.200900852
    56. Wieslaw I. Gruszecki, Rafał Luchowski, Mariusz Gagoś, Marta Arczewska, Pabak Sarkar, Monika Hereć, Beata Myśliwa-Kurdziel, Kazimierz Strzałka, Ignacy Gryczynski, Zygmunt Gryczynski. Molecular organization of antifungal antibiotic amphotericin B in lipid monolayers studied by means of Fluorescence Lifetime Imaging Microscopy. Biophysical Chemistry 2009, 143 (1-2) , 95-101. https://doi.org/10.1016/j.bpc.2009.04.008
    57. Tomáš Polívka, Villy Sundström. Dark excited states of carotenoids: Consensus and controversy. Chemical Physics Letters 2009, 477 (1-3) , 1-11. https://doi.org/10.1016/j.cplett.2009.06.011
    58. Daisuke Kosumi, Masazumi Fujiwara, Ritsuko Fujii, Richard J. Cogdell, Hideki Hashimoto, Masayuki Yoshizawa. The dependence of the ultrafast relaxation kinetics of the S2 and S1 states in β-carotene homologs and lycopene on conjugation length studied by femtosecond time-resolved absorption and Kerr-gate fluorescence spectroscopies. The Journal of Chemical Physics 2009, 130 (21) https://doi.org/10.1063/1.3147008
    59. Wei-min Liu, Yong-li Yan, Kang-jun Liu, Chun-he Xu, Shi-xiong Qian. The study of photo-induced ultrafast dynamics in light-harvesting complex LH2 of purple bacteria. Frontiers of Physics in China 2006, 1 (3) , 283-294. https://doi.org/10.1007/s11467-006-0022-z
    60. Liu Wei-Min, Liu Yuan, Liu Kang-Jun, Yan Yong-Li, Guo Li-Jun, Xu Chun-He, Qian Shi-Xiong. Effect of the mutation of carotenoids on the dynamics of energy transfer in light-harvesting complexes (LH2) from Rhodobacter sphaeroides 601 at room temperature. Chinese Physics 2006, 15 (8) , 1725-1730. https://doi.org/10.1088/1009-1963/15/8/016
    61. Su Lin, Evaldas Katilius, Robielyn P. Ilagan, George N. Gibson, Harry A. Frank, Neal W. Woodbury. Mechanism of Carotenoid Singlet Excited State Energy Transfer in Modified Bacterial Reaction Centers. The Journal of Physical Chemistry B 2006, 110 (31) , 15556-15563. https://doi.org/10.1021/jp061201d
    62. Weimin Liu, Yuan Liu, Lijun Guo, Chunhe Xu, Shixiong Qian. The mutation of carotenoids affects the energy transfer in LH2 light harvesting complexes from Rhodobacter sphaeroides 601 at room temperature. Journal of Luminescence 2006, 119-120 , 350-355. https://doi.org/10.1016/j.jlumin.2006.01.002
    63. Daisuke Kosumi, Kazuhiro Yanagi, Ritsuko Fujii, Hideki Hashimoto, Masayuki Yoshizawa. Conjugation length dependence of relaxation kinetics in β-carotene homologs probed by femtosecond Kerr-gate fluorescence spectroscopy. Chemical Physics Letters 2006, 425 (1-3) , 66-70. https://doi.org/10.1016/j.cplett.2006.05.023
    64. Zeus D. Pendon, Ineke der Hoef, Johan Lugtenburg, Harry A. Frank. Triplet state spectra and dynamics of geometric isomers of carotenoids. Photosynthesis Research 2006, 88 (1) , 51-61. https://doi.org/10.1007/s11120-005-9026-8
    65. Dario Polli, Giulio Cerullo, Guglielmo Lanzani, Sandro De Silvestri, Hideki Hashimoto, Richard J. Cogdell. Carotenoid-Bacteriochlorophyll Energy Transfer in LH2 Complexes Studied with 10-fs Time Resolution. Biophysical Journal 2006, 90 (7) , 2486-2497. https://doi.org/10.1529/biophysj.105.069286
    66. Zeus D. Pendon, James O. Sullivan, Ineke van der Hoef, Johan Lugtenburg, Agnes Cua, David F. Bocian, Robert R. Birge, Harry A. Frank. Stereoisomers of Carotenoids: Spectroscopic Properties of Locked and Unlocked cis-isomers of Spheroidene. Photosynthesis Research 2005, 86 (1-2) , 5-24. https://doi.org/10.1007/s11120-005-1205-0
    67. Tomáš Polívka, Villy Sundström. Carotenoid Excited States-Photophysics, Ultrafast Dynamics and Photosynthetic Functions. 2005, 187-219. https://doi.org/10.1007/1-4020-2751-6_5
    68. Yuki Kurashige, Haruyuki Nakano, Yoshihide Nakao, Kimihiko Hirao. The π → π* excited states of long linear polyenes studied by the CASCI-MRMP method. Chemical Physics Letters 2004, 400 (4-6) , 425-429. https://doi.org/10.1016/j.cplett.2004.10.141
    69. D. Polli, G. Cerullo, G. Lanzani, S. De Silvestri, K. Yanagi, H. Hashimoto, R. J. Cogdell. Conjugation Length Dependence of Internal Conversion in Carotenoids: Role of the Intermediate State. Physical Review Letters 2004, 93 (16) https://doi.org/10.1103/PhysRevLett.93.163002
    70. Aleksander W Roszak, Kimberley McKendrick, Alastair T Gardiner, Iain A Mitchell, Neil W Isaacs, Richard J Cogdell, Hideki Hashimoto, Harry A Frank. Protein Regulation of Carotenoid Binding. Structure 2004, 12 (5) , 765-773. https://doi.org/10.1016/j.str.2004.02.037
    71. Cara A Tracewell. Secrets of Carotenoid Binding. Structure 2004, 12 (5) , 733-734. https://doi.org/10.1016/j.str.2004.04.006
    72. . Hideki HASHIMOTO, Kazuhiro YANAGI. Electrochemistry 2003, 960-965. https://doi.org/10.5796/electrochemistry.71.960
    73. M Krikunova, A Kummrow, B Voigt, M Rini, H Lokstein, A Moskalenko, H Scheer, A Razjivin, D Leupold. Fluorescence of native and carotenoid‐depleted LH2 from Chromatium minutissimum , originating from simultaneous two‐photon absorption in the spectral range of the presumed (optically ‘dark’) S 1 state of carotenoids. FEBS Letters 2002, 528 (1-3) , 227-229. https://doi.org/10.1016/S0014-5793(02)03315-X
    74. Alisdair N. Macpherson, Juan B. Arellano, Niall J. Fraser, Richard J. Cogdell, Tomas Gillbro. Efficient Energy Transfer from the Carotenoid S2 State in a Photosynthetic Light-Harvesting Complex. Biophysical Journal 2001, 80 (2) , 923-930. https://doi.org/10.1016/S0006-3495(01)76071-7
    75. Ritsuko Fujii, Kengo Onaka, Hiroyoshi Nagae, Yasushi Koyama, Yasutaka Watanabe. Fluorescence spectroscopy of all-trans-lycopene: comparison of the energy and the potential displacements of its 2Ag− state with those of neurosporene and spheroidene. Journal of Luminescence 2001, 92 (3) , 213-222. https://doi.org/10.1016/S0022-2313(00)00260-X
    76. Harry A. Frank. Spectroscopic Studies of the Low-Lying Singlet Excited Electronic States and Photochemical Properties of Carotenoids. Archives of Biochemistry and Biophysics 2001, 385 (1) , 53-60. https://doi.org/10.1006/abbi.2000.2091
    77. Tomáš Polívka, Donatas Zigmantas, Jennifer L. Herek, James A. Bautista, Harry A. Frank, Villy Sundström. Direct observation of the S1 level of the carotenoid spheroidene using near-infrared femtosecond spectroscopy. 2001, 668-670. https://doi.org/10.1007/978-3-642-56546-5_198
    78. Peter J. Walla, Patricia A. Linden, Chao-Ping Hsu, Gregory D. Scholes, Graham R. Fleming. Femtosecond dynamics of the forbidden carotenoid S 1 state in light-harvesting complexes of purple bacteria observed after two-photon excitation. Proceedings of the National Academy of Sciences 2000, 97 (20) , 10808-10813. https://doi.org/10.1073/pnas.190230097
    79. Villy Sundström. Light in elementary biological reactions. Progress in Quantum Electronics 2000, 24 (5) , 187-238. https://doi.org/10.1016/S0079-6727(00)00005-7
    80. T. Polívka, D. Zigmantas, J. L. Herek, V. Sundström, J. A. Bautista, H. A. Frank. Direct observation of the S1 level of the carotenoid spheroidene using near-infrared femtosecond spectroscopy. 2000, TuF48. https://doi.org/10.1364/UP.2000.TuF48
    81. Brent P. Krueger, Jenny Yom, Peter J. Walla, Graham R. Fleming. Observation of the S1 state of spheroidene in LH2 by two-photon fluorescence excitation. Chemical Physics Letters 1999, 310 (1-2) , 57-64. https://doi.org/10.1016/S0009-2614(99)00729-0
    82. Tomáš Polívka, Jennifer L. Herek, Donatas Zigmantas, Hans-Erik Åkerlund, Villy Sundström. Direct observation of the (forbidden) S 1 state in carotenoids. Proceedings of the National Academy of Sciences 1999, 96 (9) , 4914-4917. https://doi.org/10.1073/pnas.96.9.4914
    83. Rik R. Tykwinski, Ulrich Gubler, Rainer E. Martin, François Diederich, Christian Bosshard, Peter Günter. Structure−Property Relationships in Third-Order Nonlinear Optical Chromophores. The Journal of Physical Chemistry B 1998, 102 (23) , 4451-4465. https://doi.org/10.1021/jp980829o
    84. Ritsuko Fujii, Kengo Onaka, Michitaka Kuki, Yasushi Koyama, Yasutaka Watanabe. The 2Ag− energies of all-trans-neurosporene and spheroidene as determined by fluorescence spectroscopy. Chemical Physics Letters 1998, 288 (5-6) , 847-853. https://doi.org/10.1016/S0009-2614(98)00376-5
    85. Harry A. Frank, James A. Bautista, David Gosztola, Michael R. Wasielewski. The Effect of Solvent on the Lifetime of the Lowest Excited Singlet S1 (21Ag) State of Spheroidene. 1998, 473-476. https://doi.org/10.1007/978-94-011-3953-3_113
    86. Alexander Angerhofer. Electron Magnetic Resonance of Carotenoids. , 203-222. https://doi.org/10.1007/0-306-48209-6_11
    87. Ronald L. Christensen. The Electronic States of Carotenoids. , 137-159. https://doi.org/10.1007/0-306-48209-6_8
    88. Yasushi Koyama, Ritsuko Fujii. Cis-Trans Carotenoids in Photosynthesis: Configurations, Excited-State Properties and Physiological Functions. , 161-188. https://doi.org/10.1007/0-306-48209-6_9
    89. Harry A. Frank, Ronald L. Christensen. Excited Electronic States, Photochemistry and Photophysics of Carotenoids. , 167-188. https://doi.org/10.1007/978-3-7643-7499-0_9