Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Visible Region Polarization Spectroscopic Studies of Template-Synthesized Gold Nanoparticles Oriented in Polyethylene

View Author Information
Department of Chemistry, Georgetown University, Washington, District of Columbia 20057
Cite this: J. Phys. Chem. B 1998, 102, 2, 361–371
Publication Date (Web):January 8, 1998
https://doi.org/10.1021/jp972869i
Copyright © 1998 American Chemical Society

    Article Views

    597

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    We have obtained visible range polarization spectra of template-synthesized gold nanoparticles oriented in polyethylene (PE). The plasmon resonance extinction bands observed with the incident electric field polarized parallel, perpendicular, and at intermediate angles to the direction of friction orientation are consistent with the long axis of the particles being aligned with the gross orientation axis. For all particle sizes considered (radii 16, 38, and 60 nm) the degree of linear dichroism increases with the amount of gold deposited in the template synthesis step prior to extraction and orientation. The experimental spectra agree with the predictions of the Rayleigh, Maxwell−Garnett, and dynamical Maxwell−Garnett theories only qualitatively. All of these treatments fail to predict the dependence of the spectral extinction intensities on the polarization angle θ. T-matrix scattering calculations suggest that the contribution from electric quadrupole modes cannot be ignored in the 38 and 60 nm radius particles. The calculated θ-dependence of the extinction intensity does not resemble experiment for 16 nm radius particles, but the theory−experiment comparison is more favorable for the larger radius systems. Some possible models for these observations are discussed.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Current address:  Department of Chemistry, Jordan University of Science and Technology, Irbid, Jordan.

    *

     Corresponding author.

    Cited By

    This article is cited by 80 publications.

    1. Xinfeng Liu, Bo Wu, Qing Zhang, Jing Ngei Yip, Guannan Yu, Qihua Xiong, Nripan Mathews, and Tze Chien Sum . Elucidating the Localized Plasmonic Enhancement Effects from a Single Ag Nanowire in Organic Solar Cells. ACS Nano 2014, 8 (10) , 10101-10110. https://doi.org/10.1021/nn505020e
    2. Santosh Kumar Meena and Marialore Sulpizi . Understanding the Microscopic Origin of Gold Nanoparticle Anisotropic Growth from Molecular Dynamics Simulations. Langmuir 2013, 29 (48) , 14954-14961. https://doi.org/10.1021/la403843n
    3. Lucia Hartmann, David Djurado, Ileana Florea, Jean-François Legrand, Angela Fiore, Peter Reiss, Stephen Doyle, Alexeï Vorobiev, Stéphanie Pouget, Frédéric Chandezon, Ovidiu Ersen, and Martin Brinkmann . Large-Scale Simultaneous Orientation of CdSe Nanorods and Regioregular Poly(3-hexylthiophene) by Mechanical Rubbing. Macromolecules 2013, 46 (15) , 6177-6186. https://doi.org/10.1021/ma400880x
    4. David B. Pedersen and, Shiliang Wang. Surface Plasmon Resonance Spectra of 2.8 ± 0.5 nm Diameter Copper Nanoparticles in Both Near and Far Fields. The Journal of Physical Chemistry C 2007, 111 (47) , 17493-17499. https://doi.org/10.1021/jp075076x
    5. Andrea Tao,, Franklin Kim,, Christian Hess,, Joshua Goldberger,, Rongrui He,, Yugang Sun,, Younan Xia, and, Peidong Yang. Langmuir−Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy. Nano Letters 2003, 3 (9) , 1229-1233. https://doi.org/10.1021/nl0344209
    6. Christy L. Haynes and, Richard P. Van Duyne. Dichroic Optical Properties of Extended Nanostructures Fabricated Using Angle-Resolved Nanosphere Lithography. Nano Letters 2003, 3 (7) , 939-943. https://doi.org/10.1021/nl0342287
    7. Dorota Romanska and, Maciej Mazur. Electrochemical Preparation of Thiol-Coated Silver Nanostructures on Highly Oriented Pyrolytic Graphite. Langmuir 2003, 19 (11) , 4532-4534. https://doi.org/10.1021/la026677c
    8. Maryann Gluodenis and, Colby A. Foss, Jr.. The Effect of Mutual Orientation on the Spectra of Metal Nanoparticle Rod−Rod and Rod−Sphere Pairs. The Journal of Physical Chemistry B 2002, 106 (37) , 9484-9489. https://doi.org/10.1021/jp014245p
    9. Epameinondas Leontidis,, Konstantina Kleitou,, Tasoula Kyprianidou-Leodidou,, Vlasoula Bekiari, and, Panagiotis Lianos. Gold Colloids from Cationic Surfactant Solutions. 1. Mechanisms That Control Particle Morphology. Langmuir 2002, 18 (9) , 3659-3668. https://doi.org/10.1021/la011368s
    10. Mahnaz El-Kouedi and, Colby A. Foss, Jr.. Optical Properties of Gold−Silver Iodide Nanoparticle Pair Structures. The Journal of Physical Chemistry B 2000, 104 (17) , 4031-4037. https://doi.org/10.1021/jp992632h
    11. Marie L. Sandrock and, Colby A. Foss, Jr.. Synthesis and Linear Optical Properties of Nanoscopic Gold Particle Pair Structures. The Journal of Physical Chemistry B 1999, 103 (51) , 11398-11406. https://doi.org/10.1021/jp992176x
    12. Maryann Gluodenis,, Christine Manley, and, Colby A. Foss, Jr.. In Situ Monitoring of the Change in Extinction of Stabilized Nanoscopic Gold Particles in Contact with Aqueous Phenol Solutions. Analytical Chemistry 1999, 71 (20) , 4554-4558. https://doi.org/10.1021/ac990639p
    13. Bianca M. I. van der Zande,, Laurent Pagès,, Rifat A. M. Hikmet, and, Alfons van Blaaderen. Optical Properties of Aligned Rod-Shaped Gold Particles Dispersed in Poly(vinyl alcohol) Films. The Journal of Physical Chemistry B 1999, 103 (28) , 5761-5767. https://doi.org/10.1021/jp9847383
    14. Marie L. Sandrock,, Charles D. Pibel,, Franz M. Geiger, and, Colby A. Foss, Jr.. Synthesis and Second-Harmonic Generation Studies of Noncentrosymmetric Gold Nanostructures. The Journal of Physical Chemistry B 1999, 103 (14) , 2668-2673. https://doi.org/10.1021/jp9845874
    15. Ser-Sing Chang,, Chao-Wen Shih,, Cheng-Dah Chen,, Wei-Cheng Lai, and, C. R. Chris Wang. The Shape Transition of Gold Nanorods. Langmuir 1999, 15 (3) , 701-709. https://doi.org/10.1021/la980929l
    16. Mahnaz El-Kouedi,, Marie L. Sandrock,, Carolyn J. Seugling, and, Colby A. Foss, Jr.. Electrochemical Synthesis of Asymmetric Gold−Silver Iodide Nanoparticle Composite Films. Chemistry of Materials 1998, 10 (11) , 3287-3289. https://doi.org/10.1021/cm980414f
    17. Stella M. Marinakos,, Louis C. Brousseau, III,, Angela Jones, and, Daniel L. Feldheim. Template Synthesis of One-Dimensional Au, Au−Poly(pyrrole), and Poly(pyrrole) Nanoparticle Arrays. Chemistry of Materials 1998, 10 (5) , 1214-1219. https://doi.org/10.1021/cm980059t
    18. Mona Vishwakarma, Debdip Bhandary. Micelle-mediated growth of gold nanocrystals on a surface. Computational Materials Science 2024, 243 , 113147. https://doi.org/10.1016/j.commatsci.2024.113147
    19. Sukhmander Singh, Adriaan S. Luyt, R. S. Bhoopal, Sonia Yogi, Bhavna Vidhani. Estimation of Mechanical Properties of Copper Powder Filled Linear Low-Density Polyethylene Composites. Journal of Vibration Engineering & Technologies 2022, 10 (7) , 2437-2448. https://doi.org/10.1007/s42417-022-00496-x
    20. Zahra Arefinia, Dip Prakash Samajdar. Novel semi-analytical optoelectronic modeling based on homogenization theory for realistic plasmonic polymer solar cells. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-82525-5
    21. Zahra Arefinia. Analytical Modeling Based on Modified Effective Medium Theories for Optical Properties of Photovoltaic Material-Incorporated Plasmonic Nanoparticles. Plasmonics 2020, 15 (6) , 1661-1673. https://doi.org/10.1007/s11468-020-01186-8
    22. Subhash Chandra, Hind Ahmed, Sarah McCormack. Polarization-sensitive anisotropic plasmonic properties of quantum dots and Au nanorod composites. Optics Express 2020, 28 (14) , 20191. https://doi.org/10.1364/OE.394560
    23. Yuta Ishigo, Hiroshi Nakashima, Masamichi Tsushima, Toru Shimada, Yushi Suzuki. Maximum size limit of Au nanoparticle applicable for surface enhanced infrared absorption. Applied Physics A 2019, 125 (12) https://doi.org/10.1007/s00339-019-3140-5
    24. Muna Abu-Dalo, Azza Jaradat, Borhan A. Albiss, Nathir A.F. Al-Rawashdeh. Green synthesis of TiO2 NPs/pristine pomegranate peel extract nanocomposite and its antimicrobial activity for water disinfection. Journal of Environmental Chemical Engineering 2019, 7 (5) , 103370. https://doi.org/10.1016/j.jece.2019.103370
    25. Zi Jing Li, Yan Jiang, Shao Ping Feng, Li Da Sun, Bo Zhou. Preparation of Gold Nanowires by Photochemical Glucose Reduction. Key Engineering Materials 2019, 807 , 11-17. https://doi.org/10.4028/www.scientific.net/KEM.807.11
    26. Colby A. Foss, Abu Z.M.S. Rahman, Khaled A. Eldressi, Salah A. Elsheikhi, Walid O.A. Salem. Optical Properties of Nanoparticle Pair Structures. 2019https://doi.org/10.1016/B978-0-12-803581-8.02410-3
    27. B. A. Belyaev, V. V. Tyurnev. Electrodynamic Calculation of Effective Electromagnetic Parameters of a Dielectric Medium with Metallic Nanoparticles of a Given Size. Journal of Experimental and Theoretical Physics 2018, 127 (4) , 608-619. https://doi.org/10.1134/S1063776118100114
    28. . Presentation Format. 2017, 201-313. https://doi.org/10.1201/9781315364568-9
    29. Angirekula Siva Rama Krishna, Samrat Lagnajeet Sabat, Mamidipudi Ghanashyam Krishna. The design of broad band anti-reflection coatings for solar cell applications. The European Physical Journal Applied Physics 2017, 77 (1) , 10301. https://doi.org/10.1051/epjap/2017160376
    30. S Requena, H Doan, S Raut, A D’Achille, Z Gryczynski, I Gryczynski, Y M Strzhemechny. Linear dichroism and optical anisotropy of silver nanoprisms in polymer films. Nanotechnology 2016, 27 (32) , 325704. https://doi.org/10.1088/0957-4484/27/32/325704
    31. Xia Tong, Hongyan Liang, Yanlong Liu, Long Tan, Dongling Ma, Yue Zhao. Anisotropic optical properties of oriented silver nanorice and nanocarrots in stretched polymer films. Nanoscale 2015, 7 (19) , 8858-8863. https://doi.org/10.1039/C5NR01782C
    32. Jian-Jun Li, Jian Zhu, Jun-Wu Zhao. Polarization-Dependent Resonance Light Scattering of Biomolecular Layer Coated Gold Nanoshell. Plasmonics 2014, 9 (1) , 47-54. https://doi.org/10.1007/s11468-013-9596-9
    33. Pawel Karpinski, Andrzej Miniewicz. Bidirectional molecular reorientation induced by localized surface plasmon. RSC Adv. 2014, 4 (6) , 2673-2677. https://doi.org/10.1039/C3RA45032E
    34. Tsuyoshi Akiyama, Kazuhiro Yoshida, Sunao Yamada. Selective implantation of gold nanoparticles onto the surface on one side of a self-standing polymer film. RSC Adv. 2014, 4 (107) , 62375-62379. https://doi.org/10.1039/C4RA09553G
    35. Young-Kwan Kim, Dal-Hee Min. Surface confined successive growth of silver nanoplates on a solid substrate with tunable surface plasmon resonance. RSC Advances 2014, 4 (14) , 6950. https://doi.org/10.1039/c3ra44280b
    36. Kitsakorn Locharoenrat. Copper Nanowires on NaCl (110) Template. Applied Mechanics and Materials 2013, 313-314 , 198-201. https://doi.org/10.4028/www.scientific.net/AMM.313-314.198
    37. Kitsakorn Locharoenrat, Goro Mizutani. Characterization, Optical, and Theoretical Investigation of Arrays of the Metallic Nanowires Fabricated by a Shadow Deposition Method. Advanced Materials Research 2012, 622-623 , 652-655. https://doi.org/10.4028/www.scientific.net/AMR.622-623.652
    38. Kitsakorn Locharoenrat. Nonlinear Optical Properties of Controlled Fabrication of Copper Nanowires by a Shadow Deposition. Advanced Materials Research 2012, 622-623 , 777-780. https://doi.org/10.4028/www.scientific.net/AMR.622-623.777
    39. Tae-Bong Hur, Tran X. Phuoc, Minking K. Chyu, Vyacheslav N. Romanov. Applications of pulsed laser ablation for enhanced gold nanofluids. Journal of Applied Physics 2012, 112 (6) https://doi.org/10.1063/1.4752876
    40. A L Lereu, A Passian, R H Farahi, L Abel-Tiberini, L Tetard, T Thundat. Spectroscopy and imaging of arrays of nanorods toward nanopolarimetry. Nanotechnology 2012, 23 (4) , 045701. https://doi.org/10.1088/0957-4484/23/4/045701
    41. André Pfaff, Vaishali S. Shinde, Yan Lu, Alexander Wittemann, Matthias Ballauff, Axel H. E. Müller. Glycopolymer‐Grafted Polystyrene Nanospheres. Macromolecular Bioscience 2011, 11 (2) , 199-210. https://doi.org/10.1002/mabi.201000324
    42. Feng-Hua Wang, Ya-Fang Tu, Jian-Ping Sang, Sheng-You Huang, Xian-Wu Zou. Aspect ratio-dependent optical properties of Ni–P/AAO nano-array composite structure. Journal of Materials Science 2010, 45 (14) , 3735-3740. https://doi.org/10.1007/s10853-010-4422-7
    43. Demetra S. Achilleos, Maria Vamvakaki. End-Grafted Polymer Chains onto Inorganic Nano-Objects. Materials 2010, 3 (3) , 1981-2026. https://doi.org/10.3390/ma3031981
    44. Colette McDonagh, Ondrej Stranik, Robert Nooney, Brian D MacCraith. Nanoparticle Strategies for Enhancing The Sensitivity of Fluorescence-Based Biochips. Nanomedicine 2009, 4 (6) , 645-656. https://doi.org/10.2217/nnm.09.48
    45. Vivek Sharma, Kyoungweon Park, Mohan Srinivasarao. Colloidal dispersion of gold nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly. Materials Science and Engineering: R: Reports 2009, 65 (1-3) , 1-38. https://doi.org/10.1016/j.mser.2009.02.002
    46. Francesco Ciardelli, Serena Coiai, Elisa Passaglia, Andrea Pucci, Giacomo Ruggeri. Nanocomposites based on polyolefins and functional thermoplastic materials. Polymer International 2008, 57 (6) , 805-836. https://doi.org/10.1002/pi.2415
    47. B.G. McMillan, L.E.A. Berlouis, F.R. Cruickshank, P.F. Brevet. Reflectance and SERS from an ordered array of gold nanorods. Electrochimica Acta 2007, 53 (3) , 1157-1163. https://doi.org/10.1016/j.electacta.2007.02.055
    48. Kitsakorn Locharoenrat, Akira Sugawara, Saho Takase, Haruyuki Sano, Goro Mizutani. Shadow deposition of copper nanowires on the faceted NaCl(1 1 0) template. Surface Science 2007, 601 (18) , 4449-4453. https://doi.org/10.1016/j.susc.2007.04.147
    49. J. Zhu. Polarization direction characters of local electric field around dielectric coated gold nanowire. Applied Physics A 2007, 88 (4) , 673-677. https://doi.org/10.1007/s00339-007-4026-5
    50. Andrea Pucci, Giacomo Ruggeri, Simona Bronco, Monica Bertoldo, Chiara Cappelli, Francesco Ciardelli. Conferring dichroic properties and optical responsiveness to polyolefins through organic chromophores and metal nanoparticles. Progress in Organic Coatings 2007, 58 (2-3) , 105-116. https://doi.org/10.1016/j.porgcoat.2006.08.018
    51. Paolo Ugo, Ligia Maria Moretto. TEMPLATE DEPOSITION OF METALS. 2007, 678-709. https://doi.org/10.1016/B978-044451958-0.50030-6
    52. J. R. Subiela, J. López, R. Balart, J. J. García-Jareño, F. Vicente. Electrical properties of EVA filled by zinc powder. Journal of Materials Science 2006, 41 (19) , 6396-6402. https://doi.org/10.1007/s10853-006-0717-0
    53. Mei-Kuan Lai, Ching-Yu Chang, Yi-Wen Lien, Raymond Chien-Chao Tsiang. Application of gold nanoparticles to microencapsulation of thioridazine. Journal of Controlled Release 2006, 111 (3) , 352-361. https://doi.org/10.1016/j.jconrel.2005.12.017
    54. Andrea Pucci, Marco Bernabò, Paolo Elvati, L. Itzel Meza, Fernando Galembeck, Carlos Alberto de Paula Leite, Nicola Tirelli, Giacomo Ruggeri. Photoinduced formation of gold nanoparticles into vinyl alcohol based polymers. J. Mater. Chem. 2006, 16 (11) , 1058-1066. https://doi.org/10.1039/B511198F
    55. C. J. Murphy, C. J. Orendorff. Alignment of Gold Nanorods in Polymer Composites and on Polymer Surfaces. Advanced Materials 2005, 17 (18) , 2173-2177. https://doi.org/10.1002/adma.200501042
    56. Jorge Pérez-Juste, Isabel Pastoriza-Santos, Luis M. Liz-Marzán, Paul Mulvaney. Gold nanorods: Synthesis, characterization and applications. Coordination Chemistry Reviews 2005, 249 (17-18) , 1870-1901. https://doi.org/10.1016/j.ccr.2005.01.030
    57. Brian G. McMillan, Léonard E. A. Berlouis, Francis R. Cruickshank, David Pugh, Pierre-François Brevet. Transverse and longitudinal surface plasmon resonances of a hexagonal array of gold nanorods embedded in an alumina matrix. Applied Physics Letters 2005, 86 (21) https://doi.org/10.1063/1.1939070
    58. O. Stranik, H.M. McEvoy, C. McDonagh, B.D. MacCraith. Plasmonic enhancement of fluorescence for sensor applications. Sensors and Actuators B: Chemical 2005, 107 (1) , 148-153. https://doi.org/10.1016/j.snb.2004.08.032
    59. Danilo C. Pozzo, Kate R. Hollabaugh, Lynn M. Walker. Rheology and phase behavior of copolymer-templated nanocomposite materials. Journal of Rheology 2005, 49 (3) , 759-782. https://doi.org/10.1122/1.1888665
    60. Christy L. Haynes, Amanda J. Haes, Adam D. McFarland, Richard P. Van Duyne. Nanoparticles with Tunable Localized Surface Plasmon Resonances. 2005, 47-99. https://doi.org/10.1007/0-387-27617-3_3
    61. Maciej Mazur. Electrochemically prepared silver nanoflakes and nanowires. Electrochemistry Communications 2004, 6 (4) , 400-403. https://doi.org/10.1016/j.elecom.2004.02.011
    62. T. Huber, A. Nikolaeva, D. Gitsu, L. Konopko, M.J. Graf, C.A. Foss. SdH oscillations in the contact resistance of bismuth nanowires. Materials Science and Engineering: C 2003, 23 (6-8) , 1099-1101. https://doi.org/10.1016/j.msec.2003.09.083
    63. G. Carotenuto, L. Nicolais. Nanocomposites, Metal‐Filled. 2003https://doi.org/10.1002/0471440264.pst493
    64. C.A. Foss. Optical Properties of Nanoparticle Pair Structures. 2003, 1-6. https://doi.org/10.1016/B0-08-043152-6/01875-1
    65. Achim Amma, Thomas E. Mallouk. Chemical and Biomolecular Interactions in the Assembly of Nanowires. 2003, 235-254. https://doi.org/10.1007/978-0-387-28745-4_8
    66. Shujuan Huang, Kazuyuki Minami, Hiroyuki Sakaue, Shoso Shingubara, Takayuki Takahagi. Optical spectroscopic studies of the dispersibility of gold nanoparticle solutions. Journal of Applied Physics 2002, 92 (12) , 7486-7490. https://doi.org/10.1063/1.1518758
    67. Jean-Claude Bradley, Sundar Babu, Beth Carroll, Aditya Mittal. A study of spatially coupled bipolar electrochemistry on the sub-micrometer scale: colloidal particles on surfaces and cylinders in nuclear-track etched membranes. Journal of Electroanalytical Chemistry 2002, 522 (1) , 75-85. https://doi.org/10.1016/S0022-0728(02)00662-9
    68. S.L. Pan, M. Chen, H.L. Li. Aqueous gold sols of rod-shaped particles prepared by the template method. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2001, 180 (1-2) , 55-62. https://doi.org/10.1016/S0927-7757(00)00759-7
    69. Mihai Rusu, Nicoleta Sofian, Daniela Rusu. Mechanical and thermal properties of zinc powder filled high density polyethylene composites. Polymer Testing 2001, 20 (4) , 409-417. https://doi.org/10.1016/S0142-9418(00)00051-9
    70. Marie L. Sandrock, Mahnaz El-Kouedi, Maryann Gluodenis, Colby A. Foss. Optical Properties of Nanoparticle Pair Structures. MRS Proceedings 2001, 635 https://doi.org/10.1557/PROC-635-C2.1
    71. Alethia G. de León, Yvo Dirix, Yannick Staedler, Kirill Feldman, Georg Hähner, Walter R. Caseri, Paul Smith. Method for fabricating pixelated, multicolor polarizing films. Applied Optics 2000, 39 (26) , 4847. https://doi.org/10.1364/AO.39.004847
    72. R. Ruppin. Evaluation of extended Maxwell-Garnett theories. Optics Communications 2000, 182 (4-6) , 273-279. https://doi.org/10.1016/S0030-4018(00)00825-7
    73. T. E. Huber, M. J. Graf, C. A. Foss, P. Constant. Processing and Characterization of High-conductance Bismuth Wire Array Composites. Journal of Materials Research 2000, 15 (8) , 1816-1821. https://doi.org/10.1557/JMR.2000.0262
    74. T.E. Huber, M.J. Graf, C.A. Foss, P. Constant. Thermopower of Bi Nanowire Array Composites.. MRS Proceedings 2000, 626 https://doi.org/10.1557/PROC-626-Z14.2
    75. Bianca M. I. van der Zande, Marcel R. Böhmer, Lambertus G. J. Fokkink, Christian Schönenberger. Colloidal Dispersions of Gold Rods:  Synthesis and Optical Properties. Langmuir 2000, 16 (2) , 451-458. https://doi.org/10.1021/la9900425
    76. Yvo Dirix, Cyril Darribère, Wilbert Heffels, Cees Bastiaansen, Walter Caseri, Paul Smith. Optically anisotropic polyethylene–gold nanocomposites. Applied Optics 1999, 38 (31) , 6581. https://doi.org/10.1364/AO.38.006581
    77. Veronica M. Cepak, C. R. Martin. Preparation of Polymeric Micro- and Nanostructures Using a Template-Based Deposition Method. Chemistry of Materials 1999, 11 (5) , 1363-1367. https://doi.org/10.1021/cm9811500
    78. M. L. Sandrock, Colby A. Foss. Understanding the Second Harmonic Generation of Light from Nanometal Composites. MRS Proceedings 1999, 581 https://doi.org/10.1557/PROC-581-615
    79. L.C. Brousseau, S.M. Marinakos, J.P. Novak, D.L. Feldheim. Electronic properties of single Au nanocrystals and synthesis of 1-dimensional nanocrystal arrays. Crystal Engineering 1998, 1 (2) , 129-137. https://doi.org/10.1016/S0025-5408(98)00087-7
    80. T.E. Huber, P. Constant, K. Celestine. Magnetoresistance and thermopower of ultrafine bismuth nanowire arrays. , 356-360. https://doi.org/10.1109/ICT.2001.979905