ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Fast Energy Transfer and Exciton Dynamics in Chlorosomes of the Green Sulfur Bacterium Chlorobium tepidum

View Author Information
Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16, Prague 2, Czech Republic, and Department of Chemical Physics, Lund University, Box 124, 22100 Lund, Sweden
Cite this: J. Phys. Chem. A 1998, 102, 23, 4392–4398
Publication Date (Web):May 15, 1998
https://doi.org/10.1021/jp973227y
Copyright © 1998 American Chemical Society

    Article Views

    285

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    The excited-state structure and energy-transfer dynamics, including their dependence on temperature and redox conditions, were studied in chlorosomes of the green sulfur bacterium Chlorobium tepidum at low temperatures by two independent methods:  spectral hole burning in absorption and fluorescence spectra and isotropic one-color pump−probe spectroscopy with ∼100 fs resolution. Hole-burning experiments show that the lowest excited state (LES) of BChl c aggregates is distributed within approximately 760−800 nm, while higher excitonic states of BChl c (with absorption maximum at 750 nm) possess the main oscillator strength. The excited-state lifetime determined from hole-burning experiments at anaerobic conditions was 5.75 ps and most likely reflects energy transfer between BChl c clusters. Isotropic one-color absorption difference signals were measured from 720 to 790 nm at temperatures ranging from 5 to 65 K, revealing BChl c photobleaching and stimulated emission kinetics with four major components, with lifetimes of 200−300 fs, 1.7−1.8 ps, 5.4−5.9 ps, and 30−40 ps at anaerobic conditions. The lifetimes are attributed to different relaxation processes of BChl c, taking into account their different spectral distributions as well as limitations arising from results of hole burning. Evidence for at least two spectral forms of BChl c in chlorosome is reported. There is a striking similarity between the spectrum and kinetics of the 5.4−5.9 ps component with those of the LES determined from hole burning. A pronounced change of isotropic decays was observed at around 50 K. The temperature dependence of the isotropic decays is correlated with temperature-dependent changes of BChl c fluorescence emission. Further, the temperature decrease leads to an increase in the relative amplitude of the 200−300 fs component. At aerobic conditions, both hole burning and pump−probe spectroscopy show that the lifetime of the LES shortens to ∼2.6 ps, as a result of excitation quenching by a mechanism presumably protecting the cells against superoxide-induced damage. This mechanism operates on at least two levels, the second one being characterized by a 14−16 ps lifetime.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     Corresponding author:  Telephone +420 2191 1307; Fax +420 2191 1249; E-mail [email protected].

     Charles University.

     Lund University.

    Cited By

    This article is cited by 55 publications.

    1. Vesna Erić, Xinmeng Li, Lolita Dsouza, Annemarie Huijser, Alfred R. Holzwarth, Francesco Buda, G. J. Agur Sevink, Huub J. M. de Groot, Thomas L. C. Jansen. Observation of Dark States in Two-Dimensional Electronic Spectra of Chlorosomes. The Journal of Physical Chemistry B 2024, 128 (15) , 3575-3584. https://doi.org/10.1021/acs.jpcb.4c00067
    2. Yipeng Zhang, Catrina P. Oberg, Yue Hu, Hongxue Xu, Mengwen Yan, Gregory D. Scholes, Mingfeng Wang. Molecular and Supramolecular Materials: From Light-Harvesting to Quantum Information Science and Technology. The Journal of Physical Chemistry Letters 2024, 15 (12) , 3294-3316. https://doi.org/10.1021/acs.jpclett.4c00264
    3. Sean K. Frehan, Lolita Dsouza, Xinmeng Li, Vesna Eríc, Thomas L. C. Jansen, Guido Mul, Alfred R. Holzwarth, Francesco Buda, G. J. Agur Sevink, Huub J. M. de Groot, Annemarie Huijser. Photon Energy-Dependent Ultrafast Exciton Transfer in Chlorosomes of Chlorobium tepidum and the Role of Supramolecular Dynamics. The Journal of Physical Chemistry B 2023, 127 (35) , 7581-7589. https://doi.org/10.1021/acs.jpcb.3c05282
    4. Vesna Erić, Jorge Luis Castro, Xinmeng Li, Lolita Dsouza, Sean K. Frehan, Annemarie Huijser, Alfred R. Holzwarth, Francesco Buda, G. J. Agur Sevink, Huub J. M. de Groot, Thomas L. C. Jansen. Ultrafast Anisotropy Decay Reveals Structure and Energy Transfer in Supramolecular Aggregates. The Journal of Physical Chemistry B 2023, 127 (34) , 7487-7496. https://doi.org/10.1021/acs.jpcb.3c04719
    5. Xinmeng Li, Francesco Buda, Huub J. M. de Groot, G. J. Agur Sevink. Dynamic Disorder Drives Exciton Transfer in Tubular Chlorosomal Assemblies. The Journal of Physical Chemistry B 2020, 124 (20) , 4026-4035. https://doi.org/10.1021/acs.jpcb.0c00441
    6. Mahboobe Jassas, Carrie Goodson, Robert E. Blankenship, Ryszard Jankowiak, Adam Kell. On Excitation Energy Transfer within the Baseplate BChl a–CsmA Complex of Chloroflexus aurantiacus. The Journal of Physical Chemistry B 2019, 123 (46) , 9786-9791. https://doi.org/10.1021/acs.jpcb.9b08043
    7. Xinmeng Li, Francesco Buda, Huub J. M. de Groot, G. J. Agur. Sevink. Molecular Insight in the Optical Response of Tubular Chlorosomal Assemblies. The Journal of Physical Chemistry C 2019, 123 (26) , 16462-16478. https://doi.org/10.1021/acs.jpcc.9b03913
    8. Tihana Mirkovic, Evgeny E. Ostroumov, Jessica M. Anna, Rienk van Grondelle, Govindjee, and Gregory D. Scholes . Light Absorption and Energy Transfer in the Antenna Complexes of Photosynthetic Organisms. Chemical Reviews 2017, 117 (2) , 249-293. https://doi.org/10.1021/acs.chemrev.6b00002
    9. Adam Kell, Robert E. Blankenship, and Ryszard Jankowiak . Effect of Spectral Density Shapes on the Excitonic Structure and Dynamics of the Fenna–Matthews–Olson Trimer from Chlorobaculum tepidum. The Journal of Physical Chemistry A 2016, 120 (31) , 6146-6154. https://doi.org/10.1021/acs.jpca.6b03107
    10. Adam Kell, Jinhai Chen, Mahboobe Jassas, Joseph Kuo-Hsiang Tang, and Ryszard Jankowiak . Alternative Excitonic Structure in the Baseplate (BChl a–CsmA Complex) of the Chlorosome from Chlorobaculum tepidum. The Journal of Physical Chemistry Letters 2015, 6 (14) , 2702-2707. https://doi.org/10.1021/acs.jpclett.5b01074
    11. Nicolas P. D. Sawaya, Joonsuk Huh, Takatoshi Fujita, Semion K. Saikin, and Alán Aspuru-Guzik . Fast Delocalization Leads To Robust Long-Range Excitonic Transfer in a Large Quantum Chlorosome Model. Nano Letters 2015, 15 (3) , 1722-1729. https://doi.org/10.1021/nl504399d
    12. Sunhong Jun, Cheolhee Yang, Megumi Isaji, Hitoshi Tamiaki, Jeongho Kim, and Hyotcherl Ihee . Coherent Oscillations in Chlorosome Elucidated by Two-Dimensional Electronic Spectroscopy. The Journal of Physical Chemistry Letters 2014, 5 (8) , 1386-1392. https://doi.org/10.1021/jz500328w
    13. Dariusz M. Niedzwiedzki, Gregory S. Orf, Marcus Tank, Kajetan Vogl, Donald A. Bryant, and Robert E. Blankenship . Photophysical Properties of the Excited States of Bacteriochlorophyll f in Solvents and in Chlorosomes. The Journal of Physical Chemistry B 2014, 118 (9) , 2295-2305. https://doi.org/10.1021/jp409495m
    14. Joonsuk Huh, Semion K. Saikin, Jennifer C. Brookes, Stéphanie Valleau, Takatoshi Fujita, and Alán Aspuru-Guzik . Atomistic Study of Energy Funneling in the Light-Harvesting Complex of Green Sulfur Bacteria. Journal of the American Chemical Society 2014, 136 (5) , 2048-2057. https://doi.org/10.1021/ja412035q
    15. Juha M. Linnanto and Jouko E. I. Korppi-Tommola . Exciton Description of Chlorosome to Baseplate Excitation Energy Transfer in Filamentous Anoxygenic Phototrophs and Green Sulfur Bacteria. The Journal of Physical Chemistry B 2013, 117 (38) , 11144-11161. https://doi.org/10.1021/jp4011394
    16. Takatoshi Fujita, Jennifer C. Brookes, Semion K. Saikin, and Alán Aspuru-Guzik . Memory-Assisted Exciton Diffusion in the Chlorosome Light-Harvesting Antenna of Green Sulfur Bacteria. The Journal of Physical Chemistry Letters 2012, 3 (17) , 2357-2361. https://doi.org/10.1021/jz3008326
    17. Jakub Dostál, Tomáš Mančal, Ramu-nas Augulis, František Vácha, Jakub Pšenčík, and Donatas Zigmantas . Two-Dimensional Electronic Spectroscopy Reveals Ultrafast Energy Diffusion in Chlorosomes. Journal of the American Chemical Society 2012, 134 (28) , 11611-11617. https://doi.org/10.1021/ja3025627
    18. Annemarie Huijser,, Bart M. J. M. Suijkerbuijk,, Robertus J. M. Klein Gebbink,, Tom J. Savenije, and, Laurens D.A. Siebbeles. Efficient Exciton Transport in Layers of Self-Assembled Porphyrin Derivatives. Journal of the American Chemical Society 2008, 130 (8) , 2485-2492. https://doi.org/10.1021/ja075162a
    19. Burkhard Zietz,, Valentin I. Prokhorenko,, Alfred R. Holzwarth, and, Tomas Gillbro. Comparative Study of the Energy Transfer Kinetics in Artificial BChl e Aggregates Containing a BChl a Acceptor and BChl e-Containing Chlorosomes of Chlorobium phaeobacteroides. The Journal of Physical Chemistry B 2006, 110 (3) , 1388-1393. https://doi.org/10.1021/jp053467a
    20. Yoshinori Kakitani,, Ferdy S. Rondonuwu,, Tadashi Mizoguchi,, Yasutaka Watanabe, and, Yasushi Koyama. Energy Dissipations in Chlorosomes:  Emission from the Qy State Following Singlet−Singlet and Triplet−Triplet Annihilation Reactions in the Cylindrical Aggregate and Its Reversible Dissociation into the Piggy-Back Dimers. The Journal of Physical Chemistry B 2003, 107 (51) , 14545-14555. https://doi.org/10.1021/jp0300288
    21. Tonu Reinot,, Valter Zazubovich,, John M. Hayes, and, Gerald J. Small. New Insights on Persistent Nonphotochemical Hole Burning and Its Application to Photosynthetic Complexes. The Journal of Physical Chemistry B 2001, 105 (22) , 5083-5098. https://doi.org/10.1021/jp010126y
    22. Donatella Carbonera,, Enrica Bordignon, and, Giovanni Giacometti, , Giancarlo Agostini, , Alberto Vianelli and, Candida Vannini. Fluorescence and Absorption Detected Magnetic Resonance of Chlorosomes from Green Bacteria Chlorobium tepidum and Chloroflexus aurantiacus. A Comparative Study. The Journal of Physical Chemistry B 2001, 105 (1) , 246-255. https://doi.org/10.1021/jp001778+
    23. R. Jankowiak,, V. Zazubovich,, M. Rätsep,, S. Matsuzaki,, M. Alfonso,, R. Picorel,, M. Seibert, and, G. J. Small. The CP43 Core Antenna Complex of Photosystem II Possesses Two Quasi-Degenerate and Weakly Coupled Qy-Trap States. The Journal of Physical Chemistry B 2000, 104 (49) , 11805-11815. https://doi.org/10.1021/jp0025431
    24. Lolita Dsouza, Xinmeng Li, Vesna Erić, Annemarie Huijser, Thomas L. C. Jansen, Alfred R. Holzwarth, Francesco Buda, Donald A. Bryant, Salima Bahri, Karthick Babu Sai Sankar Gupta, G. J. Agur Sevink, Huub J. M. de Groot. An integrated approach towards extracting structural characteristics of chlorosomes from a bchQ mutant of Chlorobaculum tepidum. Physical Chemistry Chemical Physics 2024, 156 https://doi.org/10.1039/D4CP00221K
    25. Kateřina Fatková, Radim Cajzl, Jaroslav V. Burda. The vertical excitation energies and a lifetime of the two lowest singlet excited states of the conjugated polyenes from C2 to C22 : Ab initio, DFT, and semiclassical MNDO‐MD simulations. Journal of Computational Chemistry 2023, 44 (6) , 777-787. https://doi.org/10.1002/jcc.27040
    26. Sunhong Jun, Cheolhee Yang, Tae Wu Kim, Megumi Isaji, Hitoshi Tamiaki, Hyotcherl Ihee, Jeongho Kim. Role of thermal excitation in ultrafast energy transfer in chlorosomes revealed by two-dimensional electronic spectroscopy. Physical Chemistry Chemical Physics 2015, 17 (27) , 17872-17879. https://doi.org/10.1039/C5CP01355K
    27. Semion K. Saikin, Yadana Khin, Joonsuk Huh, Moataz Hannout, Yaya Wang, Farrokh Zare, Alán Aspuru-Guzik, Joseph Kuo-Hsiang Tang. Chromatic acclimation and population dynamics of green sulfur bacteria grown with spectrally tailored light. Scientific Reports 2014, 4 (1) https://doi.org/10.1038/srep05057
    28. Takatoshi Fujita, Joonsuk Huh, Semion K. Saikin, Jennifer C. Brookes, Alán Aspuru-Guzik. Theoretical characterization of excitation energy transfer in chlorosome light-harvesting antennae from green sulfur bacteria. Photosynthesis Research 2014, 120 (3) , 273-289. https://doi.org/10.1007/s11120-014-9978-7
    29. Marc Jendrny, Thijs J. Aartsma, Jürgen Köhler. Insights into the Excitonic States of Individual Chlorosomes from Chlorobaculum tepidum. Biophysical Journal 2014, 106 (9) , 1921-1927. https://doi.org/10.1016/j.bpj.2014.03.020
    30. Jakub Dostál, Tomáš Mančal, František Vácha, Jakub Pšenčík, Donatas Zigmantas. Unraveling the nature of coherent beatings in chlorosomes. The Journal of Chemical Physics 2014, 140 (11) https://doi.org/10.1063/1.4868557
    31. David Paleček, Roman Dědic, Jan Alster, Jan Hála. Low-temperature spectroscopy of bacteriochlorophyll c aggregates. Photosynthesis Research 2014, 119 (3) , 331-338. https://doi.org/10.1007/s11120-013-9955-6
    32. Sunao Shoji, Takeshi Hashishin, Hitoshi Tamiaki. Construction of Chlorosomal Rod Self‐Aggregates in the Solid State on Any Substrates from Synthetic Chlorophyll Derivatives Possessing an Oligomethylene Chain at the 17‐Propionate Residue. Chemistry – A European Journal 2012, 18 (42) , 13331-13341. https://doi.org/10.1002/chem.201201935
    33. Jari Martiskainen, Juha Linnanto, Viivi Aumanen, Pasi Myllyperkiö, Jouko Korppi‐Tommola. Excitation Energy Transfer in Isolated Chlorosomes from Chlorobaculum tepidum and Prosthecochloris aestuarii. Photochemistry and Photobiology 2012, 88 (3) , 675-683. https://doi.org/10.1111/j.1751-1097.2012.01098.x
    34. A. Pandit, R.N. Frese. Artificial Leaves. 2012, 657-677. https://doi.org/10.1016/B978-0-08-087872-0.00135-9
    35. Yoshitaka Saga, Yutaka Shibata, Hitoshi Tamiaki. Spectral properties of single light-harvesting complexes in bacterial photosynthesis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2010, 11 (1) , 15-24. https://doi.org/10.1016/j.jphotochemrev.2010.02.002
    36. Yutaka Shibata, Yoshitaka Saga, Hitoshi Tamiaki, Shigeru Itoh. Anisotropic distribution of emitting transition dipoles in chlorosome from Chlorobium tepidum: fluorescence polarization anisotropy study of single chlorosomes. Photosynthesis Research 2009, 100 (2) , 67-78. https://doi.org/10.1007/s11120-009-9429-z
    37. Laurens D. A. Siebbeles, Annemarie Huijser, Tom J. Savenije. Effects of molecular organization on exciton diffusion in thin films of bioinspired light-harvesting molecules. Journal of Materials Chemistry 2009, 19 (34) , 6067. https://doi.org/10.1039/b902593f
    38. Jan Alster, Anita Zupcanova, Frantisek Vacha, Jakub Psencik. Effect of quinones on formation and properties of bacteriochlorophyll c aggregates. Photosynthesis Research 2008, 95 (2-3) , 183-189. https://doi.org/10.1007/s11120-007-9259-9
    39. Yutaka Shibata, Yoshitaka Saga, Hitoshi Tamiaki, Shigeru Itoh. Low-Temperature Fluorescence from Single Chlorosomes, Photosynthetic Antenna Complexes of Green Filamentous and Sulfur Bacteria. Biophysical Journal 2006, 91 (10) , 3787-3796. https://doi.org/10.1529/biophysj.106.084178
    40. Wei-min Liu, Yong-li Yan, Kang-jun Liu, Chun-he Xu, Shi-xiong Qian. The study of photo-induced ultrafast dynamics in light-harvesting complex LH2 of purple bacteria. Frontiers of Physics in China 2006, 1 (3) , 283-294. https://doi.org/10.1007/s11467-006-0022-z
    41. Liu Kang-Jun, Liu Wei-Min, Yan Yong-Li, Dong Zhi-Wei, Liu Yuan, Xu Chun-He, Qian Shi-Xiong. Effect of Photo-Oxidation on Energy Transfer in Light Harvesting Complex (LH2) from Rhodobacter Sphaeroides 601. Chinese Physics Letters 2006, 23 (9) , 2598-2601. https://doi.org/10.1088/0256-307X/23/9/069
    42. Weimin Liu, Yidong Lu, Yuan Liu, Kangjun Liu, Yongli Yan, Jilie Kong, Chunhe Xu, Shixiong Qian. Effect of the in situ electrochemical oxidation on the pigment–protein arrangement and energy transfer in light-harvesting complex from Rhodobacter sphaeroides 601. Biochemical and Biophysical Research Communications 2006, 340 (2) , 505-511. https://doi.org/10.1016/j.bbrc.2005.12.034
    43. A. Granzhan, A. Penzkofer, G. Hauska. Photo-degradation of bacteriochlorophyll c in intact cells and extracts from Chlorobium tepidum. Journal of Photochemistry and Photobiology A: Chemistry 2004, 165 (1-3) , 75-89. https://doi.org/10.1016/j.jphotochem.2004.03.001
    44. Jakub Pšenčík, Ying-Zhong Ma, Juan B. Arellano, Jan Hála, Tomas Gillbro. Excitation Energy Transfer Dynamics and Excited-State Structure in Chlorosomes of Chlorobium phaeobacteroides. Biophysical Journal 2003, 84 (2) , 1161-1179. https://doi.org/10.1016/S0006-3495(03)74931-5
    45. T. Reinot, G. J. Small. Modeling of dispersive nonphotochemical hole growth kinetics data: Al-phthalocyanine tetrasulphonate in hyperquenched glassy water. The Journal of Chemical Physics 2000, 113 (22) , 10207-10214. https://doi.org/10.1063/1.1323228
    46. V.I. Prokhorenko, D.B. Steensgaard, A.R. Holzwarth. Exciton Dynamics in the Chlorosomal Antennae of the Green Bacteria Chloroflexus aurantiacus and Chlorobium tepidum. Biophysical Journal 2000, 79 (4) , 2105-2120. https://doi.org/10.1016/S0006-3495(00)76458-7
    47. H.-M. Wu, M. Rätsep, C.S. Young, R. Jankowiak, R.E. Blankenship, G.J. Small. High-Pressure and Stark Hole-Burning Studies of Chlorosome Antennas from Chlorobium tepidum. Biophysical Journal 2000, 79 (3) , 1561-1572. https://doi.org/10.1016/S0006-3495(00)76407-1
    48. Dorte B. Steensgaard, Cornelis A. van Walree, Hjalmar Permentier, Lluis Bañeras, Carles M. Borrego, Jesus Garcia-Gil, Thijs J. Aartsma, Jan Amesz, Alfred R. Holzwarth. Fast energy transfer between BChl d and BChl c in chlorosomes of the green sulfur bacterium Chlorobium limicola. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2000, 1457 (1-2) , 71-80. https://doi.org/10.1016/S0005-2728(99)00112-7
    49. Robert S. Knox. Ultrashort processes and biology. Journal of Photochemistry and Photobiology B: Biology 1999, 49 (2-3) , 81-88. https://doi.org/10.1016/S1011-1344(99)00060-3
    50. Cornells A. van Walree, Yumiko Sakuragi, Dorte B. Steensgaard, Carola S. Bösinger, Niels‐Ulrik Frigaard, Raymond P. Cox, Alfred R. Holzwarth, Mette Miller. Effect of Alkaline Treatment on Bacteriochlorophyll a , Quinones and Energy Transfer in Chlorosomes from Chlorobium tepidum and Chlorobium phaeobacteroides. Photochemistry and Photobiology 1999, 69 (3) , 322-328. https://doi.org/10.1111/j.1751-1097.1999.tb03293.x
    51. Y.-Z. Ma, J. Aschenbrücker, M. Miller, T. Gillbro. Ground-state vibrational coherence in chlorosomes of the green sulfur photosynthetic bacterium Chlorobium phaeobacteroides. Chemical Physics Letters 1999, 300 (3-4) , 465-472. https://doi.org/10.1016/S0009-2614(98)01368-2
    52. D. Carbonera, G. Giacometti, C. Vannini, P. D. Gerola, A. Vianelli, AL. Maniero, L. C. Brunel. Electron Magnetic Resonance of the Chlorosomes from Green Sulfur Bacterium Chlorobium Tepidum. 1998, 109-112. https://doi.org/10.1007/978-94-011-3953-3_26
    53. J. Aschenbrücker, Y.-Z. Ma, M. Miller, T. Gillbro. Redox- and Pump Intensity Dependence of Energy Transfer in Chlorosomes of cb. Phaeobacteroides. 1998, 153-156. https://doi.org/10.1007/978-94-011-3953-3_37
    54. C. Vannini, M. Granata, M. T. Balsemin, P. D. Gerola, A. Vianelli. Light Intensity Acclimation of the Photosynthetic Apparatus in Chlorobium tepidum. 1998, 2269-2272. https://doi.org/10.1007/978-94-011-3953-3_531
    55. Dieter Leupold, Heiko Lokstein, Hugo Scheer. Excitation Energy Transfer Between (Bacterio)Chlorophylls—the Role of Excitonic Coupling. , 413-430. https://doi.org/10.1007/1-4020-4516-6_29

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect