ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Two-Dimensional Line Shapes Derived from Coherent Third-Order Nonlinear Spectroscopy

View Author Information
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Cite this: J. Phys. Chem. A 2000, 104, 18, 4247–4255
Publication Date (Web):December 16, 1999
https://doi.org/10.1021/jp993207r
Copyright © 2000 American Chemical Society

    Article Views

    1403

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (110 KB)

    Abstract

    Two-dimensional (2D) line shapes derived from four types of coherent third-order nonlinear spectroscopies as a function of two independent time or frequency variables are compared. The signals scattered into two wave-vector-matching directions in the limits of high-time or high-frequency resolution are calculated for an inhomogeneously broadened ensemble of two-level systems with phenomenological dephasing and population relaxation times. While one-dimensional (1D) line shape analysis for this model is ambiguous, the contours of these 2D line shapes are shown to be characteristic of the relative time scales of the three relevant line-broadening parameters. These broadening mechanisms are also apparent by comparing 2D spectral profiles along the diagonal and antidiagonal frequency axes. For time domain experiments, in analogy with NMR correlation spectroscopy, the radiated signal is observed as a function of the two coherence periods and is 2D Fourier transformed to obtain a line shape. For experiments based on the photon echo, the ellipticity of the absolute value 2D line shape is related to the ratio of the inhomogeneous width to the dephasing rate, whereas experiments based on the transient grating method are shown to be functionally 1D. For frequency domain experiments, the contours of the 2D line shape can yield information on static and both dynamic broadening mechanisms. While the addition of spectral diffusion to such calculations will modify these results for frequency domain experiments, characterizing these dynamics in the time domain naturally leads to a 3D experiment analogous to the spin diffusion experiment in NMR.

     E-mail:  [email protected]. Fax:  (617) 253-7030.

    Cited By

    This article is cited by 127 publications.

    1. Ajay Ram Srimath Kandada, Hao Li, Eric R. Bittner, Carlos Silva-Acuña. Homogeneous Optical Line Widths in Hybrid Ruddlesden–Popper Metal Halides Can Only Be Measured Using Nonlinear Spectroscopy. The Journal of Physical Chemistry C 2022, 126 (12) , 5378-5387. https://doi.org/10.1021/acs.jpcc.2c00658
    2. Somnath Biswas, JunWoo Kim, Xinzi Zhang, Gregory D. Scholes. Coherent Two-Dimensional and Broadband Electronic Spectroscopies. Chemical Reviews 2022, 122 (3) , 4257-4321. https://doi.org/10.1021/acs.chemrev.1c00623
    3. Jennifer C. Flanagan, Alfredo E. Cardenas, Carlos R. Baiz. Ultrafast Spectroscopy of Lipid–Water Interfaces: Transmembrane Crowding Drives H-Bond Dynamics. The Journal of Physical Chemistry Letters 2020, 11 (10) , 4093-4098. https://doi.org/10.1021/acs.jpclett.0c00783
    4. Julia S. Kirpich, L. Tyler Mix, Shelley S. Martin, Nathan C. Rockwell, J. Clark Lagarias, Delmar S. Larsen. Protonation Heterogeneity Modulates the Ultrafast Photocycle Initiation Dynamics of Phytochrome Cph1. The Journal of Physical Chemistry Letters 2018, 9 (12) , 3454-3462. https://doi.org/10.1021/acs.jpclett.8b01133
    5. Lucy Minnes, Daniel J. Shaw, Benjamin P. Cossins, Paul M. Donaldson, Gregory M. Greetham, Michael Towrie, Anthony W. Parker, Matthew J. Baker, Alistair J. Henry, Richard J. Taylor, and Neil T. Hunt . Quantifying Secondary Structure Changes in Calmodulin Using 2D-IR Spectroscopy. Analytical Chemistry 2017, 89 (20) , 10898-10906. https://doi.org/10.1021/acs.analchem.7b02610
    6. Kristen D. Fulfer and Daniel G. Kuroda . Solvation Structure and Dynamics of the Lithium Ion in Organic Carbonate-Based Electrolytes: A Time-Dependent Infrared Spectroscopy Study. The Journal of Physical Chemistry C 2016, 120 (42) , 24011-24022. https://doi.org/10.1021/acs.jpcc.6b08607
    7. Marco Candelaresi, Elena Ragnoni, Chiara Cappelli, Alessandro Corozzi, Manuela Lima, Susanna Monti, Benedetta Mennucci, Francesca Nuti, Anna Maria Papini, and Paolo Foggi . Conformational Analysis of Gly–Ala–NHMe in D2O and DMSO Solutions: A Two-Dimensional Infrared Spectroscopy Study. The Journal of Physical Chemistry B 2013, 117 (46) , 14226-14237. https://doi.org/10.1021/jp406139t
    8. Hebin Li, Austin P. Spencer, Andrew Kortyna, Galan Moody, David M. Jonas, and Steven T. Cundiff . Pulse Propagation Effects in Optical 2D Fourier-Transform Spectroscopy: Experiment. The Journal of Physical Chemistry A 2013, 117 (29) , 6279-6287. https://doi.org/10.1021/jp4007872
    9. Dylan H. Arias, Katherine W. Stone, Sebastiaan M. Vlaming, Brian J. Walker, Moungi G. Bawendi, Robert J. Silbey, Vladimir Bulović, and Keith A. Nelson . Thermally-Limited Exciton Delocalization in Superradiant Molecular Aggregates. The Journal of Physical Chemistry B 2013, 117 (16) , 4553-4559. https://doi.org/10.1021/jp3086717
    10. Megan C. Thielges, Jun Y. Axup, Daryl Wong, Hyun Soo Lee, Jean K. Chung, Peter G. Schultz, and Michael D. Fayer . Two-Dimensional IR Spectroscopy of Protein Dynamics Using Two Vibrational Labels: A Site-Specific Genetically Encoded Unnatural Amino Acid and an Active Site Ligand. The Journal of Physical Chemistry B 2011, 115 (38) , 11294-11304. https://doi.org/10.1021/jp206986v
    11. Ryszard Jankowiak, Mike Reppert, Valter Zazubovich, Jörg Pieper, and Tonu Reinot . Site Selective and Single Complex Laser-Based Spectroscopies: A Window on Excited State Electronic Structure, Excitation Energy Transfer, and Electron–Phonon Coupling of Selected Photosynthetic Complexes. Chemical Reviews 2011, 111 (8) , 4546-4598. https://doi.org/10.1021/cr100234j
    12. Daniel B. Turner, Krystyna E. Wilk, Paul M. G. Curmi, and Gregory D. Scholes . Comparison of Electronic and Vibrational Coherence Measured by Two-Dimensional Electronic Spectroscopy. The Journal of Physical Chemistry Letters 2011, 2 (15) , 1904-1911. https://doi.org/10.1021/jz200811p
    13. Alan D. Bristow, Tianhao Zhang, Mark E. Siemens, Steven T. Cundiff, and R. P. Mirin . Separating Homogeneous and Inhomogeneous Line Widths of Heavy- and Light-Hole Excitons in Weakly Disordered Semiconductor Quantum Wells. The Journal of Physical Chemistry B 2011, 115 (18) , 5365-5371. https://doi.org/10.1021/jp109408s
    14. Jun-Ho Choi and Minhaeng Cho . Polarization-Angle-Scanning Two-Dimensional Spectroscopy: Application to Dipeptide Structure Determination. The Journal of Physical Chemistry A 2011, 115 (16) , 3766-3777. https://doi.org/10.1021/jp106458j
    15. Kathryn M. Kornau, Mark A. Rickard, Nathan A. Mathew, Andrei V. Pakoulev, and John C. Wright . Multiresonant Coherent Multidimensional Vibrational Spectroscopy of Aromatic Systems: Pyridine, a Model System. The Journal of Physical Chemistry A 2011, 115 (16) , 4054-4062. https://doi.org/10.1021/jp1104856
    16. Ellen H. G. Backus, Robbert Bloem, Paul M. Donaldson, Janne A. Ihalainen, Rolf Pfister, Beatrice Paoli, Amedeo Caflisch and Peter Hamm . 2D-IR Study of a Photoswitchable Isotope-Labeled α-Helix. The Journal of Physical Chemistry B 2010, 114 (10) , 3735-3740. https://doi.org/10.1021/jp911849n
    17. Kyung-Koo Lee, Kwang-Hee Park, Jun-Ho Choi, Jeong-Hyon Ha, Seung-Joon Jeon and Minhaeng Cho . Ultrafast Vibrational Spectroscopy of Cyanophenols. The Journal of Physical Chemistry A 2010, 114 (8) , 2757-2767. https://doi.org/10.1021/jp908696k
    18. Ellen H. G. Backus, Robbert Bloem, Rolf Pfister, Alessandro Moretto, Marco Crisma, Claudio Toniolo and Peter Hamm . Dynamical Transition in a Small Helical Peptide and Its Implication for Vibrational Energy Transport. The Journal of Physical Chemistry B 2009, 113 (40) , 13405-13409. https://doi.org/10.1021/jp904905d
    19. Yuan-Chung Cheng and, Graham R. Fleming. Coherence Quantum Beats in Two-Dimensional Electronic Spectroscopy. The Journal of Physical Chemistry A 2008, 112 (18) , 4254-4260. https://doi.org/10.1021/jp7107889
    20. Mark A. Rickard,, Andrei V. Pakoulev,, Kathryn Kornau,, Nathan A. Mathew, and, John C. Wright. Interferometric Coherence Transfer Modulations in Triply Vibrationally Enhanced Four-Wave Mixing. The Journal of Physical Chemistry A 2006, 110 (40) , 11384-11387. https://doi.org/10.1021/jp063917e
    21. M. F. DeCamp,, L. DeFlores,, J. M. McCracken, and, A. Tokmakoff, , K. Kwac and, M. Cho. Amide I Vibrational Dynamics of N-Methylacetamide in Polar Solvents:  The Role of Electrostatic Interactions. The Journal of Physical Chemistry B 2005, 109 (21) , 11016-11026. https://doi.org/10.1021/jp050257p
    22. Daniel M. Besemann,, Kent A. Meyer, and, John C. Wright. Spectroscopic Characteristics of Triply Vibrationally Enhanced Four-Wave Mixing Spectroscopy. The Journal of Physical Chemistry B 2004, 108 (29) , 10493-10504. https://doi.org/10.1021/jp049597l
    23. Nurettin Demirdöven,, Christopher M. Cheatum,, Hoi Sung Chung,, Munira Khalil,, Jasper Knoester, and, Andrei Tokmakoff. Two-Dimensional Infrared Spectroscopy of Antiparallel β-Sheet Secondary Structure. Journal of the American Chemical Society 2004, 126 (25) , 7981-7990. https://doi.org/10.1021/ja049811j
    24. John B. Asbury,, Tobias Steinel, and, M. D. Fayer. Hydrogen Bond Networks:  Structure and Evolution after Hydrogen Bond Breaking. The Journal of Physical Chemistry B 2004, 108 (21) , 6544-6554. https://doi.org/10.1021/jp036600c
    25. John B. Asbury,, Tobias Steinel,, C. Stromberg,, S. A. Corcelli,, C. P. Lawrence,, J. L. Skinner, and, M. D. Fayer. Water Dynamics:  Vibrational Echo Correlation Spectroscopy and Comparison to Molecular Dynamics Simulations. The Journal of Physical Chemistry A 2004, 108 (7) , 1107-1119. https://doi.org/10.1021/jp036266k
    26. Kijeong Kwac and, Minhaeng Cho. Two-Color Pump−Probe Spectroscopies of Two- and Three-Level Systems:  2-Dimensional Line Shapes and Solvation Dynamics. The Journal of Physical Chemistry A 2003, 107 (31) , 5903-5912. https://doi.org/10.1021/jp034727w
    27. M. Khalil,, N. Demirdöven, and, A. Tokmakoff. Coherent 2D IR Spectroscopy:  Molecular Structure and Dynamics in Solution. The Journal of Physical Chemistry A 2003, 107 (27) , 5258-5279. https://doi.org/10.1021/jp0219247
    28. N. Demirdöven,, M. Khalil,, O. Golonzka, and, A. Tokmakoff. Correlation Effects in the Two-Dimensional Vibrational Spectroscopy of Coupled Vibrations. The Journal of Physical Chemistry A 2001, 105 (34) , 8025-8030. https://doi.org/10.1021/jp011215d
    29. Ryan B. Williams and, Roger F. Loring*, , M. D. Fayer. Vibrational Dephasing of Carbonmonoxy Myoglobin. The Journal of Physical Chemistry B 2001, 105 (19) , 4068-4071. https://doi.org/10.1021/jp010798o
    30. S. Woutersen and, P. Hamm. Structure Determination of Trialanine in Water Using Polarization Sensitive Two-Dimensional Vibrational Spectroscopy. The Journal of Physical Chemistry B 2000, 104 (47) , 11316-11320. https://doi.org/10.1021/jp001546a
    31. Hao Li, S.A. Shah, Ajay Ram Srimath Kandada, Carlos Silva, Andrei Piryatinski, Eric R. Bittner. The Optical Signatures of Stochastic Processes in Many-Body Exciton Scattering. Annual Review of Physical Chemistry 2023, 74 (1) , 467-492. https://doi.org/10.1146/annurev-physchem-102822-100922
    32. Paul M. Donaldson, Russell F. Howe, Alexander P. Hawkins, Mike Towrie, Gregory M. Greetham. Ultrafast 2D-IR spectroscopy of intensely optically scattering pelleted solid catalysts. The Journal of Chemical Physics 2023, 158 (11) https://doi.org/10.1063/5.0139103
    33. Mattia Russo, Kirsty E. McGhee, Tersilla Virgili, David G. Lidzey, Giulio Cerullo, Margherita Maiuri. Dephasing Processes in the Molecular Dye Lumogen-F Orange Characterized by Two-Dimensional Electronic Spectroscopy. Molecules 2022, 27 (20) , 7095. https://doi.org/10.3390/molecules27207095
    34. Hao Li, S. A. Shah, Eric R. Bittner, Andrei Piryatinski, Carlos Silva-Acuña. Stochastic exciton-scattering theory of optical line shapes: Renormalized many-body contributions. The Journal of Chemical Physics 2022, 157 (5) https://doi.org/10.1063/5.0095575
    35. William R. Jeffries, Juniper Foxley, Kenneth L. Knappenberger. Ultrafast relaxation dynamics of Au38(SC6H13)24 monolayer-protected clusters resolved by two-dimensional electronic spectroscopy. The Journal of Chemical Physics 2021, 155 (12) https://doi.org/10.1063/5.0056832
    36. Goran W. Tumbic, Md Yeathad Hossan, Megan C. Thielges. Protein Dynamics by Two-Dimensional Infrared Spectroscopy. Annual Review of Analytical Chemistry 2021, 14 (1) , 299-321. https://doi.org/10.1146/annurev-anchem-091520-091009
    37. Robert B. Weakly, James D. Gaynor, Munira Khalil. Multimode two-dimensional vibronic spectroscopy. II. Simulating and extracting vibronic coupling parameters from polarization-selective spectra. The Journal of Chemical Physics 2021, 154 (18) https://doi.org/10.1063/5.0047727
    38. Ajay Ram Srimath Kandada, Hao Li, Félix Thouin, Eric R. Bittner, Carlos Silva. Stochastic scattering theory for excitation-induced dephasing: Time-dependent nonlinear coherent exciton lineshapes. The Journal of Chemical Physics 2020, 153 (16) https://doi.org/10.1063/5.0026351
    39. Paul. M. Donaldson. Photon echoes and two dimensional spectra of the amide I band of proteins measured by femtosecond IR – Raman spectroscopy. Chemical Science 2020, 11 (33) , 8862-8874. https://doi.org/10.1039/D0SC02978E
    40. Amit Akiva, Lev Chuntonov. Intramolecular hydrogen bonding protects the hydroxyl group from attack by fluctuating solvent forces. The Journal of Chemical Physics 2020, 152 (7) https://doi.org/10.1063/1.5143572
    41. Dale Green, Ben S. Humphries, Arend G. Dijkstra, Garth A. Jones. Quantifying non-Markovianity in underdamped versus overdamped environments and its effect on spectral lineshape. The Journal of Chemical Physics 2019, 151 (17) https://doi.org/10.1063/1.5119300
    42. Jasper J. van Thor. Coherent two-dimensional electronic and infrared crystallography. The Journal of Chemical Physics 2019, 150 (12) , 124113. https://doi.org/10.1063/1.5079319
    43. Geoffrey M. Diederich, Travis M. Autry, Mark E. Siemens. Diagonal slice four-wave mixing: natural separation of coherent broadening mechanisms. Optics Letters 2018, 43 (24) , 6061. https://doi.org/10.1364/OL.43.006061
    44. Marten Richter, Rohan Singh, Mark Siemens, Steven T. Cundiff. Deconvolution of optical multidimensional coherent spectra. Science Advances 2018, 4 (6) https://doi.org/10.1126/sciadv.aar7697
    45. Stefanie Neutzner, Félix Thouin, Daniele Cortecchia, Annamaria Petrozza, Carlos Silva, Ajay Ram Srimath Kandada. Exciton-polaron spectral structures in two-dimensional hybrid lead-halide perovskites. Physical Review Materials 2018, 2 (6) https://doi.org/10.1103/PhysRevMaterials.2.064605
    46. Fikeraddis A. Damtie, Andreas Wacker, Tõnu Pullerits, Khadga J. Karki. Two-dimensional action spectroscopy of excitonic systems: Explicit simulation using a phase-modulation technique. Physical Review A 2017, 96 (5) https://doi.org/10.1103/PhysRevA.96.053830
    47. Sara H. Sohail, Peter D. Dahlberg, Marco A. Allodi, Sara C. Massey, Po-Chieh Ting, Elizabeth C. Martin, C. Neil Hunter, Gregory S. Engel. Communication: Broad manifold of excitonic states in light-harvesting complex 1 promotes efficient unidirectional energy transfer in vivo. The Journal of Chemical Physics 2017, 147 (13) https://doi.org/10.1063/1.4999057
    48. Pascal Grégoire, Ajay Ram Srimath Kandada, Eleonora Vella, Chen Tao, Richard Leonelli, Carlos Silva. Incoherent population mixing contributions to phase-modulation two-dimensional coherent excitation spectra. The Journal of Chemical Physics 2017, 147 (11) https://doi.org/10.1063/1.4994987
    49. L. P. Smirmov, T. P. Kulagina. Features of the kinetics of chemical reactions in a nanostructured liquid. Russian Journal of Physical Chemistry B 2017, 11 (5) , 786-797. https://doi.org/10.1134/S1990793117050207
    50. Pascal Grégoire, Eleonora Vella, Matthew Dyson, Claudia M. Bazán, Richard Leonelli, Natalie Stingelin, Paul N. Stavrinou, Eric R. Bittner, Carlos Silva. Excitonic coupling dominates the homogeneous photoluminescence excitation linewidth in semicrystalline polymeric semiconductors. Physical Review B 2017, 95 (18) https://doi.org/10.1103/PhysRevB.95.180201
    51. Manuel Gessner. Introduction. 2017, 1-68. https://doi.org/10.1007/978-3-319-44459-8_1
    52. Antonietta De Sio, Christoph Lienau. Vibronic coupling in organic semiconductors for photovoltaics. Physical Chemistry Chemical Physics 2017, 19 (29) , 18813-18830. https://doi.org/10.1039/C7CP03007J
    53. Franco V. de A. Camargo, Lena Grimmelsmann, Harry L. Anderson, Stephen R. Meech, Ismael A. Heisler. Resolving Vibrational from Electronic Coherences in Two-Dimensional Electronic Spectroscopy: The Role of the Laser Spectrum. Physical Review Letters 2017, 118 (3) https://doi.org/10.1103/PhysRevLett.118.033001
    54. Eleonora Vella, Hao Li, Pascal Grégoire, Sachetan M. Tuladhar, Michelle S. Vezie, Sheridan Few, Claudia M. Bazán, Jenny Nelson, Carlos Silva-Acuña, Eric R. Bittner. Ultrafast decoherence dynamics govern photocarrier generation efficiencies in polymer solar cells. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep29437
    55. Yi Gao, Michael Galperin. Simulation of optical response functions in molecular junctions. The Journal of Chemical Physics 2016, 144 (24) https://doi.org/10.1063/1.4954407
    56. Yingmin Li, Jiaxi Wang, Melissa L. Clark, Clifford P. Kubiak, Wei Xiong. Characterizing interstate vibrational coherent dynamics of surface adsorbed catalysts by fourth-order 3D SFG spectroscopy. Chemical Physics Letters 2016, 650 , 1-6. https://doi.org/10.1016/j.cplett.2016.02.031
    57. Shun-Li Chen, Li Fu, Wei Gan, Hong-Fei Wang. Homogeneous and inhomogeneous broadenings and the Voigt line shapes in the phase-resolved and intensity sum-frequency generation vibrational spectroscopy. The Journal of Chemical Physics 2016, 144 (3) https://doi.org/10.1063/1.4940145
    58. Michał Maj, Kyungwon Kwak, Minhaeng Cho. Ultrafast Structural Fluctuations of Myoglobin-Bound Thiocyanate and Selenocyanate Ions Measured with Two-Dimensional Infrared Photon Echo Spectroscopy. ChemPhysChem 2015, 16 (16) , 3468-3476. https://doi.org/10.1002/cphc.201500606
    59. Darin J. Ulness, Daniel B. Turner. Lineshape analysis of coherent multidimensional optical spectroscopy using incoherent light. The Journal of Chemical Physics 2015, 142 (21) https://doi.org/10.1063/1.4917320
    60. René Costard. Vibrational Spectroscopy. 2015, 9-48. https://doi.org/10.1007/978-3-319-22066-6_2
    61. Wei Wang, Parinda Vasa, Ephraim Sommer, Antonietta De Sio, Petra Gross, Ralf Vogelgesang, Christoph Lienau. Observation of Lorentzian lineshapes in the room temperature optical spectra of strongly coupled Jaggregate/metal hybrid nanostructures by linear two-dimensional optical spectroscopy. Journal of Optics 2014, 16 (11) , 114021. https://doi.org/10.1088/2040-8978/16/11/114021
    62. Francesca Fassioli, Rayomond Dinshaw, Paul C. Arpin, Gregory D. Scholes. Photosynthetic light harvesting: excitons and coherence. Journal of The Royal Society Interface 2014, 11 (92) , 20130901. https://doi.org/10.1098/rsif.2013.0901
    63. Luis Velarde, Hong-fei Wang. Capturing inhomogeneous broadening of the –CN stretch vibration in a Langmuir monolayer with high-resolution spectra and ultrafast vibrational dynamics in sum-frequency generation vibrational spectroscopy (SFG-VS). The Journal of Chemical Physics 2013, 139 (8) https://doi.org/10.1063/1.4818996
    64. Luis Velarde, Hong-Fei Wang. Unified treatment and measurement of the spectral resolution and temporal effects in frequency-resolved sum-frequency generation vibrational spectroscopy (SFG-VS). Physical Chemistry Chemical Physics 2013, 15 (46) , 19970. https://doi.org/10.1039/c3cp52577e
    65. Steven T. Cundiff, Alan D. Bristow, Mark Siemens, Hebin Li, Galan Moody, Denis Karaiskaj, Xingcan Dai, Tianhao Zhang. Optical 2-D Fourier Transform Spectroscopy of Excitons in Semiconductor Nanostructures. IEEE Journal of Selected Topics in Quantum Electronics 2012, 18 (1) , 318-328. https://doi.org/10.1109/JSTQE.2011.2123876
    66. Maja Kobus, Martin Lieder, Phuong H. Nguyen, Gerhard Stock. Simulation of transient infrared spectra of a photoswitchable peptide. The Journal of Chemical Physics 2011, 135 (22) https://doi.org/10.1063/1.3664747
    67. Mark E. Siemens, Galan Moody, Hebin Li, Alan D. Bristow, Steven T. Cundiff. Resonance lineshapes in two-dimensional
Fourier transform spectroscopy. Optics Express 2010, 18 (17) , 17699. https://doi.org/10.1364/OE.18.017699
    68. Maja Kobus, Phuong H. Nguyen, Gerhard Stock. Infrared signatures of the peptide dynamical transition: A molecular dynamics simulation study. The Journal of Chemical Physics 2010, 133 (3) https://doi.org/10.1063/1.3462961
    69. Tomáš Mančal, Alexandra Nemeth, Franz Milota, Vladimír Lukeš, Harald F. Kauffmann, Jaroslaw Sperling. Vibrational wave packet induced oscillations in two-dimensional electronic spectra. II. Theory. The Journal of Chemical Physics 2010, 132 (18) https://doi.org/10.1063/1.3404405
    70. Jessica M. Anna, Matthew J. Nee, Carlos R. Baiz, Robert McCanne, Kevin J. Kubarych. Measuring absorptive two-dimensional infrared spectra using chirped-pulse upconversion detection. Journal of the Optical Society of America B 2010, 27 (3) , 382. https://doi.org/10.1364/JOSAB.27.000382
    71. Mark E. Siemens, Galan Moody, Hebin Li, Alan D. Bristow, Steven T. Cundiff. Resonance lineshapes in two-dimensional Fourier transform spectroscopy. 2010, LThA3. https://doi.org/10.1364/LS.2010.LThA3
    72. . Introduction. 2009, 1-8. https://doi.org/10.1201/9781420084306.ch1
    73. . Two- Dimensional Photon Echo Spectroscopy. 2009, 131-150. https://doi.org/10.1201/9781420084306.ch7
    74. A. A. Villaeys, Y. J. Dappe, K. K. Liang, S. H. Lin. Influence of neighboring levels in three-pulse photon-echo processes. Physical Review A 2009, 79 (5) https://doi.org/10.1103/PhysRevA.79.053418
    75. Alexandra Nemeth, Vladimír Lukeš, Jaroslaw Sperling, Franz Milota, Harald F. Kauffmann, Tomáš Mančal. Two-dimensional electronic spectra of an aggregating dye: simultaneous measurement of monomeric and dimeric line-shapes. Physical Chemistry Chemical Physics 2009, 11 (28) , 5986. https://doi.org/10.1039/b902477h
    76. Akihito Ishizaki, Yoshitaka Tanimura. Nonperturbative non-Markovian quantum master equation: Validity and limitation to calculate nonlinear response functions. Chemical Physics 2008, 347 (1-3) , 185-193. https://doi.org/10.1016/j.chemphys.2007.10.037
    77. Kyungwon Kwak, Sungnam Park, Ilya J. Finkelstein, M. D. Fayer. Frequency-frequency correlation functions and apodization in two-dimensional infrared vibrational echo spectroscopy: A new approach. The Journal of Chemical Physics 2007, 127 (12) https://doi.org/10.1063/1.2772269
    78. H. S. Chung, Z. Ganim, K. C. Jones, A. Tokmakoff. Transient 2D IR spectroscopy of ubiquitin unfolding dynamics. Proceedings of the National Academy of Sciences 2007, 104 (36) , 14237-14242. https://doi.org/10.1073/pnas.0700959104
    79. Dassia Egorova, Maxim F. Gelin, Wolfgang Domcke. Analysis of cross peaks in two-dimensional electronic photon-echo spectroscopy for simple models with vibrations and dissipation. The Journal of Chemical Physics 2007, 126 (7) https://doi.org/10.1063/1.2435353
    80. Joseph J. Loparo, Sean T. Roberts, Andrei Tokmakoff. Multidimensional infrared spectroscopy of water. II. Hydrogen bond switching dynamics. The Journal of Chemical Physics 2006, 125 (19) https://doi.org/10.1063/1.2382896
    81. Sean T. Roberts, Joseph J. Loparo, Andrei Tokmakoff. Characterization of spectral diffusion from two-dimensional line shapes. The Journal of Chemical Physics 2006, 125 (8) https://doi.org/10.1063/1.2232271
    82. Andrei V. Pisliakov, Tomáš Mančal, Graham R. Fleming. Two-dimensional optical three-pulse photon echo spectroscopy. II. Signatures of coherent electronic motion and exciton population transfer in dimer two-dimensional spectra. The Journal of Chemical Physics 2006, 124 (23) https://doi.org/10.1063/1.2200705
    83. Tomáš Mančal, Andrei V. Pisliakov, Graham R. Fleming. Two-dimensional optical three-pulse photon echo spectroscopy. I. Nonperturbative approach to the calculation of spectra. The Journal of Chemical Physics 2006, 124 (23) https://doi.org/10.1063/1.2200704
    84. Casey H. Londergan, Jianping Wang, Paul H. Axelsen, Robin M. Hochstrasser. Two-Dimensional Infrared Spectroscopy Displays Signatures of Structural Ordering in Peptide Aggregates. Biophysical Journal 2006, 90 (12) , 4672-4685. https://doi.org/10.1529/biophysj.105.075812
    85. Prabuddha Mukherjee, Itamar Kass, Isaiah T. Arkin, Martin T. Zanni. Picosecond dynamics of a membrane protein revealed by 2D IR. Proceedings of the National Academy of Sciences 2006, 103 (10) , 3528-3533. https://doi.org/10.1073/pnas.0508833103
    86. Olaf F. A. Larsen, Pavol Bodis, Wybren Jan Buma, Jeffrey S. Hannam, David A. Leigh, Sander Woutersen. Probing the structure of a rotaxane with two-dimensional infrared spectroscopy. Proceedings of the National Academy of Sciences 2005, 102 (38) , 13378-13382. https://doi.org/10.1073/pnas.0505313102
    87. J. D. Eaves, J. J. Loparo, C. J. Fecko, S. T. Roberts, A. Tokmakoff, P. L. Geissler. Hydrogen bonds in liquid water are broken only fleetingly. Proceedings of the National Academy of Sciences 2005, 102 (37) , 13019-13022. https://doi.org/10.1073/pnas.0505125102
    88. Feng Ding, Eric C. Fulmer, Martin T. Zanni. Heterodyned fifth-order two-dimensional IR spectroscopy: Third-quantum states and polarization selectivity. The Journal of Chemical Physics 2005, 123 (9) , 094502. https://doi.org/10.1063/1.1998829
    89. Casey H. Londergan, Yung Sam Kim, Robin M. Hochstrasser *. Two-dimensional infrared spectroscopy of dipeptides in trehalose glass. Molecular Physics 2005, 103 (11-12) , 1547-1553. https://doi.org/10.1080/00268970500095600
    90. Seungsoo Hahn, Sihyun Ham, Minhaeng Cho. Simulation Studies of Amide I IR Absorption and Two-Dimensional IR Spectra of β Hairpins in Liquid Water. The Journal of Physical Chemistry B 2005, 109 (23) , 11789-11801. https://doi.org/10.1021/jp050450j
    91. C. P. Lawrence, J. L. Skinner. Quantum corrections in vibrational and electronic condensed phase spectroscopy: Line shapes and echoes. Proceedings of the National Academy of Sciences 2005, 102 (19) , 6720-6725. https://doi.org/10.1073/pnas.0408813102
    92. Tobias Brixner, Jens Stenger, Harsha M. Vaswani, Minhaeng Cho, Robert E. Blankenship, Graham R. Fleming. Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 2005, 434 (7033) , 625-628. https://doi.org/10.1038/nature03429
    93. Eric C. Fulmer, Feng Ding, Martin T. Zanni. Heterodyned fifth-order 2D-IR spectroscopy of the azide ion in an ionic glass. The Journal of Chemical Physics 2005, 122 (3) https://doi.org/10.1063/1.1810513
    94. M. F. DeCamp, L. P. DeFlores, J. M. McCracken, A. Tokmakoff. Solvation dynamics of N-methylacetamide in D2O, CDCI3 and DMSO-d6. 2005, 422-424. https://doi.org/10.1007/3-540-27213-5_130
    95. John B. Asbury, Tobias Steinel, Kyungwon Kwak, S. A. Corcelli, C. P. Lawrence, J. L. Skinner, M. D. Fayer. Dynamics of water probed with vibrational echo correlation spectroscopy. The Journal of Chemical Physics 2004, 121 (24) , 12431-12446. https://doi.org/10.1063/1.1818107
    96. Shilong Yang, Jiushu Shao, Jianshu Cao. Nonperturbative vibrational energy relaxation effects on vibrational line shapes. The Journal of Chemical Physics 2004, 121 (22) , 11250-11271. https://doi.org/10.1063/1.1812748
    97. J.C. Wright. Vibrational correlations via coherent multi-resonant four-wave mixing. Vibrational Spectroscopy 2004, 36 (2) , 179-184. https://doi.org/10.1016/j.vibspec.2004.02.009
    98. Miroslav Menšı́k, Stanislav Nešpůrek. Vibrational coherence in excited state decay: the role of the type of electron-vibrational interactions. Chemical Physics 2004, 302 (1-3) , 279-286. https://doi.org/10.1016/j.chemphys.2004.04.012
    99. Prabuddha Mukherjee, Amber T. Krummel, Eric C. Fulmer, Itamar Kass, Isaiah T. Arkin, Martin T. Zanni. Site-specific vibrational dynamics of the CD3ζ membrane peptide using heterodyned two-dimensional infrared photon echo spectroscopy. The Journal of Chemical Physics 2004, 120 (21) , 10215-10224. https://doi.org/10.1063/1.1718332
    100. Eric C. Fulmer, Prabuddha Mukherjee, Amber T. Krummel, Martin T. Zanni. A pulse sequence for directly measuring the anharmonicities of coupled vibrations: Two-quantum two-dimensional infrared spectroscopy. The Journal of Chemical Physics 2004, 120 (17) , 8067-8078. https://doi.org/10.1063/1.1649725
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect