ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Hydrocarbon Ions. 5. PAHs Incorporating a Cyclopentadienyl Ring

View Author Information
NASA Ames Research Center, MS 245−6, Moffett Field, California 94035
Chevron Research Company, Richmond, California 94802
Cite this: J. Phys. Chem. A 2000, 104, 16, 3655–3669
Publication Date (Web):March 31, 2000
https://doi.org/10.1021/jp993940i
Copyright © 2000 American Chemical Society

    Article Views

    399

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    The matrix-isolation technique has been employed to measure the mid-infrared spectra of the ions of several polycyclic aromatic hydrocarbons whose structures incorporate a cyclopentadienyl ring. These include the cations of fluoranthene (C16H10), benzo[a]fluoranthene, benzo[b]fluoranthene, benzo[j]fluoranthene, and benzo[k]fluoranthene (all C20H12 isomers), as well as the anions of benzo[a]fluoranthene and benzo[j]fluoranthene. With the exception of fluoranthene, which presented significant theoretical difficulties, the experimental data are compared to theoretically calculated values obtained using density functional theory (DFT) at the B3LYP/4-31G level. In general, there is good overall agreement between the two data sets, with the positional agreement between the experimentally measured and theoretically predicted bands somewhat better than that associated with their intensities. The results are also consistent with previous experimental studies of polycyclic aromatic hydrocarbon ions. Specifically, in both the cationic and anionic species the strongest ion bands typically cluster in the 1450 to 1300 cm-1 range, reflecting an order-of-magnitude enhancement in the CC stretching and CH in-plane bending modes between 1600 and 1100 cm-1 in these species. The aromatic CH out-of-plane bending modes, on the other hand, are usually modestly suppressed (≤ 2x − 5x) in the cations relative to those of the neutral species, with the nonadjacent CH modes most strongly affected. The ionization effect on the analogous anion modes is more varied, with both enhancements and suppressions observed. Finally, while no cation features have been observed in the 3100−2950 cm-1 aromatic CH stretching region, bands arising from these modes are observed for each of the anions addressed in these studies. This agrees qualitatively with the theoretical calculations which predict that, in stark contrast to the order of magnitude suppression encountered in the cations, the total intensity in these modes is actually enhanced by about a factor of 3 in the anions relative to the neutral species. This is the first time that the CH stretching features of an isolated PAH ion have been observed experimentally.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Part of the special issue “Marilyn Jacox Festschrift”.

    *

     To whom correspondence should be addressed.

    Cited By

    This article is cited by 70 publications.

    1. A. Chakraborty, C. A. Rice, F.-X. Hardy, J. Fulara, and J. P. Maier . Electronic Spectra of Protonated Fluoranthene in a Neon Matrix and Gas Phase at 10 K. The Journal of Physical Chemistry A 2016, 120 (27) , 4805-4811. https://doi.org/10.1021/acs.jpca.5b12232
    2. Prasanta Das, S. Manogaran, E. Arunan and Puspendu K. Das . Infrared Spectra of Dimethylquinolines in the Gas Phase: Experiment and Theory. The Journal of Physical Chemistry A 2010, 114 (32) , 8351-8358. https://doi.org/10.1021/jp1056896
    3. Timothy W. Schmidt, Thomas Pino and Philippe Bréchignac. The C−H Stretch Intensities of Polycyclic Aromatic Hydrocarbon Cations. Origins and Astrophysical Implications. The Journal of Physical Chemistry A 2009, 113 (15) , 3535-3541. https://doi.org/10.1021/jp900931e
    4. Xuejun Feng, Qianshu Li, Jiande Gu, F. Albert Cotton, Yaoming Xie and Henry F. Schaefer, III. Perfluorinated Polycyclic Aromatic Hydrocarbons: Anthracene, Phenanthrene, Pyrene, Tetracene, Chrysene, and Triphenylene. The Journal of Physical Chemistry A 2009, 113 (5) , 887-894. https://doi.org/10.1021/jp809110f
    5. F. Zhang,, X. Gu,, Y. Guo, and, R. I. Kaiser. Reaction Dynamics on the Formation of Styrene:  A Crossed Molecular Beam Study of the Reaction of Phenyl Radicals with Ethylene. The Journal of Organic Chemistry 2007, 72 (20) , 7597-7604. https://doi.org/10.1021/jo071006a
    6. Leon D. Betowski,, Mark Enlow,, Lee Riddick, and, Donald H. Aue. Calculation of Electron Affinities of Polycyclic Aromatic Hydrocarbons and Solvation Energies of Their Radical Anion. The Journal of Physical Chemistry A 2006, 110 (47) , 12927-12946. https://doi.org/10.1021/jp065785v
    7. Alberto Modelli,, Laura Mussoni, and, Daniele Fabbri. Electron Affinities of Polycyclic Aromatic Hydrocarbons by Means of B3LYP/6-31+G* Calculations. The Journal of Physical Chemistry A 2006, 110 (20) , 6482-6486. https://doi.org/10.1021/jp0605911
    8. Michael S. Deleuze. Valence One-Electron and Shake-Up Ionization Bands of Polycyclic Aromatic Hydrocarbons. III. Coronene, 1.2,6.7-Dibenzopyrene, 1.12-Benzoperylene, Anthanthrene. The Journal of Physical Chemistry A 2004, 108 (42) , 9244-9259. https://doi.org/10.1021/jp047224e
    9. Qian-shu Li and, Xue-jun Feng, , Yaoming Xie and, Henry F. Schaefer III. Electron Affinities of Perfluoro Polycyclic Aromatic Hydrocarbon Radicals:  C6F5, C10F7, and C14F9. The Journal of Physical Chemistry A 2004, 108 (34) , 7071-7078. https://doi.org/10.1021/jp040194v
    10. Murthy S. Gudipati. Matrix-Isolation in Cryogenic Water-Ices:  Facile Generation, Storage, and Optical Spectroscopy of Aromatic Radical Cations. The Journal of Physical Chemistry A 2004, 108 (20) , 4412-4419. https://doi.org/10.1021/jp037152b
    11. John Banisaukas,, Jan Szczepanski, and, Martin Vala, , So Hirata. Vibrational and Electronic Absorption Spectroscopy of 2,3-Benzofluorene and Its Cation. The Journal of Physical Chemistry A 2004, 108 (17) , 3713-3722. https://doi.org/10.1021/jp031163n
    12. A. L. Mattioda,, D. M. Hudgins,, C. W. Bauschlicher, Jr,, M. Rosi, and, L. J. Allamandola. Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Compounds and Their Ions. 6. Polycyclic Aromatic Nitrogen Heterocycles. The Journal of Physical Chemistry A 2003, 107 (10) , 1486-1498. https://doi.org/10.1021/jp021938c
    13. Jason M. Gonzales,, Christopher J. Barden,, Shawn T. Brown,, Paul von Ragué Schleyer,, Henry F. Schaefer, III, and, Qian-Shu Li. Cyclopentadiene Annulated Polycyclic Aromatic Hydrocarbons:  Investigations of Electron Affinities. Journal of the American Chemical Society 2003, 125 (4) , 1064-1071. https://doi.org/10.1021/ja0210502
    14. Ralf I. Kaiser. Experimental Investigation on the Formation of Carbon-Bearing Molecules in the Interstellar Medium via Neutral−Neutral Reactions. Chemical Reviews 2002, 102 (5) , 1309-1358. https://doi.org/10.1021/cr970004v
    15. Jos Oomens,, Gerard Meijer, and, Gert von Helden. Gas Phase Infrared Spectroscopy of Cationic Indane, Acenaphthene, Fluorene, and Fluoranthene. The Journal of Physical Chemistry A 2001, 105 (36) , 8302-8309. https://doi.org/10.1021/jp0110455
    16. Jonathan C. Rienstra-Kiracofe,, Christopher J. Barden,, Shawn T. Brown, and, Henry F. Schaefer III. Electron Affinities of Polycyclic Aromatic Hydrocarbons. The Journal of Physical Chemistry A 2001, 105 (3) , 524-528. https://doi.org/10.1021/jp003196y
    17. C. D. Ribouem A Bessong, M. T. Ottou Abe, Zounedou Ntieche, P. Noudem, G. F. Olinga Mbala, J. M. B. Ndjaka. Influence of lithium doping on optoelectronic, electronic, reactivity descriptors, thermodynamic and nonlinear optical properties of dibenzo[b,def]chrysene: insight by a DFT study. Optical and Quantum Electronics 2023, 55 (11) https://doi.org/10.1007/s11082-023-05294-7
    18. Vladimir I. Feldman, Sergey V. Ryazantsev, Svetlana V. Kameneva. Matrix isolation in laboratory astrochemistry: state-of-the-art, implications and perspective. Russian Chemical Reviews 2021, 90 (9) , 1142-1165. https://doi.org/10.1070/RCR4995
    19. Mohammad Ebrahim Izadi, Kristof M. Bal, Ali Maghari, Erik C. Neyts. Reaction mechanisms of C( 3 P J ) and C + ( 2 P J ) with benzene in the interstellar medium from quantum mechanical molecular dynamics simulations. Physical Chemistry Chemical Physics 2021, 23 (7) , 4205-4216. https://doi.org/10.1039/D0CP04542J
    20. A. L. Mattioda, D. M. Hudgins, C. Boersma, C. W. Bauschlicher, A. Ricca, J. Cami, E. Peeters, F. Sánchez de Armas, G. Puerta Saborido, L. J. Allamandola. The NASA Ames PAH IR Spectroscopic Database: The Laboratory Spectra. The Astrophysical Journal Supplement Series 2020, 251 (2) , 22. https://doi.org/10.3847/1538-4365/abc2c8
    21. Kefa K. Onchoke. Vibrational Spectroscopic Studies of Nitrated Polycyclic Aromatic Hydrocarbons (NPAHs): A Review (1960-2019). Vibrational Spectroscopy 2020, 109 , 103072. https://doi.org/10.1016/j.vibspec.2020.103072
    22. J. Bouwman, C. Boersma, M. Bulak, J. Kamer, P. Castellanos, A. G. G. M. Tielens, H. Linnartz. Gas-phase infrared spectroscopy of the rubicene cation (C 26 H 14 •+ ). Astronomy & Astrophysics 2020, 636 , A57. https://doi.org/10.1051/0004-6361/201937013
    23. Arghya Chakraborty, Yuan-Pern Lee. Formation and infrared identification of protonated fluoranthene isomers 3-, 9-, and 10-C 16 H 11 + in solid para -H 2. Physical Chemistry Chemical Physics 2019, 21 (4) , 1820-1829. https://doi.org/10.1039/C8CP05849K
    24. Ji Yeon Seok, Aigen Li. Polycyclic Aromatic Hydrocarbons in Protoplanetary Disks around Herbig Ae/Be and T Tauri Stars. The Astrophysical Journal 2017, 835 (2) , 291. https://doi.org/10.3847/1538-4357/835/2/291
    25. Charles W. Bauschlicher. Basis set effects on the geometry of C96H24. Chemical Physics Letters 2016, 665 , 100-104. https://doi.org/10.1016/j.cplett.2016.10.060
    26. P.M. Mishra. Electron affinity calculation for selected PAHs using DFT: Effect of cyclopenta ring fusion and aromaticity. Computational and Theoretical Chemistry 2015, 1068 , 165-171. https://doi.org/10.1016/j.comptc.2015.07.002
    27. Thomas Giesen, Corey A. Rice, John P. Maier, Yvain Carpentier, Gaël Rouillé, Mathias Steglich, Cornelia Jäger, Thomas Henning, Friedrich Huisken, Jos Oomens, Olivier Pirali, Alexander G.G.M. Tielens, Holger S. P. Müller. Molecular Spectroscopy. 2014, 13-108. https://doi.org/10.1002/9783527653133.ch2
    28. C. Boersma, C. W. Bauschlicher, A. Ricca, A. L. Mattioda, J. Cami, E. Peeters, F. Sánchez de Armas, G. Puerta Saborido, D. M. Hudgins, L. J. Allamandola. THE NASA AMES PAH IR SPECTROSCOPIC DATABASE VERSION 2.00: UPDATED CONTENT, WEB SITE, AND ON(OFF)LINE TOOLS. The Astrophysical Journal Supplement Series 2014, 211 (1) , 8. https://doi.org/10.1088/0067-0049/211/1/8
    29. Qiushuo Yu, Xiaoxun Ma, Long Xu. TG-assisted determination of pyrene solubility in 1-pentanol. Journal of Thermal Analysis and Calorimetry 2013, 112 (3) , 1553-1557. https://doi.org/10.1007/s10973-012-2668-9
    30. Qiushuo Yu, Xiaoxun Ma, Long Xu. Solubility in binary solvent mixtures: Pyrene dissolved in alcohol+toluene mixtures. Thermochimica Acta 2013, 551 , 78-83. https://doi.org/10.1016/j.tca.2012.10.023
    31. M. Huzak, B. Hajgató, M.S. Deleuze. Benchmark theoretical study of the ionization energies, electron affinities and singlet–triplet energy gaps of azulene, phenanthrene, pyrene, chrysene and perylene. Chemical Physics 2012, 406 , 55-64. https://doi.org/10.1016/j.chemphys.2012.08.003
    32. David Eisenberg, Roy Shenhar. Polyarene anions: interplay between theory and experiment. WIREs Computational Molecular Science 2012, 2 (4) , 525-547. https://doi.org/10.1002/wcms.88
    33. Qiushuo Yu, Xiaoxun Ma, Long Xu. Determination of the solubility, dissolution enthalpy and entropy of pyrene in different solvents. Fluid Phase Equilibria 2012, 319 , 5-8. https://doi.org/10.1016/j.fluid.2012.01.019
    34. Jie Zhang, Colin Harthcock, Fangyuan Han, Wei Kong. Zero kinetic energy photoelectron spectroscopy of jet cooled benzo[ a ]pyrene from resonantly enhanced multiphoton ionization. The Journal of Chemical Physics 2011, 135 (24) https://doi.org/10.1063/1.3672161
    35. Joost M. Bakker, Britta Redlich, Alexander F. G. van der Meer, Jos Oomens. INFRARED SPECTROSCOPY OF GAS-PHASE POLYCYCLIC AROMATIC HYDROCARBON CATIONS IN THE 10–50 μm SPECTRAL RANGE. The Astrophysical Journal 2011, 741 (2) , 74. https://doi.org/10.1088/0004-637X/741/2/74
    36. Alexander Tielens, Louis Allamandola. Cool Interstellar Physics and Chemistry. 2011, 341-380. https://doi.org/10.1201/b11403-12
    37. Jan Szczepanski, Jos Oomens, Jeffrey D. Steill, Martin T. Vala. H 2 EJECTION FROM POLYCYCLIC AROMATIC HYDROCARBONS: INFRARED MULTIPHOTON DISSOCIATION STUDY OF PROTONATED ACENAPHTHENE AND 9,10-DIHYDROPHENANTHRENE. The Astrophysical Journal 2011, 727 (1) , 12. https://doi.org/10.1088/0004-637X/727/1/12
    38. Charles W. Bauschlicher, Alessandra Ricca. On the calculation of the vibrational frequencies of polycyclic aromatic hydrocarbons. Molecular Physics 2010, 108 (19-20) , 2647-2654. https://doi.org/10.1080/00268976.2010.518979
    39. Hoi-Ying N. Holman. Synchrotron Infrared Spectromicroscopy for Studying Chemistry of Microbial Activity in Geologic Materials. 2010, 103-130. https://doi.org/10.1016/S0166-2481(10)34004-9
    40. Ralf I. Kaiser, Fangtong Zhang, Xibin Gu, Vadim V. Kislov, Alexander M. Mebel. Reaction dynamics of the phenyl radical (C6H5) with 1-butyne (HCCC2H5) and 2-butyne (CH3CCCH3). Chemical Physics Letters 2009, 481 (1-3) , 46-53. https://doi.org/10.1016/j.cplett.2009.09.057
    41. Xibin Gu, Fangtong Zhang, Ralf I. Kaiser, Vadim V. Kislov, Alexander M. Mebel. Reaction dynamics of the phenyl radical with 1,2-butadiene. Chemical Physics Letters 2009, 474 (1-3) , 51-56. https://doi.org/10.1016/j.cplett.2009.04.041
    42. Jie Zhang, Linsen Pei, Wei Kong. Zero kinetic energy photoelectron spectroscopy of tetracene using laser desorption for vaporization. The Journal of Chemical Physics 2008, 128 (10) https://doi.org/10.1063/1.2837467
    43. Xibin Gu, Fangtong Zhang, Ying Guo, Ralf I. Kaiser. Crossed‐Molecular‐Beam Study on the Formation of Phenylacetylene from Phenyl Radicals and Acetylene. Angewandte Chemie 2007, 119 (36) , 6990-6993. https://doi.org/10.1002/ange.200701890
    44. Xibin Gu, Fangtong Zhang, Ying Guo, Ralf I. Kaiser. Crossed‐Molecular‐Beam Study on the Formation of Phenylacetylene from Phenyl Radicals and Acetylene. Angewandte Chemie International Edition 2007, 46 (36) , 6866-6869. https://doi.org/10.1002/anie.200701890
    45. M. P. Bernstein, S. A. Sandford, A. L. Mattioda, L. J. Allamandola. Near‐ and Mid‐Infrared Laboratory Spectra of PAH Cations in Solid H 2 O. The Astrophysical Journal 2007, 664 (2) , 1264-1272. https://doi.org/10.1086/518756
    46. R. Visser, V. C. Geers, C. P. Dullemond, J.-C. Augereau, K. M. Pontoppidan, E. F. van Dishoeck. PAH chemistry and IR emission from circumstellar disks. Astronomy & Astrophysics 2007, 466 (1) , 229-241. https://doi.org/10.1051/0004-6361:20066829
    47. Alberto Modelli, Laura Mussoni. Rapid quantitative prediction of ionization energies and electron affinities of polycyclic aromatic hydrocarbons. Chemical Physics 2007, 332 (2-3) , 367-374. https://doi.org/10.1016/j.chemphys.2007.01.004
    48. Amit Pathak, Shantanu Rastogi. Computational study of neutral and cationic pericondensed polycyclic aromatic hydrocarbons. Chemical Physics 2006, 326 (2-3) , 315-328. https://doi.org/10.1016/j.chemphys.2006.02.008
    49. Jos Oomens, Boris G. Sartakov, Gerard Meijer, Gert von Helden. Gas-phase infrared multiple photon dissociation spectroscopy of mass-selected molecular ions. International Journal of Mass Spectrometry 2006, 254 (1-2) , 1-19. https://doi.org/10.1016/j.ijms.2006.05.009
    50. Murthy S. Gudipati, Louis J. Allamandola. Unusual Stability of Polycyclic Aromatic Hydrocarbon Radical Cations in Amorphous Water Ices up to 120 K: Astronomical Implications. The Astrophysical Journal 2006, 638 (1) , 286-292. https://doi.org/10.1086/498816
    51. H.‐Y.N. Holman, M.C. Martin. Synchrotron Radiation Infrared Spectromicroscopy: A Noninvasive Chemical Probe for Monitoring Biogeochemical Processes. 2006, 79-127. https://doi.org/10.1016/S0065-2113(06)90003-0
    52. Douglas M. Hudgins, Charles W. Bauschlicher, Jr., L. J. Allamandola. Variations in the Peak Position of the 6.2 μm Interstellar Emission Feature: A Tracer of N in the Interstellar Polycyclic Aromatic Hydrocarbon Population. The Astrophysical Journal 2005, 632 (1) , 316-332. https://doi.org/10.1086/432495
    53. A. L. Mattioda, D. M. Hudgins, L. J. Allamandola. Experimental Near‐Infrared Spectroscopy of Polycyclic Aromatic Hydrocarbons between 0.7 and 2.5 μm. The Astrophysical Journal 2005, 629 (2) , 1188-1210. https://doi.org/10.1086/430757
    54. Alain Abergel, Laurent Verstraete, Christine Joblin, René Laureijs, Marc-Antoine Miville-Deschênes. The Cool Interstellar Medium. Space Science Reviews 2005, 119 (1-4) , 247-271. https://doi.org/10.1007/s11214-005-8056-z
    55. T. M. Halasinski, F. Salama, L. J. Allamandola. Investigation of the Ultraviolet, Visible, and Near‐Infrared Absorption Spectra of Hydrogenated Polycyclic Aromatic Hydrocarbons and Their Cations. The Astrophysical Journal 2005, 628 (1) , 555-566. https://doi.org/10.1086/430631
    56. G. Malloci, G. Mulas, G. Cappellini, V. Fiorentini, I. Porceddu. Theoretical electron affinities of PAHs and electronic absorption spectra of their mono-anions. Astronomy & Astrophysics 2005, 432 (2) , 585-594. https://doi.org/10.1051/0004-6361:20042246
    57. A.L. Mattioda, D.M. Hudgins, C.W. Bauschlicher, L.J. Allamandola. Infrared spectroscopy of matrix-isolated polycyclic aromatic compounds and their ions. 7. Phenazine, a dual substituted polycyclic aromatic nitrogen heterocycle. Advances in Space Research 2005, 36 (2) , 156-165. https://doi.org/10.1016/j.asr.2005.03.127
    58. E. Peeters, A. L. Mattioda, D. M. Hudgins, L. J. Allamandola. Polycyclic Aromatic Hydrocarbon Emission in the 15-21 Micron Region. The Astrophysical Journal 2004, 617 (1) , L65-L68. https://doi.org/10.1086/427186
    59. E. Habart, A. Natta, E. Krügel. PAHs in circumstellar disks around Herbig Ae/Be stars. Astronomy & Astrophysics 2004, 427 (1) , 179-192. https://doi.org/10.1051/0004-6361:20035916
    60. Murthy S. Gudipati, Louis J. Allamandola. Facile Generation and Storage of Polycyclic Aromatic Hydrocarbon Ions in Astrophysical Ices. The Astrophysical Journal 2003, 596 (2) , L195-L198. https://doi.org/10.1086/379595
    61. Aigen Li, J. I. Lunine. Modeling the Infrared Emission from the HD 141569A Disk. The Astrophysical Journal 2003, 594 (2) , 987-1010. https://doi.org/10.1086/376939
    62. M. S. Deleuze, L. Claes, E. S. Kryachko, J.-P. François. Benchmark theoretical study of the ionization threshold of benzene and oligoacenes. The Journal of Chemical Physics 2003, 119 (6) , 3106-3119. https://doi.org/10.1063/1.1589731
    63. Hiroshi Kawamata, Toshihiko Maeyama, Naohiko Mikami. First observation of ionic π-hydrogen bonds; vibrational spectroscopy of dihydrated naphthalene anion (Nph−(H2O)2). Chemical Physics Letters 2003, 370 (3-4) , 535-541. https://doi.org/10.1016/S0009-2614(03)00118-0
    64. Louis J. Allamandola, Douglas M. Hudgins. From Interstellar Polycyclic Aromatic Hydrocarbons and Ice to Astrobiology. 2003, 251-316. https://doi.org/10.1007/978-94-010-0062-8_9
    65. Aigen Li, B. T. Draine. Infrared Emission from Interstellar Dust. III. The Small Magellanic Cloud. The Astrophysical Journal 2002, 576 (2) , 762-772. https://doi.org/10.1086/341796
    66. Ralf I. Kaiser, Alexander M. Mebel. The reactivity of ground-state carbon atoms with unsaturated hydrocarbons in combustion flames and in the interstellar medium. International Reviews in Physical Chemistry 2002, 21 (2) , 307-356. https://doi.org/10.1080/01442350210136602
    67. Aigen Li, B. T. Draine. Infrared Emission from Interstellar Dust. II. The Diffuse Interstellar Medium. The Astrophysical Journal 2001, 554 (2) , 778-802. https://doi.org/10.1086/323147
    68. S. Hony, C. Van Kerckhoven, E. Peeters, A. G. G. M. Tielens, D. M. Hudgins, L. J. Allamandola. The CH out-of-plane bending modes of PAH molecules in astrophysical environments. Astronomy & Astrophysics 2001, 370 (3) , 1030-1043. https://doi.org/10.1051/0004-6361:20010242
    69. Douglas M Hudgins, Charles W Bauschlicher, Louis J Allamandola. Closed-shell polycyclic aromatic hydrocarbon cations: a new category of interstellar polycyclic aromatic hydrocarbons. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2001, 57 (4) , 907-930. https://doi.org/10.1016/S1386-1425(00)00453-4
    70. Alain Abergel, Laurent Verstraete, Christine Joblin, René Laureijs, Marc-Antoine Miville-Deschênes. The Cool Interstellar Medium. , 247-271. https://doi.org/10.1007/1-4020-3844-5_11

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect