ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Lithium Diffusion in Graphitic Carbon

View Author Information
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720
Massachusetts Institute of Technology, 77 Mass Avenue, Cambridge, Massachusetts 02139
§ Brown University, 182 Hope Street, Providence, Rhode Island 02906
University of St. Andrews, North Haugh, St, Andrews, Fife KY16 9ST, Scotland, U.K.
# University of California San Diego, Atkinson Hall 2703, La Jolla, California 92093
University of Michigan, 2300 Hayward Street, Ann Arbor, Michigan 48109
*To whom correspondence should be addressed. E-mail: [email protected]
Cite this: J. Phys. Chem. Lett. 2010, 1, 8, 1176–1180
Publication Date (Web):March 22, 2010
https://doi.org/10.1021/jz100188d
Copyright © 2010 American Chemical Society

    Article Views

    14969

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Graphitic carbon is currently considered the state-of-the-art material for the negative electrode in lithium ion cells, mainly due to its high reversibility and low operating potential. However, carbon anodes exhibit mediocre charge/discharge rate performance, which contributes to severe transport-induced surface structural damage upon prolonged cycling and limits the lifetime of the cell. Lithium bulk diffusion in graphitic carbon is not yet completely understood, partly due to the complexity of measuring bulk transport properties in finite-sized nonisotropic particles. To solve this problem for graphite, we use the Devanathan−Stachurski electrochemical methodology combined with ab initio computations to deconvolute and quantify the mechanism of lithium ion diffusion in highly oriented pyrolytic graphite (HOPG). The results reveal inherent high lithium ion diffusivity in the direction parallel to the graphene plane (∼10−7−10−6 cm2 s−1), as compared to sluggish lithium ion transport along grain boundaries (∼10−11 cm2 s−1), indicating the possibility of rational design of carbonaceous materials and composite electrodes with very high rate capability.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Experimental setup, diffusion equations, the estimation of transport parameters, and first-principles calculations. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 662 publications.

    1. Barun Kumar Chakrabarti, Gerard Bree, Anh Dao, Guillaume Remy, Mengzheng Ouyang, Koray Bahadır Dönmez, Billy Wu, Mark Williams, Nigel P. Brandon, Chandramohan George, Chee Tong John Low. Lightweight Carbon–Metal-Based Fabric Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2024, 16 (17) , 21885-21894. https://doi.org/10.1021/acsami.4c01601
    2. Rui Wang, Lu Wang, Rui Liu, Xiangye Li, Youzhi Wu, Fen Ran. “Fast-Charging” Anode Materials for Lithium-Ion Batteries from Perspective of Ion Diffusion in Crystal Structure. ACS Nano 2024, 18 (4) , 2611-2648. https://doi.org/10.1021/acsnano.3c08712
    3. Khizar Hayat, Daniel Bahamon, Lourdes F. Vega, Ahmed AlHajaj. Exploring the Potential of Hierarchical Zeolite-Templated Carbon Materials for High-Performance Li–O2 Batteries: Insights from Molecular Simulations. ACS Applied Materials & Interfaces 2023, 15 (47) , 54432-54445. https://doi.org/10.1021/acsami.3c11586
    4. Dongchun Yang, Ran Jia, Xin Wang, Shuming Bai. Density Functional Theory Calculations on Three-Dimensional Dirac Semimetal Graphyne as Anode Nanomaterials for Li-Ion Batteries. ACS Applied Nano Materials 2023, 6 (18) , 16684-16693. https://doi.org/10.1021/acsanm.3c02827
    5. Devin McGlamery, Charles McDaniel, Wei Xu, Nicholas P. Stadie. Hydrogen-Type Binding Sites in Carbonaceous Electrodes for Rapid Lithium Insertion. ACS Applied Materials & Interfaces 2023, 15 (33) , 39211-39217. https://doi.org/10.1021/acsami.3c05047
    6. Lei Tao, Joshua A. Russell, Dawei Xia, Bingyuan Ma, Sooyeon Hwang, Zhijie Yang, Anyang Hu, Yuxin Zhang, Poom Sittisomwong, Deyang Yu, Paul A. Deck, Louis A. Madsen, Haibo Huang, Hui Xiong, Peng Bai, Kang Xu, Feng Lin. Reversible Switch in Charge Storage Enabled by Selective Ion Transport in Solid Electrolyte Interphase. Journal of the American Chemical Society 2023, 145 (30) , 16538-16547. https://doi.org/10.1021/jacs.3c03429
    7. Po-Yu Yang, Yu-Hsuan Chiang, Chun-Wei Pao, Chien-Cheng Chang. Hybrid Machine Learning-Enabled Potential Energy Model for Atomistic Simulation of Lithium Intercalation into Graphite from Plating to Overlithiation. Journal of Chemical Theory and Computation 2023, 19 (14) , 4533-4545. https://doi.org/10.1021/acs.jctc.3c00050
    8. Shuai Chen, Lingling Huang, Xinyang Wen, Qiurong Chen, Zhiyong Xia, Suli Li, Hai Wang, Mengqing Xu, Weishan Li. Formation Mechanism and Regulation of LiF in a Solid Electrolyte Interphase on Graphite Anodes in Carbonate Electrolytes. The Journal of Physical Chemistry C 2023, 127 (24) , 11462-11471. https://doi.org/10.1021/acs.jpcc.3c02731
    9. Arjun S. Kulathuvayal, Yanqing Su. Ionic Transport through the Solid Electrolyte Interphase in Lithium-Ion Batteries: A Review from First-Principles Perspectives. ACS Applied Energy Materials 2023, 6 (11) , 5628-5645. https://doi.org/10.1021/acsaem.3c00287
    10. Jong Han Jun, Jeongin Paeng, Juhee Kim, Jungho Shin, In-Suk Choi, Ji-Hoon Lee. Intertwined CNT Assemblies as an All-Around Current Collector for Volume-Efficient Lithium-Ion Hybrid Capacitors. ACS Applied Materials & Interfaces 2023, 15 (21) , 25484-25494. https://doi.org/10.1021/acsami.3c02492
    11. Zhichuan Bai, Xiang Gao, Zheng Liu, Dongliang Chao, Yingying Wang, Jie Yin, Cairong Jiang, Wenge Yang, Jianjun Ma, Yongjin Chen. Direct Observation of the Anisotropic Transport Behavior of Li+ in Graphite Anodes and Thermal Runaway Induced by the Interlayer Polarization. ACS Applied Materials & Interfaces 2023, 15 (19) , 23623-23630. https://doi.org/10.1021/acsami.3c02214
    12. Huirong Ma, Zhongrui Yu, Jingjing Chen, Dajian Wang, Chenlong Dong, Zhiyong Mao. Incorporating α-Al2O3 Nanodots into Expanded Graphite Anodes toward Stable Fast Charging for Lithium-Ion Batteries. ACS Applied Energy Materials 2023, 6 (3) , 1389-1395. https://doi.org/10.1021/acsaem.2c03251
    13. Sewon Kim, Gabin Yoon, Sung-Kyun Jung, SeonTae Park, Ju-Sik Kim, Kyungho Yoon, Sunyoung Lee, Kisuk Kang. High-Power Hybrid Solid-State Lithium–Metal Batteries Enabled by Preferred Directional Lithium Growth Mechanism. ACS Energy Letters 2023, 8 (1) , 9-20. https://doi.org/10.1021/acsenergylett.2c02150
    14. Jiayu Gao, Meng Tang, Xiaohua Zhang, Guochun Yang. Conductive C3NS Monolayer with Superior Properties for K Ion Batteries. The Journal of Physical Chemistry Letters 2022, 13 (51) , 12055-12060. https://doi.org/10.1021/acs.jpclett.2c03258
    15. Akash Varma, Rajashekar Badam, Asha Liza James, Koichi Higashimine, Kabeer Jasuja, Noriyoshi Matsumi. Titanium Diboride-Based Hierarchical Nanosheets as Anode Material for Li-Ion Batteries. ACS Applied Nano Materials 2022, 5 (11) , 16154-16163. https://doi.org/10.1021/acsanm.2c03054
    16. Chathuri Silva, Philip Chrostoski, Philip Fraundorf. Five-Membered Loop-Initiated Nucleation of Unlayered Graphene Sheets in a Carbon Melt, with Diffusion Barrier Possibilities. ACS Applied Nano Materials 2022, 5 (11) , 16188-16195. https://doi.org/10.1021/acsanm.2c03203
    17. Ning Lu, Kai Wang, Jiaxin Jiang, Hongyan Guo, Gui Zhong Zuo, Zhiwen Zhuo, Xiaojun Wu, Xiao Cheng Zeng. Ultrahigh Lithium Storage Capacity of Al2C Monolayer in a Restricted Multilayered Growth Mechanism. ACS Applied Materials & Interfaces 2022, 14 (31) , 35663-35672. https://doi.org/10.1021/acsami.2c07980
    18. Jun Won Lee, So Yeun Kim, Dong Young Rhee, Sungmin Park, Jae Yup Jung, Min-Sik Park. Tailoring the Surface of Natural Graphite with Functional Metal Oxides via Facile Crystallization for Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2022, 14 (26) , 29797-29805. https://doi.org/10.1021/acsami.2c05583
    19. Huarong Xia, Wei Zhang, Shengkai Cao, Xiaodong Chen. A Figure of Merit for Fast-Charging Li-ion Battery Materials. ACS Nano 2022, 16 (6) , 8525-8530. https://doi.org/10.1021/acsnano.2c03922
    20. Meiqian Wan, Shangquan Zhao, Zhongyong Zhang, Naigen Zhou. Two-Dimensional BeB2 and MgB2 as High Capacity Dirac Anodes for Li-Ion Batteries: A DFT Study. The Journal of Physical Chemistry C 2022, 126 (23) , 9642-9651. https://doi.org/10.1021/acs.jpcc.2c02563
    21. Kazuki Ohishi, Daisuke Igarashi, Ryoichi Tatara, Shoichiro Nishimura, Akihiro Koda, Shinichi Komaba, Jun Sugiyama. Na Diffusion in Hard Carbon Studied with Positive Muon Spin Rotation and Relaxation. ACS Physical Chemistry Au 2022, 2 (2) , 98-107. https://doi.org/10.1021/acsphyschemau.1c00036
    22. Lin Li, Xiaowei Li, Xiaoyu Li, Haotian Chen, Haidong Liu, Jin Chen, Yihe Zhang. Three-Dimensional Porous h-BC2N Based on BN Chains and Prismane C8 Units for Alkali Metal Ion Battery Anodes. The Journal of Physical Chemistry Letters 2022, 13 (10) , 2348-2355. https://doi.org/10.1021/acs.jpclett.1c03970
    23. Rachel Gorelik, Abu Asaduzzaman, Venkateswara Rao Manga, Abhishek Thakur, Krishna Muralidharan. A First-Principles Investigation of Lithium and Sodium Ion Diffusion in C60 Molecular Solids. The Journal of Physical Chemistry C 2022, 126 (9) , 4259-4266. https://doi.org/10.1021/acs.jpcc.1c09269
    24. Paratee Komen, Lappawat Ngamwongwan, Sirichok Jungthawan, Anchalee Junkaew, Suwit Suthirakun. Promoting Electrochemical Performance of Ti3C2O2 MXene-Based Electrodes of Alkali-Ion Batteries via S Doping: Theoretical Insight. ACS Applied Materials & Interfaces 2021, 13 (48) , 57306-57316. https://doi.org/10.1021/acsami.1c17802
    25. Yverick Rangom, Timothy T. Duignan, X. S. Zhao. Lithium-Ion Transport Behavior in Thin-Film Graphite Electrodes with SEI Layers Formed at Different Current Densities. ACS Applied Materials & Interfaces 2021, 13 (36) , 42662-42669. https://doi.org/10.1021/acsami.1c09559
    26. Christian Hänsel, Baltej Singh, David Kiwic, Pieremanuele Canepa, Dipan Kundu. Favorable Interfacial Chemomechanics Enables Stable Cycling of High-Li-Content Li–In/Sn Anodes in Sulfide Electrolyte-Based Solid-State Batteries. Chemistry of Materials 2021, 33 (15) , 6029-6040. https://doi.org/10.1021/acs.chemmater.1c01431
    27. Dayton G. Kizzire, Alexander M. Richter, David P. Harper, David J. Keffer. Lithium and Sodium Ion Binding Mechanisms and Diffusion Rates in Lignin-Based Hard Carbon Models. ACS Omega 2021, 6 (30) , 19883-19892. https://doi.org/10.1021/acsomega.1c02787
    28. Mani Mahajan, Gourav Singla, Satishchandra Ogale. Polypyrrole-Encapsulated Polyoxomolybdate Decorated MXene As a Functional 2D/3D Nanohybrid for a Robust and High Performance Li-Ion Battery. ACS Applied Energy Materials 2021, 4 (5) , 4541-4550. https://doi.org/10.1021/acsaem.1c00175
    29. Xiang Gao, Wenquan Lu, Jun Xu. Insights into the Li Diffusion Mechanism in Si/C Composite Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2021, 13 (18) , 21362-21370. https://doi.org/10.1021/acsami.1c03366
    30. Bishnu P. Thapaliya, Huimin Luo, Phillip Halstenberg, Harry M. Meyer, III, John R. Dunlap, Sheng Dai. Low-Cost Transformation of Biomass-Derived Carbon to High-Performing Nano-graphite via Low-Temperature Electrochemical Graphitization. ACS Applied Materials & Interfaces 2021, 13 (3) , 4393-4401. https://doi.org/10.1021/acsami.0c19395
    31. Anish Patel, Dimitrios Loufakis, Paraskevi Flouda, Ian George, Charles Shelton, John Harris, Suyash Oka, Jodie L. Lutkenhaus. Carbon Nanotube/Reduced Graphene Oxide/Aramid Nanofiber Structural Supercapacitors. ACS Applied Energy Materials 2020, 3 (12) , 11763-11771. https://doi.org/10.1021/acsaem.0c01926
    32. Giovanni Ceccio, Antonino Cannavó, Jiri Vacik, Pavel Horak, Vladimir Hnatowicz, Ivo Tomandl, Vasyl Lavrentiev. Diffusion of Lithium in Thin Copper Measured by Neutron Depth Profiling. The Journal of Physical Chemistry C 2020, 124 (47) , 25748-25753. https://doi.org/10.1021/acs.jpcc.0c08167
    33. Katharina Märker, Chao Xu, Clare P. Grey. Operando NMR of NMC811/Graphite Lithium-Ion Batteries: Structure, Dynamics, and Lithium Metal Deposition. Journal of the American Chemical Society 2020, 142 (41) , 17447-17456. https://doi.org/10.1021/jacs.0c06727
    34. Joshua D. Elliott, Alessandro Troisi, Paola Carbone. A QM/MD Coupling Method to Model the Ion-Induced Polarization of Graphene. Journal of Chemical Theory and Computation 2020, 16 (8) , 5253-5263. https://doi.org/10.1021/acs.jctc.0c00239
    35. Raman Bekarevich, Yuriy Pihosh, Yoshinori Tanaka, Kei Nishikawa, Yoshitaka Matsushita, Takanobu Hiroto, Hirohito Ohata, Takahisa Ohno, Tsutomu Minegishi, Masakazu Sugiyama, Takehiko Kitamori, Kazutaka Mitsuishi, Kazunori Takada. Conversion Reaction in the Binder-Free Anode for Fast-Charging Li-Ion Batteries Based on WO3 Nanorods. ACS Applied Energy Materials 2020, 3 (7) , 6700-6708. https://doi.org/10.1021/acsaem.0c00844
    36. Anton Van der Ven, Zhi Deng, Swastika Banerjee, Shyue Ping Ong. Rechargeable Alkali-Ion Battery Materials: Theory and Computation. Chemical Reviews 2020, 120 (14) , 6977-7019. https://doi.org/10.1021/acs.chemrev.9b00601
    37. Peng Chen, Ye Fan, Yanting Gao, Qing Liu, Yunhua Sun, Tong Guo, Binglong Huang, Xin Wang, Yongsheng Fu. Design and Construction of Graphitic/Amorphous Heterophase Porous Carbon with a Lotus-Leaf-like Surface Microstructure for High-Performance Li-Ion and Na-Ion Batteries. Industrial & Engineering Chemistry Research 2020, 59 (25) , 11475-11484. https://doi.org/10.1021/acs.iecr.0c00129
    38. Alexander Y. Galashev, Ksenia A. Ivanichkina, Konstantin P. Katin, Mikhail M. Maslov. Computer Test of a Modified Silicene/Graphite Anode for Lithium-Ion Batteries. ACS Omega 2020, 5 (22) , 13207-13218. https://doi.org/10.1021/acsomega.0c01240
    39. Juan C. Garcia, Ira Bloom, Christopher Johnson, Dennis Dees, Hakim Iddir. Graphite Lithiation under Fast Charging Conditions: Atomistic Modeling Insights. The Journal of Physical Chemistry C 2020, 124 (15) , 8162-8169. https://doi.org/10.1021/acs.jpcc.0c01083
    40. Tiantian Zeng, Hao Yang, Hongbo Wang, Gang Chen. Acepentalene Membrane Sheet: A Metallic Two-Dimensional Carbon Allotrope with High Carrier Mobility for Lithium Ion Battery Anodes. The Journal of Physical Chemistry C 2020, 124 (11) , 5999-6011. https://doi.org/10.1021/acs.jpcc.0c00376
    41. Yu Yan, Shaobo Li, Bin Yuan, Renzong Hu, Lichun Yang, Jiangwen Liu, Jun Liu, Ying Wang, Zhengtang Luo, Hangjun Ying, Shunlong Zhang, Wei-Qiang Han, Min Zhu. Flowerlike Ti-Doped MoO3 Conductive Anode Fabricated by a Novel NiTi Dealloying Method: Greatly Enhanced Reversibility of the Conversion and Intercalation Reaction. ACS Applied Materials & Interfaces 2020, 12 (7) , 8240-8248. https://doi.org/10.1021/acsami.9b20922
    42. Arup Chakraborty, Sooraj Kunnikuruvan, Sandeep Kumar, Boris Markovsky, Doron Aurbach, Mudit Dixit, Dan Thomas Major. Layered Cathode Materials for Lithium-Ion Batteries: Review of Computational Studies on LiNi1–x–yCoxMnyO2 and LiNi1–x–yCoxAlyO2. Chemistry of Materials 2020, 32 (3) , 915-952. https://doi.org/10.1021/acs.chemmater.9b04066
    43. Kunal Mondal, Tanmoy Maitra, Alok Kumar Srivastava, Gorakh Pawar, Michael D. McMurtrey, Ashutosh Sharma. 110th Anniversary: Particle Size Effect on Enhanced Graphitization and Electrical Conductivity of Suspended Gold/Carbon Composite Nanofibers. Industrial & Engineering Chemistry Research 2020, 59 (5) , 1944-1952. https://doi.org/10.1021/acs.iecr.9b06592
    44. Mostafa Elabyouki, Daniel Bahamon, Maryam Khaleel, Lourdes F. Vega. Insights into the Transport Properties of Electrolyte Solutions in a Hierarchical Carbon Electrode by Molecular Dynamics Simulations. The Journal of Physical Chemistry C 2019, 123 (45) , 27273-27285. https://doi.org/10.1021/acs.jpcc.9b05620
    45. Syed Ali Abbas, Nahid Kaisar, Yu-Ting Chen, Sheng Hui Wu, Chia-Chen Fang, Anupriya Singh, Pen-Cheng Wang, Chih Wei Chu. Modified Separators with Ultrathin Graphite Coating Simultaneously Mitigate the Issues of Metal Dendrites and Lithium Polysulfides to Provide Stable Lithium–Sulfur Batteries. ACS Sustainable Chemistry & Engineering 2019, 7 (19) , 16604-16611. https://doi.org/10.1021/acssuschemeng.9b03751
    46. Alejandro A. Franco, Alexis Rucci, Daniel Brandell, Christine Frayret, Miran Gaberscek, Piotr Jankowski, Patrik Johansson. Boosting Rechargeable Batteries R&D by Multiscale Modeling: Myth or Reality?. Chemical Reviews 2019, 119 (7) , 4569-4627. https://doi.org/10.1021/acs.chemrev.8b00239
    47. C. He, J. H. Zhang, W. X. Zhang, T. T. Li. GeSe/BP van der Waals Heterostructures as Promising Anode Materials for Potassium-Ion Batteries. The Journal of Physical Chemistry C 2019, 123 (9) , 5157-5163. https://doi.org/10.1021/acs.jpcc.8b08909
    48. Alexander S. Tygesen, Mohnish Pandey, Tejs Vegge, Kristian S. Thygesen, Juan M. García-Lastra. Role of Long-Range Dispersion Forces in Modeling of MXenes as Battery Electrode Materials. The Journal of Physical Chemistry C 2019, 123 (7) , 4064-4071. https://doi.org/10.1021/acs.jpcc.8b11663
    49. Ting Zhang, Yandong Ma, Baibiao Huang, Ying Dai. Two-Dimensional Penta-BN2 with High Specific Capacity for Li-Ion Batteries. ACS Applied Materials & Interfaces 2019, 11 (6) , 6104-6110. https://doi.org/10.1021/acsami.8b20566
    50. Gayatree Barik, Sourav Pal. Energy Gap-Modulated Blue Phosphorene as Flexible Anodes for Lithium- and Sodium-Ion Batteries. The Journal of Physical Chemistry C 2019, 123 (5) , 2808-2819. https://doi.org/10.1021/acs.jpcc.8b11512
    51. Hongwei Kang, Huili Liu, Chunxiao Li, Li Sun, Chaofeng Zhang, Hongcai Gao, Jun Yin, Baocheng Yang, Ya You, Ke-Cheng Jiang, Huijin Long, Sen Xin. Polyanthraquinone-Triazine—A Promising Anode Material for High-Energy Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2018, 10 (43) , 37023-37030. https://doi.org/10.1021/acsami.8b12888
    52. Siby Thomas, Eun Bi Nam, Sang Uck Lee. Atomistic Dynamics Investigation of the Thermomechanical Properties and Li Diffusion Kinetics in ψ-Graphene for LIB Anode Material. ACS Applied Materials & Interfaces 2018, 10 (42) , 36240-36248. https://doi.org/10.1021/acsami.8b11476
    53. Qiuyue Zhang, Chunmei Tang, Weihua Zhu, Chun Cheng. Strain-Enhanced Li Storage and Diffusion on the Graphyne as the Anode Material in the Li-Ion Battery. The Journal of Physical Chemistry C 2018, 122 (40) , 22838-22848. https://doi.org/10.1021/acs.jpcc.8b05272
    54. Yuting Luo, Luis R. De Jesus, Justin L. Andrews, Abhishek Parija, Nathan Fleer, Daniel Juarez Robles, Partha P. Mukherjee, Sarbajit Banerjee. Roadblocks in Cation Diffusion Pathways: Implications of Phase Boundaries for Li-Ion Diffusivity in an Intercalation Cathode Material. ACS Applied Materials & Interfaces 2018, 10 (36) , 30901-30911. https://doi.org/10.1021/acsami.8b10604
    55. Ali Kachmar, William A. Goddard, III. Free Energy Landscape of Sodium Solvation into Graphite. The Journal of Physical Chemistry C 2018, 122 (35) , 20064-20072. https://doi.org/10.1021/acs.jpcc.8b04782
    56. Qingfang Li, Juchuan Yang, Lei Zhang. Theoretical Prediction of Blue Phosphorene/Borophene Heterostructure as a Promising Anode Material for Lithium-Ion Batteries. The Journal of Physical Chemistry C 2018, 122 (32) , 18294-18303. https://doi.org/10.1021/acs.jpcc.8b05076
    57. Dong Fan, Shaohua Lu, Yundong Guo, Xiaojun Hu. Two-Dimensional Tetragonal Titanium Carbide: a High-Capacity and High-Rate Battery Material. The Journal of Physical Chemistry C 2018, 122 (27) , 15118-15124. https://doi.org/10.1021/acs.jpcc.8b03425
    58. Zizhong Zhang, Yongfan Zhang, Yi Li, Jing Lin, Donald G. Truhlar, Shuping Huang. MnSb2S4 Monolayer as an Anode Material for Metal-Ion Batteries. Chemistry of Materials 2018, 30 (10) , 3208-3214. https://doi.org/10.1021/acs.chemmater.7b05311
    59. Ruhul Amin, Md. Anower Hossain, Yahya Zakaria. Interfacial Kinetics and Ionic Diffusivity of the Electrodeposited MoS2 Film. ACS Applied Materials & Interfaces 2018, 10 (16) , 13509-13518. https://doi.org/10.1021/acsami.8b01104
    60. Michael L. Agiorgousis, Yi-Yang Sun, Damien West, and Shengbai Zhang . Intercalated Chevrel Phase Mo6S8 as a Janus Material for Energy Generation and Storage. ACS Applied Energy Materials 2018, 1 (2) , 440-446. https://doi.org/10.1021/acsaem.7b00092
    61. Yuki Kato, Shinya Shiotani, Keisuke Morita, Kota Suzuki, Masaaki Hirayama, and Ryoji Kanno . All-Solid-State Batteries with Thick Electrode Configurations. The Journal of Physical Chemistry Letters 2018, 9 (3) , 607-613. https://doi.org/10.1021/acs.jpclett.7b02880
    62. Florian Buchner, Jihyun Kim, Christiane Adler, Maral Bozorgchenani, Joachim Bansmann, and R. Jürgen Behm . Intercalation and Deintercalation of Lithium at the Ionic Liquid–Graphite(0001) Interface. The Journal of Physical Chemistry Letters 2017, 8 (23) , 5804-5809. https://doi.org/10.1021/acs.jpclett.7b02530
    63. Kenneth Hernández-Burgos, Zachary J. Barton, and Joaquín Rodríguez-López . Finding Harmony between Ions and Electrons: New Tools and Concepts for Emerging Energy Storage Materials. Chemistry of Materials 2017, 29 (21) , 8918-8931. https://doi.org/10.1021/acs.chemmater.7b02243
    64. Natalia S. Mikhaleva, Maxim A. Visotin, Aleksandr A. Kuzubov, and Zakhar I. Popov . VS2/Graphene Heterostructures as Promising Anode Material for Li-Ion Batteries. The Journal of Physical Chemistry C 2017, 121 (43) , 24179-24184. https://doi.org/10.1021/acs.jpcc.7b07630
    65. Andrei A. Eliseev, A. S. Kumskov, N. S. Falaleev, V. G. Zhigalina, Artem A. Eliseev, A. A. Mitrofanov, D. I. Petukhov, A. L. Vasiliev, and N. A. Kiselev . Mass Transport through Defects in Graphene Layers. The Journal of Physical Chemistry C 2017, 121 (42) , 23669-23675. https://doi.org/10.1021/acs.jpcc.7b06100
    66. Gul Zeb, Peter Gaskell, Kaiwen Hu, Young Nam Kim, Xingcheng Xiao, Thomas Szkopek, and Marta Cerruti . Surface Treatments for Controlling Solid Electrolyte Interphase Formation on Sn/Graphene Composite Anodes for High-Performance Li-Ion Batteries. The Journal of Physical Chemistry C 2017, 121 (31) , 16682-16692. https://doi.org/10.1021/acs.jpcc.7b02784
    67. Michael L. Agiorgousis, Yi-Yang Sun, and Shengbai Zhang . The Role of Ionic Liquid Electrolyte in an Aluminum–Graphite Electrochemical Cell. ACS Energy Letters 2017, 2 (3) , 689-693. https://doi.org/10.1021/acsenergylett.7b00110
    68. Zhuzhu Du, Wei Ai, Chencheng Sun, Chenji Zou, Jianfeng Zhao, Yu Chen, Xiaochen Dong, Juqing Liu, Gengzhi Sun, Ting Yu, and Wei Huang . Engineering the Li Storage Properties of Graphene Anodes: Defect Evolution and Pore Structure Regulation. ACS Applied Materials & Interfaces 2016, 8 (49) , 33712-33722. https://doi.org/10.1021/acsami.6b12319
    69. Hui Zhou, Ke An, Srikanth Allu, Sreekanth Pannala, Jianlin Li, Hassina Z. Bilheux, Surendra K. Martha, and Jagjit Nanda . Probing Multiscale Transport and Inhomogeneity in a Lithium-Ion Pouch Cell Using In Situ Neutron Methods. ACS Energy Letters 2016, 1 (5) , 981-986. https://doi.org/10.1021/acsenergylett.6b00353
    70. Li−Li Zhou, Shou-Yu Shen, Xin-Xing Peng, Li−Na Wu, Qi Wang, Chong-Heng Shen, Ting-Ting Tu, Ling Huang, Jun-Tao Li, and Shi-Gang Sun . New Insights into the Structure Changes and Interface Properties of Li3VO4 Anode for Lithium-Ion Batteries during the Initial Cycle by in-Situ Techniques. ACS Applied Materials & Interfaces 2016, 8 (36) , 23739-23745. https://doi.org/10.1021/acsami.6b07811
    71. Tianshan Zhao, Qian Wang, and Puru Jena . Cluster-Inspired Design of High-Capacity Anode for Li-Ion Batteries. ACS Energy Letters 2016, 1 (1) , 202-208. https://doi.org/10.1021/acsenergylett.6b00120
    72. Taehoon Kim, Bohang Song, Alexander J. G. Lunt, Giannantonio Cibin, Andrew J. Dent, Li Lu, and Alexander M. Korsunsky . Operando X-ray Absorption Spectroscopy Study of Atomic Phase Reversibility with Wavelet Transform in the Lithium-Rich Manganese Based Oxide Cathode. Chemistry of Materials 2016, 28 (12) , 4191-4203. https://doi.org/10.1021/acs.chemmater.6b00522
    73. Xin Zhao, Sean A. Vail, Yuhao Lu, Jie Song, Wei Pan, David R. Evans, and Jong-Jan Lee . Antimony/Graphitic Carbon Composite Anode for High-Performance Sodium-Ion Batteries. ACS Applied Materials & Interfaces 2016, 8 (22) , 13871-13878. https://doi.org/10.1021/acsami.6b01761
    74. Yinsheng Guo, Raymond B. Smith, Zhonghua Yu, Dmitri K. Efetov, Junpu Wang, Philip Kim, Martin Z. Bazant, and Louis E. Brus . Li Intercalation into Graphite: Direct Optical Imaging and Cahn–Hilliard Reaction Dynamics. The Journal of Physical Chemistry Letters 2016, 7 (11) , 2151-2156. https://doi.org/10.1021/acs.jpclett.6b00625
    75. Soomin Park, Young Geun Yoo, Inho Nam, Seongjun Bae, Jongseok Park, Jeong Woo Han, and Jongheop Yi . Insights into the Li Diffusion Dynamics and Nanostructuring of H2Ti12O25 To Enhance Its Li Storage Performance. ACS Applied Materials & Interfaces 2016, 8 (19) , 12186-12193. https://doi.org/10.1021/acsami.6b02842
    76. Gen-Cai Guo, Da Wang, Xiao-Lin Wei, Qi Zhang, Hao Liu, Woon-Ming Lau, and Li-Min Liu . First-Principles Study of Phosphorene and Graphene Heterostructure as Anode Materials for Rechargeable Li Batteries. The Journal of Physical Chemistry Letters 2015, 6 (24) , 5002-5008. https://doi.org/10.1021/acs.jpclett.5b02513
    77. Bryan D. McCloskey . Attainable Gravimetric and Volumetric Energy Density of Li–S and Li Ion Battery Cells with Solid Separator-Protected Li Metal Anodes. The Journal of Physical Chemistry Letters 2015, 6 (22) , 4581-4588. https://doi.org/10.1021/acs.jpclett.5b01814
    78. One-Sun Lee and Marcelo A. Carignano . Exfoliation of Electrolyte-Intercalated Graphene: Molecular Dynamics Simulation Study. The Journal of Physical Chemistry C 2015, 119 (33) , 19415-19422. https://doi.org/10.1021/acs.jpcc.5b03217
    79. Chuangang Hu, Lingxiao Lv, Jiangli Xue, Minghui Ye, Lixia Wang, and Liangti Qu . Branched Graphene Nanocapsules for Anode Material of Lithium-Ion Batteries. Chemistry of Materials 2015, 27 (15) , 5253-5260. https://doi.org/10.1021/acs.chemmater.5b01398
    80. K. P. S. S. Hembram, Hyun Jung, Byung Chul Yeo, Sung Jin Pai, Seungchul Kim, Kwang-Ryeol Lee, and Sang Soo Han . Unraveling the Atomistic Sodiation Mechanism of Black Phosphorus for Sodium Ion Batteries by First-Principles Calculations. The Journal of Physical Chemistry C 2015, 119 (27) , 15041-15046. https://doi.org/10.1021/acs.jpcc.5b05482
    81. Muralikrishna Raju, P. Ganesh, Paul R. C. Kent, and Adri C. T. van Duin . Reactive Force Field Study of Li/C Systems for Electrical Energy Storage. Journal of Chemical Theory and Computation 2015, 11 (5) , 2156-2166. https://doi.org/10.1021/ct501027v
    82. Joo-Seong Kim, Dae Woo Kim, Hee Tae Jung, and Jang Wook Choi . Controlled Lithium Dendrite Growth by a Synergistic Effect of Multilayered Graphene Coating and an Electrolyte Additive. Chemistry of Materials 2015, 27 (8) , 2780-2787. https://doi.org/10.1021/cm503447u
    83. Qiushi Yao, Chengxi Huang, Yongbo Yuan, Yuzhen Liu, Sumei Liu, Kaiming Deng, and Erjun Kan . Theoretical Prediction of Phosphorene and Nanoribbons As Fast-Charging Li Ion Battery Anode Materials. The Journal of Physical Chemistry C 2015, 119 (12) , 6923-6928. https://doi.org/10.1021/acs.jpcc.5b02130
    84. Hyun Jung, Minho Lee, Byung Chul Yeo, Kwang-Ryeol Lee, and Sang Soo Han . Atomistic Observation of the Lithiation and Delithiation Behaviors of Silicon Nanowires Using Reactive Molecular Dynamics Simulations. The Journal of Physical Chemistry C 2015, 119 (7) , 3447-3455. https://doi.org/10.1021/jp5094756
    85. Lamuel David, Samuel Bernard, Christel Gervais, Philippe Miele, and Gurpreet Singh . Facile Synthesis and High Rate Capability of Silicon Carbonitride/Boron Nitride Composite with a Sheet-Like Morphology. The Journal of Physical Chemistry C 2015, 119 (5) , 2783-2791. https://doi.org/10.1021/jp508075x
    86. Elmar Yu. Kataev, Daniil M. Itkis, Alexander V. Fedorov, Boris V. Senkovsky, Dmitry Yu. Usachov, Nikolay I. Verbitskiy, Alexander Grüneis, Alexei Barinov, Daria Yu. Tsukanova, Andrey A. Volykhov, Kirill V. Mironovich, Victor A. Krivchenko, Maksim G. Rybin, Elena D. Obraztsova, Clemens Laubschat, Denis V. Vyalikh, and Lada V. Yashina . Oxygen Reduction by Lithiated Graphene and Graphene-Based Materials. ACS Nano 2015, 9 (1) , 320-326. https://doi.org/10.1021/nn5052103
    87. Guilherme Colherinhas, Eudes Eterno Fileti, and Vitaly V. Chaban . The Band Gap of Graphene Is Efficiently Tuned by Monovalent Ions. The Journal of Physical Chemistry Letters 2015, 6 (2) , 302-307. https://doi.org/10.1021/jz502601z
    88. P. Ganesh, Jeongnim Kim, Changwon Park, Mina Yoon, Fernando A. Reboredo, and Paul R. C. Kent . Binding and Diffusion of Lithium in Graphite: Quantum Monte Carlo Benchmarks and Validation of van der Waals Density Functional Methods. Journal of Chemical Theory and Computation 2014, 10 (12) , 5318-5323. https://doi.org/10.1021/ct500617z
    89. Jun-chao Zheng, Ya-dong Han, Bao Zhang, Chao Shen, Lei Ming, Xing Ou, and Jia-feng Zhang . Electrochemical Properties of VPO4/C Nanosheets and Microspheres As Anode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2014, 6 (9) , 6223-6226. https://doi.org/10.1021/am5016638
    90. J. Song and B. Ouyang , N. V. Medhekar . Energetics and Kinetics of Li Intercalation in Irradiated Graphene Scaffolds. ACS Applied Materials & Interfaces 2013, 5 (24) , 12968-12974. https://doi.org/10.1021/am403685w
    91. Yu Jing, Zhen Zhou, Carlos R. Cabrera, and Zhongfang Chen . Metallic VS2 Monolayer: A Promising 2D Anode Material for Lithium Ion Batteries. The Journal of Physical Chemistry C 2013, 117 (48) , 25409-25413. https://doi.org/10.1021/jp410969u
    92. Yongzhu Fu, Chenxi Zu, and Arumugam Manthiram . In Situ-Formed Li2S in Lithiated Graphite Electrodes for Lithium–Sulfur Batteries. Journal of the American Chemical Society 2013, 135 (48) , 18044-18047. https://doi.org/10.1021/ja409705u
    93. Yi Shi, Jia-Zhao Wang, Shu-Lei Chou, David Wexler, Hui-Jun Li, Kiyoshi Ozawa, Hua-Kun Liu, and Yu-Ping Wu . Hollow Structured Li3VO4 Wrapped with Graphene Nanosheets in Situ Prepared by a One-Pot Template-Free Method as an Anode for Lithium-Ion Batteries. Nano Letters 2013, 13 (10) , 4715-4720. https://doi.org/10.1021/nl402237u
    94. Stephen J. Harris and Peng Lu . Effects of Inhomogeneities—Nanoscale to Mesoscale—on the Durability of Li-Ion Batteries. The Journal of Physical Chemistry C 2013, 117 (13) , 6481-6492. https://doi.org/10.1021/jp311431z
    95. Y. W. Wen, Xiao Liu, Xianbao Duan, Kyeongjae Cho, Rong Chen, and Bin Shan . Theoretical Study of sp2-sp3 Hybridized Carbon Network for Li-ion Battery Anode. The Journal of Physical Chemistry C 2013, 117 (10) , 4951-4956. https://doi.org/10.1021/jp3118902
    96. Lynn Mandeltort and John T. Yates, Jr. . Rapid Atomic Li Surface Diffusion and Intercalation on Graphite: A Surface Science Study. The Journal of Physical Chemistry C 2012, 116 (47) , 24962-24967. https://doi.org/10.1021/jp308101c
    97. Ermias Girma Leggesse and Jyh-Chiang Jiang . Theoretical Study of the Reductive Decomposition of Ethylene Sulfite: A Film-Forming Electrolyte Additive in Lithium Ion Batteries. The Journal of Physical Chemistry A 2012, 116 (45) , 11025-11033. https://doi.org/10.1021/jp3081996
    98. Qing Tang, Zhen Zhou, and Panwen Shen . Are MXenes Promising Anode Materials for Li Ion Batteries? Computational Studies on Electronic Properties and Li Storage Capability of Ti3C2 and Ti3C2X2 (X = F, OH) Monolayer. Journal of the American Chemical Society 2012, 134 (40) , 16909-16916. https://doi.org/10.1021/ja308463r
    99. Meng Gu, Ying Li, Xiaolin Li, Shenyang Hu, Xiangwu Zhang, Wu Xu, Suntharampillai Thevuthasan, Donald R. Baer, Ji-Guang Zhang, Jun Liu, and Chongmin Wang . In Situ TEM Study of Lithiation Behavior of Silicon Nanoparticles Attached to and Embedded in a Carbon Matrix. ACS Nano 2012, 6 (9) , 8439-8447. https://doi.org/10.1021/nn303312m
    100. Xiaofeng Fan, W.T. Zheng, and Jer-Lai Kuo . Adsorption and Diffusion of Li on Pristine and Defective Graphene. ACS Applied Materials & Interfaces 2012, 4 (5) , 2432-2438. https://doi.org/10.1021/am3000962
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect