ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
Recently Viewed
You have not visited any articles yet, Please visit some articles to see contents here.
CONTENT TYPES

Figure 1Loading Img

Charge-Transfer Localization in Molecularly Doped Thiophene-Based Donor Polymers

View Author Information
Institut für Physik, Humboldt University Berlin, Newtonstrasse 15, 12489 Berlin, Germany
Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
§ School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332-0400
Fraunhofer Institute for Applied Polymer Research, Geiselbergstrasse 69, 14476 Potsdam, Germany
*To whom correspondence should be addressed. E-mail: [email protected]
Cite this: J. Phys. Chem. Lett. 2010, 1, 13, 2037–2041
Publication Date (Web):June 16, 2010
https://doi.org/10.1021/jz100492c
Copyright © 2010 American Chemical Society
Article Views
2062
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (2 MB)
Supporting Info (1)»

Abstract

Abstract Image

We provide evidence for highly localized charge-transfer complex formation between a series of thiophenetetrafluorobenzene donor copolymers and the molecular acceptor tetrafluorotetracyanoquinodimethane (F4TCNQ). Infrared absorption spectra of diagnostic vibrational bands in conjunction with theoretical modeling show that one acceptor molecule undergoes charge transfer with a quaterthiophene segment of the polymers, irrespective of the macroscopic polymer ionization energy and acceptor concentration in thin films. The interaction is thus determined by the “local ionization potential” of quaterthiophene. Consequently, using materials parameters determined on a macroscopic length scale as a guideline for making new charge-transfer complex materials for high electrical conductivity turns out to be oversimplified, and a reliable material design must take into account property variations on the nm scale as well.

Supporting Information

ARTICLE SECTIONS
Jump To

Experimental and preparation details, full-range IR spectra, theoretically modeled charge-transfer complexes, and vibrational frequencies/intensities. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 86 publications.

  1. Ruiheng Wu, Micaela Matta, Bryan D. Paulsen, Jonathan Rivnay. Operando Characterization of Organic Mixed Ionic/Electronic Conducting Materials. Chemical Reviews 2022, 122 (4) , 4493-4551. https://doi.org/10.1021/acs.chemrev.1c00597
  2. Alberto D. Scaccabarozzi, Aniruddha Basu, Filip Aniés, Jian Liu, Osnat Zapata-Arteaga, Ross Warren, Yuliar Firdaus, Mohamad Insan Nugraha, Yuanbao Lin, Mariano Campoy-Quiles, Norbert Koch, Christian Müller, Leonidas Tsetseris, Martin Heeney, Thomas D. Anthopoulos. Doping Approaches for Organic Semiconductors. Chemical Reviews 2022, 122 (4) , 4420-4492. https://doi.org/10.1021/acs.chemrev.1c00581
  3. Dane A. Stanfield, Zerina Mehmedović, Benjamin J. Schwartz. Vibrational Stark Effect Mapping of Polaron Delocalization in Chemically Doped Conjugated Polymers. Chemistry of Materials 2021, 33 (21) , 8489-8500. https://doi.org/10.1021/acs.chemmater.1c02934
  4. Jonathan Ogle, Daniel Powell, Laura Flannery, Luisa Whittaker-Brooks. Interplay between Morphology and Electronic Structure in Emergent Organic and π-d Conjugated Organometal Thin Film Materials. Industrial & Engineering Chemistry Research 2021, 60 (43) , 15365-15379. https://doi.org/10.1021/acs.iecr.1c03077
  5. Chuan-Ding Dong, Stefan Schumacher. Microscopic Insights into Charge Formation and Energetics in n-Doped Organic Semiconductors. The Journal of Physical Chemistry C 2021, 125 (40) , 21824-21830. https://doi.org/10.1021/acs.jpcc.1c05666
  6. Geon-Hee Nam, Cheng Sun, Dae Sung Chung, Yun-Hi Kim. Enhancing Doping Efficiency of Diketopyrrolopyrrole-Copolymers by Introducing Sparse Intramolecular Alkyl Chain Spacing. Macromolecules 2021, 54 (17) , 7870-7879. https://doi.org/10.1021/acs.macromol.1c01368
  7. Mingkuan Cui, Hongsong Rui, Xiaoming Wu, Zhe Sun, Weixin Qu, Wenjing Qin, Shougen Yin. Coexistent Integer Charge Transfer and Charge Transfer Complex in F4-TCNQ-Doped PTAA for Efficient Flexible Organic Light-Emitting Diodes. The Journal of Physical Chemistry Letters 2021, 12 (35) , 8533-8540. https://doi.org/10.1021/acs.jpclett.1c02281
  8. Malavika Arvind, Claudia E. Tait, Michele Guerrini, Jannis Krumland, Ana M. Valencia, Caterina Cocchi, Ahmed E. Mansour, Norbert Koch, Stephen Barlow, Seth R. Marder, Jan Behrends, Dieter Neher. Quantitative Analysis of Doping-Induced Polarons and Charge-Transfer Complexes of Poly(3-hexylthiophene) in Solution. The Journal of Physical Chemistry B 2020, 124 (35) , 7694-7708. https://doi.org/10.1021/acs.jpcb.0c03517
  9. Kristen E. Watts, Bharati Neelamraju, Maximilian Moser, Iain McCulloch, Erin L. Ratcliff, Jeanne E. Pemberton. Thermally Induced Formation of HF4TCNQ– in F4TCNQ-Doped Regioregular P3HT. The Journal of Physical Chemistry Letters 2020, 11 (16) , 6586-6592. https://doi.org/10.1021/acs.jpclett.0c01673
  10. Richard Schier, Ana M. Valencia, Caterina Cocchi. Microscopic Insight into the Electronic Structure of BCF-Doped Oligothiophenes from Ab Initio Many-Body Theory. The Journal of Physical Chemistry C 2020, 124 (26) , 14363-14370. https://doi.org/10.1021/acs.jpcc.0c03124
  11. L. Schöttner, S. Erker, R. Schlesinger, N. Koch, A. Nefedov, O. T. Hofmann, C. Wöll. Doping-Induced Electron Transfer at Organic/Oxide Interfaces: Direct Evidence from Infrared Spectroscopy. The Journal of Physical Chemistry C 2020, 124 (8) , 4511-4516. https://doi.org/10.1021/acs.jpcc.9b08768
  12. Chuan-Ding Dong, Stefan Schumacher. Molecular Doping of PCPDT–BT Copolymers: Comparison of Molecular Complexes with and without Integer Charge Transfer. The Journal of Physical Chemistry C 2019, 123 (51) , 30863-30870. https://doi.org/10.1021/acs.jpcc.9b09970
  13. Kristen E. Watts, Bharati Neelamraju, Erin L. Ratcliff, Jeanne E. Pemberton. Stability of Charge Transfer States in F4TCNQ-Doped P3HT. Chemistry of Materials 2019, 31 (17) , 6986-6994. https://doi.org/10.1021/acs.chemmater.9b01549
  14. Ana M. Valencia, Caterina Cocchi. Electronic and Optical Properties of Oligothiophene-F4TCNQ Charge-Transfer Complexes: The Role of the Donor Conjugation Length. The Journal of Physical Chemistry C 2019, 123 (14) , 9617-9623. https://doi.org/10.1021/acs.jpcc.9b01390
  15. Amir Mazaheripour, Elayne M. Thomas, Rachel A. Segalman, Michael L. Chabinyc. Nonaggregating Doped Polymers Based on Poly(3,4-Propylenedioxythiophene). Macromolecules 2019, 52 (5) , 2203-2213. https://doi.org/10.1021/acs.macromol.8b02389
  16. Han Yan, Yabing Tang, Xiangyi Meng, Tong Xiao, Guanghao Lu, Wei Ma. Achieving High Doping Concentration by Dopant Vapor Deposition in Organic Solar Cells. ACS Applied Materials & Interfaces 2019, 11 (4) , 4178-4184. https://doi.org/10.1021/acsami.8b16162
  17. Bharati Neelamraju, Kristen E. Watts, Jeanne E. Pemberton, Erin L. Ratcliff. Correlation of Coexistent Charge Transfer States in F4TCNQ-Doped P3HT with Microstructure. The Journal of Physical Chemistry Letters 2018, 9 (23) , 6871-6877. https://doi.org/10.1021/acs.jpclett.8b03104
  18. Hannes Hase, Katie O’Neill, Johannes Frisch, Andreas Opitz, Norbert Koch, Ingo Salzmann. Unraveling the Microstructure of Molecularly Doped Poly(3-hexylthiophene) by Thermally Induced Dedoping. The Journal of Physical Chemistry C 2018, 122 (45) , 25893-25899. https://doi.org/10.1021/acs.jpcc.8b08591
  19. Cong Liu, Zengqi Huang, Xiaotian Hu, Xiangchuan Meng, Liqiang Huang, Jian Xiong, Licheng Tan, and Yiwang Chen . Grain Boundary Modification via F4TCNQ To Reduce Defects of Perovskite Solar Cells with Excellent Device Performance. ACS Applied Materials & Interfaces 2018, 10 (2) , 1909-1916. https://doi.org/10.1021/acsami.7b15031
  20. Yevhen Karpov, Tim Erdmann, Manfred Stamm, Uwe Lappan, Olga Guskova, Mikhail Malanin, Ivan Raguzin, Tetyana Beryozkina, Vasiliy Bakulev, Florian Günther, Sibylle Gemming, Gotthard Seifert, Mike Hambsch, Stefan Mannsfeld, Brigitte Voit, and Anton Kiriy . Molecular Doping of a High Mobility Diketopyrrolopyrrole–Dithienylthieno[3,2-b]thiophene Donor–Acceptor Copolymer with F6TCNNQ. Macromolecules 2017, 50 (3) , 914-926. https://doi.org/10.1021/acs.macromol.6b02452
  21. Björn Lüssem, Chang-Min Keum, Daniel Kasemann, Ben Naab, Zhenan Bao, and Karl Leo . Doped Organic Transistors. Chemical Reviews 2016, 116 (22) , 13714-13751. https://doi.org/10.1021/acs.chemrev.6b00329
  22. Lars Müller, Diana Nanova, Tobias Glaser, Sebastian Beck, Annemarie Pucci, Anne K. Kast, Rasmus R. Schröder, Eric Mankel, Patrick Pingel, Dieter Neher, Wolfgang Kowalsky, and Robert Lovrincic . Charge-Transfer–Solvent Interaction Predefines Doping Efficiency in p-Doped P3HT Films. Chemistry of Materials 2016, 28 (12) , 4432-4439. https://doi.org/10.1021/acs.chemmater.6b01629
  23. Ingo Salzmann, Georg Heimel, Martin Oehzelt, Stefanie Winkler, and Norbert Koch . Molecular Electrical Doping of Organic Semiconductors: Fundamental Mechanisms and Emerging Dopant Design Rules. Accounts of Chemical Research 2016, 49 (3) , 370-378. https://doi.org/10.1021/acs.accounts.5b00438
  24. D. Tyler Scholes, Steven A. Hawks, Patrick Y. Yee, Hao Wu, Jeffrey R. Lindemuth, Sarah H. Tolbert, and Benjamin J. Schwartz . Overcoming Film Quality Issues for Conjugated Polymers Doped with F4TCNQ by Solution Sequential Processing: Hall Effect, Structural, and Optical Measurements. The Journal of Physical Chemistry Letters 2015, 6 (23) , 4786-4793. https://doi.org/10.1021/acs.jpclett.5b02332
  25. Xiaotian Hu, Lie Chen, Yong Zhang, Lin Zhang, Yuanpeng Xie, Weihua Zhou, Wen Chen, and Yiwang Chen . A Facile Approach To Fabricate High-Performance Polymer Solar Cells with an Annealing-Free and Simple Device of Three Layers. The Journal of Physical Chemistry C 2015, 119 (21) , 11619-11624. https://doi.org/10.1021/acs.jpcc.5b01540
  26. Justin E. Cochran, Matthias J. N. Junk, A. M. Glaudell, P. Levi Miller, John S. Cowart, Michael F. Toney, Craig J. Hawker, Bradley F. Chmelka, and Michael L. Chabinyc . Molecular Interactions and Ordering in Electrically Doped Polymers: Blends of PBTTT and F4TCNQ. Macromolecules 2014, 47 (19) , 6836-6846. https://doi.org/10.1021/ma501547h
  27. Benjamin Mahns, Olga Kataeva, Daut Islamov, Silke Hampel, Frank Steckel, Christian Hess, Martin Knupfer, Bernd Büchner, Cameliu Himcinschi, Torsten Hahn, Roman Renger, and Jens Kortus . Crystal Growth, Structure, and Transport Properties of the Charge-Transfer Salt Picene/2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane. Crystal Growth & Design 2014, 14 (3) , 1338-1346. https://doi.org/10.1021/cg401841n
  28. Lingyun Zhu, Eung-Gun Kim, Yuanping Yi, and Jean-Luc Brédas . Charge Transfer in Molecular Complexes with 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ): A Density Functional Theory Study. Chemistry of Materials 2011, 23 (23) , 5149-5159. https://doi.org/10.1021/cm201798x
  29. Antonio Facchetti. π-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications. Chemistry of Materials 2011, 23 (3) , 733-758. https://doi.org/10.1021/cm102419z
  30. Han Yan, Wei Ma. Molecular Doping Efficiency in Organic Semiconductors: Fundamental Principle and Promotion Strategy. Advanced Functional Materials 2022, 32 (12) , 2111351. https://doi.org/10.1002/adfm.202111351
  31. Tengzhou Ma, Ban Xuan Dong, Jonathan W. Onorato, Jens Niklas, Oleg Poluektov, Christine K. Luscombe, Shrayesh N. Patel. Correlating conductivity and Seebeck coefficient to doping within crystalline and amorphous domains in poly(3‐(methoxyethoxyethoxy)thiophene). Journal of Polymer Science 2021, 59 (22) , 2797-2808. https://doi.org/10.1002/pol.20210608
  32. Xiaojuan Dai, Qing Meng, Fengjiao Zhang, Ye Zou, Chong-an Di, Daoben Zhu. Electronic structure engineering in organic thermoelectric materials. Journal of Energy Chemistry 2021, 62 , 204-219. https://doi.org/10.1016/j.jechem.2021.03.020
  33. Pablo Simón Marqués, Giacomo Londi, Brett Yurash, Thuc-Quyen Nguyen, Stephen Barlow, Seth R. Marder, David Beljonne. Understanding how Lewis acids dope organic semiconductors: a “complex” story. Chemical Science 2021, 12 (20) , 7012-7022. https://doi.org/10.1039/D1SC01268A
  34. Julie Euvrard, Oki Gunawan, Xinjue Zhong, Steven P. Harvey, Antoine Kahn, David B. Mitzi. p-Type molecular doping by charge transfer in halide perovskite. Materials Advances 2021, 2 (9) , 2956-2965. https://doi.org/10.1039/D1MA00160D
  35. Jannis Krumland, Ana Maria Valencia, Caterina Cocchi. Exploring organic semiconductors in solution: the effects of solvation, alkylization, and doping. Physical Chemistry Chemical Physics 2021, 23 (8) , 4841-4855. https://doi.org/10.1039/D0CP06085B
  36. Shubham Bhagat, Hannes Hase, Ingo Salzmann. Chemical doping of organic semiconductors. 2021,,, 107-141. https://doi.org/10.1016/B978-0-12-818890-3.00004-7
  37. Peter A. Finn, Ian E. Jacobs, John Armitage, Ruiheng Wu, Bryan D. Paulsen, Mark Freeley, Matteo Palma, Jonathan Rivnay, Henning Sirringhaus, Christian B. Nielsen. Effect of polar side chains on neutral and p-doped polythiophene. Journal of Materials Chemistry C 2020, 8 (45) , 16216-16223. https://doi.org/10.1039/D0TC04290K
  38. Chuan-ding Dong, Stefan Schumacher. Molecular doping in few-molecule polymer-dopant complexes shows reduced Coulomb binding. Journal of Materials Chemistry C 2020, 8 (34) , 11929-11935. https://doi.org/10.1039/D0TC02185G
  39. Jianhua Chen, Yao Chen, Liang-Wen Feng, Chunling Gu, Guoping Li, Ning Su, Gang Wang, Steven M. Swick, Wei Huang, Xugang Guo, Antonio Facchetti, Tobin J. Marks. Hole (donor) and electron (acceptor) transporting organic semiconductors for bulk-heterojunction solar cells. EnergyChem 2020, 2 (5) , 100042. https://doi.org/10.1016/j.enchem.2020.100042
  40. Jiang Tian Liu, Hannes Hase, Sarah Taylor, Ingo Salzmann, Pat Forgione. Approaching the Integer‐Charge Transfer Regime in Molecularly Doped Oligothiophenes by Efficient Decarboxylative Cross‐Coupling. Angewandte Chemie International Edition 2020, 59 (18) , 7146-7153. https://doi.org/10.1002/anie.201914458
  41. Jiang Tian Liu, Hannes Hase, Sarah Taylor, Ingo Salzmann, Pat Forgione. Approaching the Integer‐Charge Transfer Regime in Molecularly Doped Oligothiophenes by Efficient Decarboxylative Cross‐Coupling. Angewandte Chemie 2020, 132 (18) , 7212-7219. https://doi.org/10.1002/ange.201914458
  42. Khaoula Ferchichi, Ramzi Bourguiga, Kamal Lmimouni, Sébastien Pecqueur. Concentration-control in all-solution processed semiconducting polymer doping and high conductivity performances. Synthetic Metals 2020, 262 , 116352. https://doi.org/10.1016/j.synthmet.2020.116352
  43. Ahmed E. Mansour, Dominique Lungwitz, Thorsten Schultz, Malavika Arvind, Ana M. Valencia, Caterina Cocchi, Andreas Opitz, Dieter Neher, Norbert Koch. The optical signatures of molecular-doping induced polarons in poly(3-hexylthiophene-2,5-diyl): individual polymer chains versus aggregates. Journal of Materials Chemistry C 2020, 8 (8) , 2870-2879. https://doi.org/10.1039/C9TC06509A
  44. Ana M. Valencia, Michele Guerrini, Caterina Cocchi. Ab initio modelling of local interfaces in doped organic semiconductors. Physical Chemistry Chemical Physics 2020, 22 (6) , 3527-3538. https://doi.org/10.1039/C9CP06655A
  45. Tamara Nunes Domschke, Olivier Bardagot, Anass Benayad, Renaud Demadrille, Alexandre Carella, Raphael Clerc, Alexandre Pereira. Unraveling the mechanism behind air instability in thin semiconducting polymer layers p-doped with molybdenum dithiolene complexes. Synthetic Metals 2020, 260 , 116251. https://doi.org/10.1016/j.synthmet.2019.116251
  46. Vanira Trifiletti, Thibault Degousée, Norberto Manfredi, Oliver Fenwick, Silvia Colella, Aurora Rizzo. Molecular Doping for Hole Transporting Materials in Hybrid Perovskite Solar Cells. Metals 2020, 10 (1) , 14. https://doi.org/10.3390/met10010014
  47. Giuliano Duva, Paul Beyer, Reinhard Scholz, Valentina Belova, Andreas Opitz, Alexander Hinderhofer, Alexander Gerlach, Frank Schreiber. Ground-state charge-transfer interactions in donor:acceptor pairs of organic semiconductors – a spectroscopic study of two representative systems. Physical Chemistry Chemical Physics 2019, 21 (31) , 17190-17199. https://doi.org/10.1039/C9CP02939G
  48. Johanna Zessin, Eva Bittrich, Jakob Zessin, Mikhail Malanin, Juliane Posseckardt, Brigitte Voit, Klaus‐Jochen Eichhorn, Anton Kiriy, Michael Mertig. Molecular Doping of a Water‐Soluble Polythiophene Derivative. physica status solidi (a) 2019, 216 (12) , 1800772. https://doi.org/10.1002/pssa.201800772
  49. Moritz H Futscher, Thorsten Schultz, Johannes Frisch, Maryline Ralaiarisoa, Ezzeldin Metwalli, Marco V Nardi, Peter Müller-Buschbaum, Norbert Koch. Electronic properties of hybrid organic/inorganic semiconductor pn-junctions. Journal of Physics: Condensed Matter 2019, 31 (6) , 064002. https://doi.org/10.1088/1361-648X/aaf310
  50. Hannes Hase, Ingo Salzmann. Doping in organic semiconductors. 2019,,, 349-383. https://doi.org/10.1016/B978-0-08-102284-9.00011-5
  51. Lucas Freeman, Paul Miller, Marni Sapolsky, David Boucher. p-Doping Poly(3-hexylthiophene) in Solvent Mixtures. Macromolecular Chemistry and Physics 2018, 219 (19) , 1800146. https://doi.org/10.1002/macp.201800146
  52. Ian E. Jacobs, Camila Cendra, Thomas F. Harrelson, Zaira I. Bedolla Valdez, Roland Faller, Alberto Salleo, Adam J. Moulé. Polymorphism controls the degree of charge transfer in a molecularly doped semiconducting polymer. Materials Horizons 2018, 5 (4) , 655-660. https://doi.org/10.1039/C8MH00223A
  53. Zhihui Zhang, Dezhong Zhang, Chunyu Liu, Zhiqi Li, Xinyuan Zhang, Wenbin Guo, Liu Zhang. Boosting electron extraction of inverted polymer solar cells using solution-processed nanocrystals as cathode interlayer. Electrochimica Acta 2017, 258 , 477-484. https://doi.org/10.1016/j.electacta.2017.11.085
  54. Jing Li, Gabriele D'Avino, Anton Pershin, Denis Jacquemin, Ivan Duchemin, David Beljonne, Xavier Blase. Correlated electron-hole mechanism for molecular doping in organic semiconductors. Physical Review Materials 2017, 1 (2) https://doi.org/10.1103/PhysRevMaterials.1.025602
  55. Elizabeth von Hauff, Enrico da Como, Sabine Ludwigs. Optoelectronic Properties of PCPDTBT for Photovoltaics: Morphology Control and Molecular Doping. 2017,,, 109-138. https://doi.org/10.1007/978-3-319-28338-8_5
  56. Frederick M. McFarland, Lindsey R. Bonnette, Elisha A. Acres, Song Guo. The impact of aggregation on the p-doping kinetics of poly(3-hexylthiophene). Journal of Materials Chemistry C 2017, 5 (23) , 5764-5771. https://doi.org/10.1039/C7TC00189D
  57. Patrick Pingel, Malavika Arvind, Lisa Kölln, Robert Steyrleuthner, Felix Kraffert, Jan Behrends, Silvia Janietz, Dieter Neher. p-Type Doping of Poly(3-hexylthiophene) with the Strong Lewis Acid Tris(pentafluorophenyl)borane. Advanced Electronic Materials 2016, 2 (10) , 1600204. https://doi.org/10.1002/aelm.201600204
  58. A. Chernenkaya, A. Morherr, S. Backes, W. Popp, S. Witt, X. Kozina, S. A. Nepijko, M. Bolte, K. Medjanik, G. Öhrwall, C. Krellner, M. Baumgarten, H. J. Elmers, G. Schönhense, H. O. Jeschke, R. Valentí. Microscopic origin of the charge transfer in single crystals based on thiophene derivatives: A combined NEXAFS and density functional theory approach. The Journal of Chemical Physics 2016, 145 (3) , 034702. https://doi.org/10.1063/1.4958659
  59. Yevhen Karpov, Tim Erdmann, Ivan Raguzin, Mahmoud Al-Hussein, Marcus Binner, Uwe Lappan, Manfred Stamm, Kirill L. Gerasimov, Tetyana Beryozkina, Vasiliy Bakulev, Denis V. Anokhin, Dimitri A. Ivanov, Florian Günther, Sibylle Gemming, Gotthard Seifert, Brigitte Voit, Riccardo Di Pietro, Anton Kiriy. High Conductivity in Molecularly p-Doped Diketopyrrolopyrrole-Based Polymer: The Impact of a High Dopant Strength and Good Structural Order. Advanced Materials 2016, 28 (28) , 6003-6010. https://doi.org/10.1002/adma.201506295
  60. Daisuke Tadaki, Teng Ma, Jinyu Zhang, Shohei Iino, Ayumi Hirano-Iwata, Yasuo Kimura, Richard A. Rosenberg, Michio Niwano. Fabrication and characterization of p+-i-p+ type organic thin film transistors with electrodes of highly doped polymer. Journal of Applied Physics 2016, 119 (15) , 154503. https://doi.org/10.1063/1.4946888
  61. Shin Sakiyama, Naoki Mizutani, Katsuhiko Fujita. Controllable p- and n-type doping of poly[2-methoxy-5-(2′-methyl-hexyloxy)- p -phenylenevinylene] films prepared by evaporative spray deposition using ultradilute solution. Japanese Journal of Applied Physics 2016, 55 (4S) , 04EL03. https://doi.org/10.7567/JJAP.55.04EL03
  62. Bora Joo, Eung-Gun Kim. Controlled electrical doping of organic semiconductors: a combined intra- and intermolecular perspective from first principles. Physical Chemistry Chemical Physics 2016, 18 (27) , 17890-17897. https://doi.org/10.1039/C6CP00827E
  63. Henry Méndez, Georg Heimel, Stefanie Winkler, Johannes Frisch, Andreas Opitz, Katrein Sauer, Berthold Wegner, Martin Oehzelt, Christian Röthel, Steffen Duhm, Daniel Többens, Norbert Koch, Ingo Salzmann. Charge-transfer crystallites as molecular electrical dopants. Nature Communications 2015, 6 (1) https://doi.org/10.1038/ncomms9560
  64. Ingo Salzmann, Georg Heimel. Toward a comprehensive understanding of molecular doping organic semiconductors (review). Journal of Electron Spectroscopy and Related Phenomena 2015, 204 , 208-222. https://doi.org/10.1016/j.elspec.2015.05.001
  65. Daisuke Tadaki, Teng Ma, Jinyu Zhang, Shohei Iino, Ayumi Hirano-Iwata, Yasuo Kimura, Michio Niwano. Molecular doping of regioregular poly(3-hexylthiophene) layers by 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane investigated by infrared spectroscopy and electrical measurements. Japanese Journal of Applied Physics 2015, 54 (9) , 091602. https://doi.org/10.7567/JJAP.54.091602
  66. Hande Karabıyık, Resul Sevinçek, Hasan Karabıyık. Effects of pnictogen and chalcogen bonds on the aromaticities of carbazole-like and dibenzofuran-like molecular skeletons: Cambridge Crystallographic Data Centre (CCDC) Study. Journal of Physical Organic Chemistry 2015, 28 (7) , 490-496. https://doi.org/10.1002/poc.3442
  67. Qi Wang, Cheng Bi, Jinsong Huang. Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells. Nano Energy 2015, 15 , 275-280. https://doi.org/10.1016/j.nanoen.2015.04.029
  68. Seung-Jun Yoo, Jang-Joo Kim. Charge Transport in Electrically Doped Amorphous Organic Semiconductors. Macromolecular Rapid Communications 2015, 36 (11) , 984-1000. https://doi.org/10.1002/marc.201500026
  69. Chenchen Wang, Duc T. Duong, Koen Vandewal, Jonathan Rivnay, Alberto Salleo. Optical measurement of doping efficiency in poly(3-hexylthiophene) solutions and thin films. Physical Review B 2015, 91 (8) https://doi.org/10.1103/PhysRevB.91.085205
  70. Hakan Usta, Antonio Facchetti. Polymeric and Small-Molecule Semiconductors for Organic Field-Effect Transistors. 2015,,, 1-100. https://doi.org/10.1002/9783527679973.ch1
  71. Fatemeh Ghani, Andreas Opitz, Patrick Pingel, Georg Heimel, Ingo Salzmann, Johannes Frisch, Dieter Neher, Argiri Tsami, Ullrich Scherf, Norbert Koch. Charge transfer in and conductivity of molecularly doped thiophene-based copolymers. Journal of Polymer Science Part B: Polymer Physics 2015, 53 (1) , 58-63. https://doi.org/10.1002/polb.23631
  72. Felix Deschler, Daniel Riedel, Andras Deák, Bernhard Ecker, Elizabeth von Hauff, Enrico Da Como. Imaging of morphological changes and phase segregation in doped polymeric semiconductors. Synthetic Metals 2015, 199 , 381-387. https://doi.org/10.1016/j.synthmet.2014.11.037
  73. Milan Rudloff, Kai Ackermann, Michael Huth, Harald O. Jeschke, Milan Tomic, Roser Valentí, Benedikt Wolfram, Martin Bröring, Michael Bolte, Dennis Chercka, Martin Baumgarten, Klaus Müllen. Charge transfer tuning by chemical substitution and uniaxial pressure in the organic complex tetramethoxypyrene–tetracyanoquinodimethane. Physical Chemistry Chemical Physics 2015, 17 (6) , 4118-4126. https://doi.org/10.1039/C4CP04461D
  74. Duc T. Duong, Hung Phan, David Hanifi, Pil Sung Jo, Thuc-Quyen Nguyen, Alberto Salleo. Direct Observation of Doping Sites in Temperature-Controlled, p-Doped P3HT Thin Films by Conducting Atomic Force Microscopy. Advanced Materials 2014, 26 (35) , 6069-6073. https://doi.org/10.1002/adma.201402015
  75. Sooncheol Kwon, Kilho Yu, Kyoungchun Kweon, Geunjin Kim, Junghwan Kim, Heejoo Kim, Yong-Ryun Jo, Bong-Joong Kim, Jehan Kim, Seoung Ho Lee, Kwanghee Lee. Template-mediated nano-crystallite networks in semiconducting polymers. Nature Communications 2014, 5 (1) https://doi.org/10.1038/ncomms5183
  76. Nichole Cates Miller, Eric T. Hoke, Michael D. McGehee. Intercalation in Polymer:Fullerene Blends. 2014,,, 421-444. https://doi.org/10.1002/9783527656912.ch13
  77. Guanghao Lu, Laju Bu, Sijun Li, Xiaoniu Yang. Bulk Interpenetration Network of Thermoelectric Polymer in Insulating Supporting Matrix. Advanced Materials 2014, 26 (15) , 2359-2364. https://doi.org/10.1002/adma.201305320
  78. Henry Méndez, Georg Heimel, Andreas Opitz, Katrein Sauer, Patrick Barkowski, Martin Oehzelt, Junshi Soeda, Toshihiro Okamoto, Jun Takeya, Jean-Baptiste Arlin, Jean-Yves Balandier, Yves Geerts, Norbert Koch, Ingo Salzmann. Doping of Organic Semiconductors: Impact of Dopant Strength and Electronic Coupling. Angewandte Chemie 2013, 125 (30) , 7905-7909. https://doi.org/10.1002/ange.201302396
  79. Henry Méndez, Georg Heimel, Andreas Opitz, Katrein Sauer, Patrick Barkowski, Martin Oehzelt, Junshi Soeda, Toshihiro Okamoto, Jun Takeya, Jean-Baptiste Arlin, Jean-Yves Balandier, Yves Geerts, Norbert Koch, Ingo Salzmann. Doping of Organic Semiconductors: Impact of Dopant Strength and Electronic Coupling. Angewandte Chemie International Edition 2013, 52 (30) , 7751-7755. https://doi.org/10.1002/anie.201302396
  80. Duc T. Duong, Chenchen Wang, Erin Antono, Michael F. Toney, Alberto Salleo. The chemical and structural origin of efficient p-type doping in P3HT. Organic Electronics 2013, 14 (5) , 1330-1336. https://doi.org/10.1016/j.orgel.2013.02.028
  81. P. Pingel, D. Neher. Comprehensive picture of p -type doping of P3HT with the molecular acceptor F 4 TCNQ. Physical Review B 2013, 87 (11) https://doi.org/10.1103/PhysRevB.87.115209
  82. Guanghao Lu, Xiaoniu Yang. Enhanced Electrical Conductivity of Polythiophene/Insulating Polymer Composite and Its Morphological Requirement. 2012,,, 251-268. https://doi.org/10.1002/9783527648689.ch9
  83. Nichole Cates Miller, Eunkyung Cho, Roman Gysel, Chad Risko, Veaceslav Coropceanu, Chad E. Miller, Sean Sweetnam, Alan Sellinger, Martin Heeney, Iain McCulloch, Jean‐Luc Brédas, Michael F. Toney, Michael D. McGehee. Factors Governing Intercalation of Fullerenes and Other Small Molecules Between the Side Chains of Semiconducting Polymers Used in Solar Cells. Advanced Energy Materials 2012, 2 (10) , 1208-1217. https://doi.org/10.1002/aenm.201200392
  84. Antonio Facchetti, Luigi Vaccaro, Assunta Marrocchi. Durch direkte arylierende Polykondensation zu halbleitenden Polymeren. Angewandte Chemie 2012, 124 (15) , 3578-3581. https://doi.org/10.1002/ange.201200199
  85. Antonio Facchetti, Luigi Vaccaro, Assunta Marrocchi. Semiconducting Polymers Prepared by Direct Arylation Polycondensation. Angewandte Chemie International Edition 2012, 51 (15) , 3520-3523. https://doi.org/10.1002/anie.201200199
  86. P. Pingel, R. Schwarzl, D. Neher. Effect of molecular p-doping on hole density and mobility in poly(3-hexylthiophene). Applied Physics Letters 2012, 100 (14) , 143303. https://doi.org/10.1063/1.3701729

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE